Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 2
2,104
Views
27
CrossRef citations to date
0
Altmetric
Research Article

MoS2 based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation

ORCID Icon & ORCID Icon
Pages 620-693 | Received 10 Oct 2020, Accepted 22 Jul 2021, Published online: 25 Aug 2021

References

  • Haritha, E.; Roopan, S. M.; Madhavi, G.; Elango, G.; Arunachalam, P. Catunaregum Spinosa Capped Ag NPs and Its Photocatalytic Application against Amaranth Toxic Azo Dye. J. Mol. Liq. 2017, 225, 531–535. DOI: 10.1016/j.molliq.2016.11.120.
  • Surendra, T. V.; Roopan, S. M. Photocatalytic and Antibacterial Properties of Phytosynthesized CeO2 NPs Using Moringa Oleifera Peel Extract. Journal of Photochemistry and Photobiology B: Biology. 2016, 161, 122–128. DOI: 10.1016/j.jphotobiol.2016.05.019.
  • Grover, R.; Cessna, A. J., Eds. Environmental Chemistry of Herbicides; CRC Press: Boca Raton, FL, 1991.
  • Ashraf, M. A. Persistent Organic Pollutants (Pops): A Global Issue, A Global Challenge. Environ. Sci. Pollut. Res. 2017, 24(5), 4223–4227. DOI: 10.1007/s11356-015-5225-9.
  • Matthies, M.; Solomon, K.; Vighi, M.; Gilman, A.; Tarazona, J. V. The Origin and Evolution of Assessment Criteria for Persistent, Bioaccumulative and Toxic (PBT) Chemicals and Persistent Organic Pollutants (Pops). Environmental Science: Processes & Impacts. 2016, 18(9), 1114–1128. DOI: 10.1039/c6em00311g.
  • Shanavas, S.; Roopan, S. M.; Priyadharsan, A.; Devipriya, D.; Jayapandi, S.; Acevedo, R.; Anbarasan, P. M. Computationally Guided Synthesis of (2D/3D/2D) rGO/Fe2O3/g-C3N4 Nanostructure with Improved Charge Separation and Transportation Efficiency for Degradation of Pharmaceutical Molecules. Appl. Catal. B Environ. 2019, 255, 117758. DOI: 10.1016/j.apcatb.2019.117758.
  • Varjani, S. J.; Gnansounou, E.; Pandey, A. Comprehensive Review on Toxicity of Persistent Organic Pollutants from Petroleum Refinery Waste and Their Degradation by Microorganisms. Chemosphere. 2017, 188, 280–291. DOI: 10.1016/j.chemosphere.2017.09.005.
  • Reddy, P. V. L.; Kim, K.-H. A Review of Photochemical Approaches for the Treatment of A Wide Range of Pesticides. J. Hazard. Mater. 2015, 285, 325–335. DOI: 10.1016/j.jhazmat.2014.11.036.
  • Srivastava, S.; Sinha, R.; Roy, D. Toxicological Effects of Malachite Green. Aquatic Toxicology. 2004, 66(3), 319–329. DOI: 10.1016/j.aquatox.2003.09.008.
  • Liu, X.; Steele, J. C.; Meng, X. Z. Usage, Residue, and Human Health Risk of Antibiotics in Chinese Aquaculture: A Review. Environ. Pollut. 2017, 223, 161–169. DOI: 10.1016/j.envpol.2017.01.003.
  • Kümmerer, K. Antibiotics in the Aquatic Environment – A Review – Part I. Chemosphere. 2009, 75(4), 417–434. DOI: 10.1016/j.chemosphere.2008.11.086.
  • Lellis, B.; Fávaro-Polonio, C. Z.; Pamphile, J. A.; Polonio, J. C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnology Research and Innovation. 2019, 3(2), 275–290. DOI: 10.1016/j.biori.2019.09.001.
  • Reddy, P. A. K.; Reddy, P. V. L.; Kwon, E.; Kim, K.-H.; Akter, T.; Kalagara, S. Recent Advances in Photocatalytic Treatment of Pollutants in Aqueous Media. Environ. Int. 2016, 91, 94–103. DOI: 10.1016/j.envint.2016.02.012.
  • Anand, K.; Murugan, V.; Roopan, S. M.; Surendra, T. V.; Chuturgoon, A. A.; Muniyasamy, S. Degradation Treatment of 4-Nitrophenol by Moringa Oleifera Synthesised GO-CeO2 Nanoparticles as Catalyst. Journal of Inorganic and Organometallic Polymers and Materials. 2018, 28(6), 2241–2248. DOI: 10.1007/s10904-018-0891-y.
  • Bulai, I. M.; Venturino, E. Biodegradation of Organic Pollutants in a Water Body. Journal of Mathematical Chemistry. 2016, 54(7), 1387–1403. DOI: 10.1007/s10910-016-0603-1.
  • de Araújo, D. M.; Cañizares, P.; Martínez-Huitle, C. A.; Rodrigo, M. A. Electrochemical Conversion/Combustion of a Model Organic Pollutant on BDD Anode: Role of Sp3/sp2 Ratio. Electrochemistry Communications. 2014, 47, 37–40. DOI: 10.1016/j.elecom.2014.07.017.
  • Brillas, E.; Martínez-Huitle, C. A. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review. Appl. Catal. B Environ. 2015, 166–167, 603–643. DOI: 10.1016/j.apcatb.2014.11.016.
  • Zhang, S.; Zeng, M.; Li, J.; Li, J.; Xu, J.; Wang, X. Porous Magnetic Carbon Sheets from Biomass as an Adsorbent for the Fast Removal of Organic Pollutants from Aqueous Solution. J. Mater. Chem. A. 2014, 2(12), 4391–4397. DOI: 10.1039/C3TA14604A.
  • Robinson, T.; Nigam, P.; Nigam, P.; Nigam, P. Remediation of Dyes in Textile Eluent: A Critical Review on Current Treatment Technologies with A Proposed Alternative. Bioresource Technology. 2001, 77(3), 247–255. DOI: 10.1016/s0960-8524(00)00080-8.
  • Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C3N4 - Based Photocatalysts. Applied Surface Sci. 2017, 391, 72–123. DOI: 10.1016/j.apsusc.2016.07.030.
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Green-synthesized Nanocatalysts and Nanomaterials for Water Treatment: Current Challenges and Future Perspectives. J. Hazard. Mater. 2021, 401, 123401. DOI: 10.1016/j.jhazmat.2020.123401.
  • Kumar, D. A.; Palanichamy, V.; Roopan, S. M. Green Synthesis of Silver Nanoparticles Using Alternanthera Dentata Leaf Extract at Room Temperature and Their Antimicrobial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014, 127, 168–171. DOI: 10.1016/j.saa.2014.02.058.
  • Surendra, T. V.; Roopan, S. M.; Khan, M. R. Biogenic Approach to Synthesize Rod Shaped Gd2O3 Nanoparticles and Its Optimization Using Response Surface methodology-Box–Behnken Design Model. Biotechnology Progress. 2019, 35(4), 2823. DOI: 10.1002/btpr.2823.
  • Elango, G.; Roopan, S. M. Green Synthesis, Spectroscopic Investigation and Photocatalytic Activity of Lead Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015, 139, 367–373. DOI: 10.1016/j.saa.2014.12.066.
  • Haritha, E.; Roopan, S. M.; Madhavi, G.; Elango, G.; Al-Dhabi, N. A.; Arasu, M. V. Environmental Friendly Synthesis of Palladium Nanoparticles and Its Photocatalytic Activity against Diazo Dye to Sustain the Natural Source. J. Clust. Sci. 2017, 28(3), 1225–1236. DOI: 10.1007/s10876-016-1136-2.
  • Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment - A Critical Review. Water Res. 2018, 139, 118–131. DOI: 10.1016/j.watres.2018.03.042.
  • Moreira, F. C.; Boaventura, R. A. R.; Brillas, E.; Vilar, V. J. P. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. DOI: 10.1016/j.apcatb.2016.08.037.
  • Djurišic, A. B.; He, Y.; Ng, A. M. C. Visible-light Photocatalysts: Prospects and Challenges. APL Mater. 2020, 8(3), 030903. DOI: 10.1063/1.5140497.
  • Loeb, S. K.; Alvarez, P. J. J.; Brame, J. A.; Cates, E. L.; Choi, W.; Crittenden, J.; Dionysiou, D. D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environ. Sci. Technol. 2019, 53(6), 2937–2947. DOI: 10.1021/acs.est.8b05041.
  • Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2014, 20, 33–50. DOI: 10.1016/j.jphotochemrev.2014.04.002.
  • Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. DOI: 10.1002/adma.201500033.
  • Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B Environ. 2012, 125, 331–349. DOI: 10.1016/j.apcatb.2012.05.036.
  • Hu, X.; Li, G.; Yu, J. C. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir. 2010, 26(5), 3031–3039. DOI: 10.1021/la902142b.
  • Surendra, T. V.; Roopan, S. M.; Al-Dhabi, N. A.; Arasu, M. V.; Sarkar, G.; Suthindhiran, K. Vegetable Peel Waste for the Production of ZnO Nanoparticles and Its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities. Nanoscale Res. Lett. 2016, 11(1), 1–10. DOI: 10.1186/s11671-016-1750-9.
  • Rajakumar, G.; Rahuman, A. A.; Roopan, S. M.; Khanna, V. G.; Elango, G.; Kamaraj, C.; Zahir, A. A.; Velayutham, K. Fungus-mediated Biosynthesis and Characterization of TiO2 Nanoparticles and Their Activity against Pathogenic Bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012, 91, 23–29. DOI: 10.1016/j.saa.2012.01.011.
  • Haritha, E.; Roopan, S. M.; Madhavia, G.; Elango, G.; Al-Dhabi, N. A.; Arasu, M. V. Green Chemical Approach Towards the Synthesis of SnO2 NPs in Argument with Photocatalytic Degradation of Diazo Dye and Its Kinetic Studies. Journal of Photochemistry and Photobiology B: Biology. 2016, 162, 441–447. DOI: 10.1016/j.jphotobiol.2016.07.010.
  • Roopan, S. M.; Elango, G.; Priya, D. D.; Asharani, V.; Kishore, B.; Vinayprabhakar, S.; Pragatheshwaran, N.; Mohanraj, K.; Harshpriya, R.; Shanavas, S.; et al. Sunlight Mediated Photocatalytic Degradation of Organic Pollutants by Statistical Optimization of Green Synthesized NiO NPs as Catalyst. J. Mol. Liq. 2019, 293, 111509. DOI: 10.1016/j.molliq.2019.111509.
  • Hossain, S. S.; Tarek, M.; Munusamy, T. D.; Karim, K. M. R.; Roopan, S. M.; Sarkar, S. M.; Cheng, C. K.; Khan, M. M. R. Facile Synthesis of CuO/CdS Heterostructure Photocatalyst for the Effective Degradation of Dye under Visible Light. Environmental Research. 2020, 188, 109803. DOI: 10.1016/j.envres.2020.109803.
  • McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-Dominated Doping and Contact Resistance in MoS2. ACS Nano. 2014, 8(3), 2880–2888. DOI: 10.1021/nn500044q.
  • Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2 : A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105(13), 136805. DOI: 10.1103/PhysRevLett.105.136805.
  • Pu, J.; Yomogida, Y.; Liu, -K.-K.; Li, L.-J.; Iwasa, Y.; Takenobu, T. Highly Flexible MoS2. Thin-Film Transistors with Ion Gel Dielectrics. Nano Lett. 2012, 12(8), 4013–4017. DOI: 10.1021/nl301335q.
  • Hidaka, H.; Zhao, J.; Horikoshi, S.; Serpone, N.; Pelizzett, E. Photocatalytic Effect of Various Semiconductors on the Photooxidation of Surfactants. Journal of Japan Oil Chemists’ Society. 1995, 44(2), 121–125. DOI: 10.5650/jos1956.44.121.
  • Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A Synoptic Review of MoS2: Synthesis to Applications. Superlattices and Microstructures. 2019, 128, 274–297. DOI: 10.1016/j.spmi.2019.02.005.
  • Ganatra, R.; Zhang, Q. Few-Layer MoS2: A Promising Layered Semiconductor. ACS Nano. 2014, 8(5), 4074–4099. DOI: 10.1021/nn405938z.
  • Sun, J.; Li, X.; Guo, W.; Zhao, M.; Fan, X.; Dong, Y.; Xu, C.; Deng, J.; Fu, Y. Synthesis Methods of Two-Dimensional MoS2: A Brief Review. Crystals. 2017, 7(7), 198. DOI: 10.3390/cryst7070198.
  • Li, Z.; Meng, X.; Zhang, Z. Recent Development on MoS2-based Photocatalysis: A Review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2018, 35, 39–55. DOI: 10.1016/j.jphotochemrev.2017.12.002.
  • Wu, M.-H.; Li, L.; Liu, N.; Wang, D.-J.; Xue, Y.-C.; Tang, L. Molybdenum Disulfide (MoS2) as A Co-catalyst for Photocatalytic Degradation of Organic Contaminants: A Review. Process Saf. Environ. 2018, 118, 40–58. DOI: 10.1016/j.psep.2018.06.025.
  • Kubiak, A.; Siwinska-Ciesielczyk, K.; Jesionowski, T. Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials. 2018, 11(11), 2295. DOI: 10.3390/ma11112295.
  • Zeng, Q.; Bai, J.; Li, J.; Zhou, B.; Sun, Y. A Low-cost Photoelectrochemical Tandem Cell for Highly-stable and Efficient Solar Water Splitting. Nano Energy. 2017, 41, 225–232. DOI: 10.1016/j.nanoen.2017.09.032.
  • Zhang, X.-H.; Li, N.; Wu, J.; Zheng, Y.-Z.; Tao, X. Defect-rich O-incorporated 1T-MoS2 Nanosheets for Remarkably Enhanced Visible-light Photocatalytic H2 Evolution over CdS: The Impact of Enriched Defects. Appl. Catal. B. Environ. 2018, 229, 227–236. DOI: 10.1016/j.apcatb.2018.02.025.
  • Formal, F. L.; Pendlebury, S. R.; Cornuz, M.; Tilley, S. D.; Gra, M.; Durrant, J. R. Back Electron-hole Recombination in Hematite Photoanodes for Water Splitting. J. Am. Chem. Soc. 2014, 136(6), 2564–2574. DOI: 10.1021/ja412058x.
  • Yang, Y.; Zhang, C.; Huang, D.; Zeng, G.; Huang, J.; Lai, C.; Zhou, C.; Wang, W.; Guo, H.; Xue, W.; et al. Boron Nitride Quantum Dots Decorated Ultrathin Porous g-C3N4: Intensified Exciton Dissociation and Charge Transfer for Promoting Visible-light-driven Molecular Oxygen Activation. Appl. Catal. B Environ. 2019, 245, 87–99. DOI: 10.1016/j.apcatb.2018.12.049.
  • Kc, S.; Longo, R. C.; Addou, R.; Wallace, R. M.; Cho, K. Impact of Intrinsic Atomic Defects on the Electronic Structure of MoS2 Monolayers. Nanotechnology. 2014, 25(37), 375703. DOI: 10.1088/0957-4484/25/37/375703.
  • Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95(1), 69–96. DOI: 10.1021/cr00033a004.
  • Fox, M. A.; Dulay, M. T. Heterogeneous Photocatalysis. Chem. Rev. 1993, 93(1), 341–357. DOI: 10.1021/cr00017a016.
  • Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction Photocatalysts. Advanced Materials. 2017, 29(20), 1601694. DOI: 10.1002/adma.201601694.
  • Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46(8), 1900–1909. DOI: 10.1021/ar300227e.
  • Ong, W.-J.; Tan, -L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g‑C3N4)‑based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. DOI: 10.1021/acs.chemrev.6b00075.
  • Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 Based Noble-metal-free Photocatalyst Systems: A Review. Appl. Catal. B Environ. 2017, 206, 556–588. DOI: 10.1016/j.apcatb.2017.01.061.
  • Prasad, C.; Tang, H.; Bahadur, I. Graphitic Carbon Nitride Based Ternary Nanocomposites: From Synthesis to Their Applications in Photocatalysis: A Recent Review. J. Mol. Liq. 2019, 281, 634–654. DOI: 10.1016/j.molliq.2019.02.068.
  • Ma, R.; Zhang, S.; Wen, T.; Gu, P.; Li, L.; Zhao, G.; Niu, F.; Huang, Q.; Tang, Z.; Wang, X. A Critical Review on Visible-light-response CeO2-based Photocatalysts with Enhanced Photooxidation of Organic Pollutants. Catalysis Today. 2019, 335, 20–30. DOI: 10.1016/j.cattod.2018.11.016.
  • Frindt, R. F. Single Crystals of MoS2 Several Molecular Layers Thick. J. Appl. Phys. 1966, 37(4), 1928–1929. DOI: 10.1063/1.1708627.
  • Yang, D.; Sandoval, S. J.; Divigalpitiya, W. M.; Irwin, J. C.; Frindt, R. F. Structure of Single-molecular-layer MoS2. Physical Review B. 1991, 43(14), 12053–12056. DOI: 10.1103/PhysRevB.43.12053.
  • Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Strong Light-matter Interactions in Heterostructures of Atomically Thin Films. Science. 2013, 340(6138), 1311. DOI: 10.1126/science.1235547.
  • Zan, R.; Ramasse, Q. M.; Jalil, R.; Georgiou, T.; Bangert, U.; Novoselov, K. S. Control of Radiation Damage in MoS2 by Graphene Encapsulation. ACS Nano. 2013, 7(11), 10167. DOI: 10.1021/nn4044035.
  • Bai, X.; Du, Y.; Hu, X.; De, Y.; He, C.; Liu, E.; Fan, J. Synergy Removal of Cr (VI) and Organic Pollutants over RP-MoS2/rGO Photocatalyst. Appl. Catal. B. Environ. 2018, 239, 204–213. DOI: 10.1016/j.apcatb.2018.08.016.
  • Zhang, J.; Wang, Q.; Wang, L.; Li, X.; Huang, W. Layer-controllable WS2-reduced Graphene Oxide Hybrid Nanosheets with High Electrocatalytic Activity for Hydrogen Evolution. Nanoscale. 2015, 7(23), 10391–10397. DOI: 10.1039/C5NR01896J.
  • Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134(15), 6575–6578. DOI: 10.1021/ja302846n.
  • Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 Analogues of Graphene. Angew. Chem. 2010, 49(24), 4059–4062. DOI: 10.1002/anie.201000009.
  • Jiang, J.-W. Graphene versus MoS2: A Short Review. Front. Phys. 2015, 10(3), 106801. DOI: 10.1007/s11467-015-0459-z.
  • Molina-Sánchez, A.; Hummer, K.; Wirtz, L. Vibrational and Optical Properties of MoS2 : From Monolayer to Bulk. Surf. Sci. Rep. 2015, 70(4), 554–586. DOI: 10.1016/j.surfrep.2015.10.001.
  • Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides. Nature Nanotechnology. 2012, 7(11), 699–712. DOI: 10.1038/nnano.2012.193.
  • Mortazavi, M.; Wang, C.; Deng, J.; Shenoy, V. B.; Medhekar, N. V. Ab Initio Characterization of Layered MoS2 as Anode for Sodium-ion Batteries. Journal of Power Sources. 2014, 268, 279–286. DOI: 10.1016/j.jpowsour.2014.06.049.
  • Abrams, B. L.; Wilcoxon, J. P. Nanosize Semiconductors for Photooxidation. Critical Reviews in Solid State and Materials Sciences. 2005, 30(3), 153–182. DOI: 10.1080/10408430500200981.
  • Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6(3), 147. DOI: 10.1038/nnano.2010.279.
  • Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Acc. Chem. Res. 2014, 47(4), 1067–1075. DOI: 10.1021/ar4002312.
  • Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nanotechnol. 2013, 8(7), 497–501. DOI: 10.1038/nnano.2013.100.
  • Bao, M. S.; Cai, W.; Kim, X.; Sridhara, D.; Fuhrer, K. High Mobility Ambipolar MoS2 Field-effect Transistors: Substrate and Dielectric Effects. Appl. Phys. Lett. 2013, 102(4), 042104. DOI: 10.1063/1.4789365.
  • Joensen, P.; Frindt, R. F.; Morrison, S. R. Single-Layer MoS2. Mater. Res. Bull. 1986, 21(4), 457–461. DOI: 10.1016/0025-5408(86)90011-5.
  • Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11(12), 5111–5116. DOI: 10.1021/nl201874w.
  • Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angew. Chem. Int. Ed. 2011, 50(47), 11093–11097. DOI: 10.1002/anie.201106004.
  • Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science. 2011, 331(6017), 568–571. DOI: 10.1126/science.1194975.
  • Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G.; et al. Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Adv. Mater. 2011, 23(34), 3944–3948. DOI: 10.1002/adma.201102584.
  • Mann, J.; Sun, D.; Ma, Q.; Chen, J.-R.; Preciado, E.; Ohta, T.; Diaconescu, B.; Yamaguchi, K.; Tran, T.; Wurch, M.; et al. Facile Growth of Monolayer MoS2 Film Areas on SiO2. The European Physical Journal B. 2013, 86(5), 226. DOI: 10.1140/epjb/e2013-31011-y.
  • Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-zadeh, K. Atomically Thin Layers of MoS2 via a Two Step Thermal Evaporation–exfoliation Method. Nanoscale. 2012, 4(2), 461. DOI: 10.1039/c1nr10803d.
  • Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J.-C.; Ajayan, P. M.; Lou, J. Vapour Phase Growth and Grian Boundary Structure of Molybdenum Disulphide Atomic Layers. Nat. Mater. 2013, 12(8), 754–759. DOI: 10.1038/nmat3673.
  • Ji, Q.; Zhang, Y.; Gao, T.; Zhang, Y.; Ma, D.; Liu, M.; Chen, M.; Chen, Y.; Qiao, X.; Tan, P.-H.; et al. Epitaxial Monolayer MoS2 on Mica with Novel Photoluminescence. Nano Lett. 2013, 13(8), 3870–3877. DOI: 10.1021/nl401938t.
  • Lee, L. L. Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L.-J. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24(17), 2320–2325. DOI: 10.1002/adma.201104798.
  • Lin, Y. H.; Zhang, Y. C. W.; Huang, J. K.; Liu, K. K.; Lee, L. J.; Liang, C. T.; Chu, C. W.; Li,; Li, L.-J. Wafer-scale MoS2 Thin Layers Prepared by MoO3 Sulfurization. Nanoscale. 2012, 4(20), 6637–6641. DOI: 10.1039/C2NR31833D.
  • Shi, Y.; Zhou, W.; Lu, A. Y.; Fang, W.; Lee, Y.-H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L.-J., et al. Van Der Waals Epitaxy of MoS2 Layers Using Graphene as Growth Templates. Nano Lett. 2012, 12(6), 2784–2791. DOI: 10.1021/nl204562j.
  • Liu, -K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 2012, 12(3), 1538–1544. DOI: 10.1021/nl2043612.
  • Laskar, M. R.; Ma, L.; Kannappan, S.; Sung Park, P.; Krishnamoorthy, S.; Nath, D. N.; Lu, W.; Wu, Y.; Rajan, S. Large Area Single Crystal (0001) Oriented MoS2. Appl. Phys. Lett. 2013, 102(25), 252108. DOI: 10.1063/1.4811410.
  • Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small. 2012, 8(7), 966–971. DOI: 10.1002/smll.201102654.
  • Yang, S. Y.; Shim, G. W.; Seo, S.-B.; Choi, S.-Y. Effective Shape-controlled Growth of Monolayer MoS2 Flakes by Powder-based Chemical Vapor Deposition. Nano Res. 2016, 10(1), 255–262. DOI: 10.1007/s12274-016-1284-6.
  • Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazic, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W.; et al. Large-Area Epitaxial Monolayer MoS2. ACS Nano. 2015, 9(4), 4611–4620. DOI: 10.1021/acsnano.5b01281.
  • Chung, D. Y.; Park, S.-K.; Chung, Y.-H.; Yu, S.-H.; Lim, D.-H.; Jung, N.; Ham, H. C.; Park, H.-Y.; Piao, Y.; Yoo, S. J.; et al. Edge-exposed MoS2 Nano-assembled Structures as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Nanoscale. 2014, 6(4), 2131–2136. DOI: 10.1039/C3NR05228A.
  • Shi, L.; Wang, T.; Zhang, H.; Chang, K.; Meng, X.; Liu, H.; Ye, J. An Amine-functionalized Iron(III) Metal-organic Framework as Efficient Visible-light Photocatalyst for Cr(VI) Reduction. Adv. Sci. 2015, 2(3), 1500006. DOI: 10.1002/advs.201500006.
  • Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H. Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small. 2013, 9(1), 140–147. DOI: 10.1002/smll.201201161.
  • Garadkar, K. M.; Patil, A. A.; Hankare, P. P.; Chate, P. A.; Sathe, D. J.; Delekar, S. D. MoS2: Preparation and Their Characterization. J. Alloys Compd. 2009, 487(1–2), 786–789. DOI: 10.1016/j.jallcom.2009.08.069.
  • Feng, X.; Tang, Q.; Zhou, J.; Fang, J.; Ding, P.; Sun, L.; Shi, L. Novel Mixed-solvothermal Synthesis of MoS2 Nanosheets with Controllable Morphologies. Crystal Research and Technology. 2013, 48(6), 363–368. DOI: 10.1002/crat.201300003.
  • Berntsen, N.; Gutjahr, T.; Loeffler, L.; Seshadri, R.; Seshadri, R.; Tremel, W. A Solvothermal Route to High-Surface-Area Nanostructured MoS2. Chemistry of Materials. 2003, 15(23), 4498–4502. DOI: 10.1021/cm0311170.
  • Peng, Y.; Meng, Z.; Zhong, C.; Lu, J.; Yang, Z.; Qian, Y. Tube- and Ball-like Amorphous MoS2 Prepared by a Solvothermal Method. Mater. Chem. Phys. 2002, 73(2–3), 327–329. DOI: 10.1016/S0254-0584(01)00364-9.
  • Behera, A.; Kandi, D.; Martha, S.; Parida, K. Constructive Interfacial Charge Carrier Separation of a p-CaFe2O4@n-ZnFe2O4 Heterojunction Architect Photocatalyst toward Photodegradation of Antibiotics. Inorg. Chem. 2019, 58(24), 16592–16608. DOI: 10.1021/acs.inorgchem.9b02610.
  • Tian, H.; Liu, M.; Zheng, W. Constructing 2D Graphitic Carbon Nitride Nanosheets/layered MoS2/graphene Ternary Nanojunction with Enhanced Photocatalytic Activity. Appl. Catal. B Environ. 2018, 225, 468–476. DOI: 10.1016/j.apcatb.2017.12.019.
  • Zhang, Z. Y.; Huang, Y. Z.; Liu, K. C.; Guo, L. J.; Yuan, Q.; Dong, B. Multichannel‐Improved Charge‐Carrier Dynamics in Well‐Designed Hetero‐nanostructural Plasmonic Photocatalysts toward Highly Efficient Solar‐to‐Fuels Conversion. Adv. Mater. 2015, 27(39), 5906–5914. DOI: 10.1002/adma.201502203.
  • Tang, Y.; Zheng, Z.; Sun, X.; Li, X.; Li, L. Ternary CdS-MoS2 Coated ZnO Nanobrush Photoelectrode for One-dimensional Acceleration of Charge Separation upon Visible Light Illumination. Chem. Eng. J. 2019, 368, 448–458. DOI: 10.1016/j.cej.2019.02.166.
  • Bard, A. J. Photoelectrochemistry and Heterogeneous Photo-catalysis at Semiconductors. Journal of Photochemistry. 1979, 10(1), 59–75. DOI: 10.1016/0047-2670(79)80037-4.
  • Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Methods. 2017, 1(5), 1700080. DOI: 10.1002/smtd.201700080.
  • Kang, J.; Jin, C.; Li, Z.; Wang, M.; Chen, Z.; Wang, Y. Dual Z-scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-light Photodegradation of Antibiotic. J. Alloys Compd. 2020, 825, 153975. DOI: 10.1016/j.jallcom.2020.153975.
  • Kumar, S.; Maivizhikannan, V.; Drews, J.; Krishnan, V. Fabrication of Nanoheterostructures of Boron Doped ZnO-MoS2 with Enhanced Photostability and Photocatalytic Activity for Environmental Remediation Applications. Vacuum. 2019, 163, 88–98. DOI: 10.1016/j.vacuum.2019.02.001.
  • Jiang, H.; Xing, Z.; Zhao, T.; Yang, Z.; Wang, K.; Li, Z.; Yang, S.; Xie, L.; Zhou, W. Plasmon Ag nanoparticle/Bi2S3 Ultrathin Nanobelt/oxygen-doped Flowerlike MoS2 Nanosphere Ternary Heterojunctions for Promoting Charge Separation and Enhancing Solar-driven Photothermal and Photocatalytic Performances. Applied Catalysis B: Environmental. 2020, 274, 118947. DOI: 10.1016/j.apcatb.2020.118947.
  • Liu, M.; Xue, X.; Yu, S.; Wang, X.; Hu, X.; Tian, H.; Chen, H.; Zheng, W. Improving Photocatalytic Performance from Bi2WO6@MoS2/graphene Hybrids via Gradual Charge Transferred Pathway. Sci. Rep. 2017, 7(1), 3637. DOI: 10.1038/s41598-017-03911-6.
  • Chen, L.; He, F.; Zhao, N.; Guo, R. Fabrication of 3D Quasi-hierarchical Z-scheme RGO-Fe2O3-MoS2 Nanoheterostructures for Highly Enhanced Visible-light-driven Photocatalytic Degradation. Appl. Surf. Sci. 2017, 420, 669–680. DOI: 10.1016/j.apsusc.2017.05.099.
  • Sun, S.; Sun, M.; Kong, Y.; Fang, Y.; Yao, Y. MoS2 and Graphene as Dual, Cocatalysts for Enhanced Visible Light Photocatalytic Activity of Fe2O3. J. Sol-Gel Sci. Technol. 2016, 80(3), 719–727. DOI: 10.1007/s10971-016-4165-2.
  • Yan, J.; Song, Z.; Wang, X.; Xu, Y.; Pu, W.; Ji, H.; Xu, H.; Yuan, S.; Li, H. Construction of 3D Hierarchical GO/MoS2/g-C3N4 Ternary Nanocomposites with Enhanced Visible-Light Photocatalytic Degradation Performance. ChemistrySelect. 2019, 4(24), 7123–7133. DOI: 10.1002/slct.201901472.
  • Sun, M.; Wang, Y.; Fang, Y.; Sun, S.; Yu, Z. Construction of MoS2/CdS/TiO2 Ternary Composites with Enhanced Photocatalytic Activity and Stability. J. Alloys Compd. 2016, 684, 335–341. DOI: 10.1016/j.jallcom.2016.05.189.
  • Islam, M. J.; Reddy, D. A.; Han, N. S.; Choi, J.; Song, J. K.; Kim, T. K. An Oxygen-vacancy Rich 3D Novel Hierarchical MoS2/BiOI/AgI Ternary Nanocomposite: Enhanced Photocatalytic Activity through Photogenerated Electron Shuttling in a Z-scheme Manner. Phys. Chem. Chem. Phys. 2006, 18(36), 24984–24993. DOI: 10.1039/c6cp02246d.
  • Gopalakrishnan, A.; Singh, S. P.; Badhulika, S. Reusable, Free-Standing MoS2/rGO/Cu2O Ternary Composite Films for Fast and Highly Efficient Sunlight Driven Photocatalytic Degradation. ChemistrySelect. 2020, 5(6), 1997–2007. DOI: 10.1002/slct.201904932.
  • Shao, N.; Wang, J.; Wang, D.; Corvini, P. Preparation of Three-dimensional Ag3PO4/TiO2@MoS2 for Enhanced Visible-light Photocatalytic Activity and Anti Photocorrosion. Appl. Catal. B. Environ. 2017, 203, 964–978. DOI: 10.1016/j.apcatb.2016.11.008.
  • Beyhaqi, A.; Zeng, Q.; Chang, S.; Wang, M.; Azimi, S. M. T.; Hu, C. Construction of g-C3N4/WO3/MoS2 Ternary Nanocomposite with Enhanced Charge Separation and Collection for Efficient Wastewater Treatment under Visible Light. Chemosphere. 2020, 247, 125784. DOI: 10.1016/j.chemosphere.2019.125784.
  • Drmosh, Q. A.; Hezam, A.; Hendi, A. H. Y.; Qamar, M.; Yamani, Z. H.; Byrappa, K. Ternary Bi2S3/MoS2/TiO2 with Double Z-scheme Configuration as High Performance Photocatalyst. Appl. Surf. Sci. 2020, 499, 143938. DOI: 10.1016/j.apsusc.2019.143938.
  • Liu, Z.; Wang, L.; Li, R.; Huang, M. Synthesis of Au@MoS2-CdS Ternary Composite Structure with Enhanced Photocatalytic Activity. Nano. 2019, 14(9), 1950114. DOI: 10.1142/S1793292019501145.
  • Liu, H.; Wang, Y.; Lv, J.; Xu, G.; Zhang, X.; Wu, Y. Enhanced Visible-Light Photocatalytic Degradation of Antibiotics by MoS2 Modified U-g-C3N4/T-g-C3N4 Isotypic Heterojunction. Nano. 2019, 9, 195011. DOI: 10.1142/S179329201950111X.
  • Liang, H.; Hua, P.; Zhou, Y.; Fu, Z.; Tang, J.; Niu, J. Fabrication of Cu/rGO/MoS2 Nanohybrid with Energetic Visible-light Response for Degradation of Rhodamine B. Chinese Chem. Lett. 2019, 30(12), 2245–2248. DOI: 10.1016/j.cclet.2019.05.046.
  • Kang, S.; Jang, J.; Kim, H.-J.; Ahn, S.-H.; Lee, C. S. Evaluation of Dual Layered Photoanode for Enhancement of Visible-light-driven Applications. RSC Adv. 2019, 9(29), 16375. DOI: 10.1039/c9ra02074h.
  • Chen, Y.; Tan, L.; Sun, M.; Lu, C.; Kou, J.; Xu, Z. Enhancement of Photocatalytic Performance of TaON by Combining It with Noble-metal-free MoS2 Cocatalysts. J. Mater. Sci. 2019, 54(7), 5321–5330. DOI: 10.1007/s10853-018-03214-9.
  • Chen, Y.; Wang, G.; Li, H.; Zhang, F.; Jiang, H.; Tian, G. Controlled Synthesis and Exceptional Photoelectrocatalytic Properties of Bi2S3/MoS2/Bi2MoO6 Ternary Hetero-structured Porous Film. J. Colloid Interface Sci. 2019, 555, 214–223. DOI: 10.1016/j.jcis.2019.07.097.
  • Priyadharsan, A.; Shanavas, S.; Vasanthakumar, V.; Balamuralikrishnan, B.; Anbarasan, P. M. Synthesis and Investigation on Synergetic Effect of rGO-ZnO Decorated MoS2 Microflowers with Enhanced Photocatalytic and Antibacterial Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018, 559, 43–53. DOI: 10.1016/j.colsurfa.2018.09.034.
  • Chakrabarty, S.; Mukherjee, A.; Basu, S. RGO-MoS2 Supported NiCo2O4 Catalyst toward Solar Water Splitting and Dye Degradation. ACS Sustain. Chem. Eng. 2018, 6(4), 5238–5247. DOI: 10.1021/acssuschemeng.7b04757.
  • Cui, Z.; Sun, Y.; Zhang, Z.; Xu, M.; Xin, B. Facile Synthesis and Photocatalytic Activity of Ag3PO4 Decorated MoS2 Nanoflakes on Carbon Fiber Cloth. Mater. Res. Bull. 2018, 100, 345–352. DOI: 10.1016/j.materresbull.2018.01.003.
  • Fu, Y.; Liang, W.; Guo, J.; Tang, H.; Liu, S. MoS2 Quantum Dots Decorated g-C3N4/Ag Heterostructures for Enhanced Visible Light Photocatalytic Activity. Appl. Surf. Sci. 2018, 430, 234–242. DOI: 10.1016/j.apsusc.2017.08.042.
  • Gogoi, G.; Keene, S.; Patra, A. S.; Sahu, T. K.; Ardo, S.; Qureshi, M. Hybrid of g-C3N4 and MoS2 Integrated onto Cd0.5Zn0.5S: Rational Design with Efficient Charge Transfer for Enhanced Photocatalytic Activity. ACS Sustain. Chem. Eng. 2018, 6(5), 6718–6729. DOI: 10.1021/acssuschemeng.8b00512.
  • Vignesh, S.; Sundar, J. K.; Pandiaraman, M.; Muppudathi, A. L. Fabrication of Novel g-C3N4 Based MoS2 and Bi2O3 Nanorods Embedded Ternary Nanocomposites for Superior Photocatalytic Performance and Destruction of Bacteria. New J. Chem. 2020, 44, 13182-13194. DOI: 10.1039/D0NJ02101F
  • Wu, M.-H.; Li, L.; Xue, Y.-C.; Xu, G.; Tang, L.; Liu, N.; Huang, W.-Y. Fabrication of Ternary GO/g-C3N4/MoS2 Flower-like Heterojunctions with Enhanced Photocatalytic Activity for Water Remediation. Applied Catalysis B: Environmental. 2018, 228, 103–112. DOI: 10.1016/j.apcatb.2018.01.063.
  • Guo, N.; Li, H.; Xu, X.; Yu, H. Hierarchical Fe3O4@MoS2/Ag3PO4 Magnetic Nanocomposites: Enhanced and Stable Photocatalytic Performance for Water Purification under Visible Light Irradiation. Appl. Surf. Sci. 2016, 389, 227–239. DOI: 10.1016/j.apsusc.2016.07.099.
  • Lu, D.; Wang, H.; Zhao, X.; Kondamareddy, K. K.; Ding, J.; Li, C.; Fang, P. Highly Efficient Visible-Light-Induced Photoactivity of Z-Scheme g-C3N4/Ag/MoS2 Ternary Photocatalysts for Organic Pollutant Degradation and Production of Hydrogen. ACS Sustain. Chem. Eng. 2017, 5(2), 1436–1445. DOI: 10.1021/acssuschemeng.6b02010.
  • Vattikuti, S. V. P.; Byon, C. Hydrothermally Synthesized Ternary Heterostructured MoS2/Al2O3/g-C3N4 Photocatalyst. Mater. Res. Bull. 2017, 96, 233–245. DOI: 10.1016/j.materresbull.2017.03.008.
  • Yu, Y.; Wan, J.; Yang, Z.; Hu, Z. Preparation of the MoS2/TiO2/HMFs Ternary Composite Hollow Microfibres with Enhanced Photocatalytic Performance under Visible Light. J. Colloid Interface Sci. 2017, 502, 100–111. DOI: 10.1016/j.jcis.2017.04.058.
  • Hu, S. W.; Yang, L. W.; Tian, Y.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. Simultaneous Nanostructure and Heterojunction Engineering of Graphitic Carbon Nitride via in Situ Ag Doping for Enhanced Photoelectrochemical Activity. Appl. Catal. B. Environ. 2015, 163, 611–622. DOI: 10.1016/j.apcatb.2014.08.023.
  • Wang, J.; Jin, J.; Wang, X.; Yang, S.; Zhao, Y.; Wu, Y.; Dong, S.; Sun, J.; Sun, J. Facile Fabrication of Novel BiVO4/Bi2S3/MoS2 N-p Heterojunction with Enhanced Photocatalytic Activities Towards Pollutant Degradation under Natural Sunlight. J. Colloid Interface Sci. 2017, 505, 805–815. DOI: 10.1016/j.jcis.2017.06.085.
  • Hou, Y.; Wen, Z.; Cui, S.; Guo, X.; Chen, J. Constructing 2D Porous Graphitic C3N4 Nanosheets/Nitrogen-Doped Graphene/Layered MoS2 Ternary Nanojunction with Enhanced Photoelectrochemical Activity. Adv. Mater. 2013, 25(43), 6291–6297. DOI: 10.1002/adma.201303116.
  • Wang, X.; Hong, M.; Zhang, F.; Zhuang, Z.; Yu, Y. Recyclable Nanoscale Zero Valent Iron Doped g-C3N4/MoS2 for Efficient Photocatalysis of RhB and Cr(VI) Driven by Visible Light. ACS Sustain. Chem. Eng. 2016, 4(7), 4055–4063. DOI: 10.1021/acssuschemeng.6b01024.
  • Feng, H.; Zhou, W.; Zhang, X.; Zhang, S.; Liu, B.; Zhen, D. Synthesis of Z-scheme Mn-CdS/MoS2/TiO2 Ternary Photocatalysts for High-efficiency Sunlight-driven Photocatalysis. Adv. Compos. Lett. 2019, 28, 1–10. DOI: 10.1177/2633366X19895020.
  • Kumar, S.; Sharma, V.; Bhattacharyya, K.; Krishnan, V. Synergetic Effect of MoS2–RGO Doping to Enhance the Photocatalytic Performance of ZnO Nanoparticles. New J. Chem. 2016, 40(6), 5185. DOI: 10.1039/c5nj03595c.
  • Jo, W.-K.; Lee, J. Y.; Selvam, N. C. S. Synthesis of MoS2 Nanosheets Loaded ZnO–g-C3N4 Nanocomposites for Enhanced Photocatalytic Applications. Chem. Eng. J. 2016, 289, 306–318. DOI: 10.1016/j.cej.2015.12.080.
  • Kumar, A.; Rao, V. N.; Kumar, A.; Shankar, M. V.; Krishnan, V. Interplay between Mesocrystals of CaTiO3 and Edge Sulfur Atom Enriched MoS2 on Reduced Graphene Oxide Nanosheets: Enhanced Photocatalytic Performance under Sunlight Irradiation. ChemPhotoChem. 2020, 4(6), 427–444. DOI: 10.1002/cptc.201900267.
  • Lai, H.; Ma, G.; Shang, W.; Chen, D.; Yun, Y.; Peng, X.; Xu, F. Multifunctional Magnetic sphere-MoS2@Au Hybrid for Surface Enhanced Raman Scattering Detection and Visible Light photo-Fenton Degradation of Aromatic Dyes. Chemosphere. 2019, 223, 465–473. DOI: 10.1016/j.chemosphere.2019.02.073.
  • Guo, M.; Xing, Z.; Zhao, T.; Qiu, Y.; Tao, B.; Li, Z.; Zhou, W. Hollow Flower-like Polyhedral α-Fe2O3/Defective MoS2/Ag Z-scheme Heterojunctions with Enhanced photocatalytic-Fenton Performance via Surface Plasmon Resonance and Photothermal Effects. Appl. Catal. B Environ. 2020, 272, 118978. DOI: 10.1016/j.apcatb.2020.118978.
  • Zhao, T.; Xing, Z.; Xiu, Z.; Li, Z.; Yang, S.; Zhou, W. Oxygen-Doped MoS2 Nanospheres/CdS Quantum Dots/g-C3N4 Nanosheets Super-Architectures for Prolonged Charge Lifetime and Enhanced Visible-Light-Driven Photocatalytic Performance. ACS Appl. Mater. Interfaces. 2019, 11, 7104–7111. DOI: 10.1021/acsami.8b21131.
  • Zhang, D.; Xu, T.; Cao, M.; Liu, A.; Zhao, Q.; Zhang, L.; Zhang, H.; Xue, T.; Cui, X.; Zheng, W. Facile Band Alignment of C3N4/CdS/MoS2 Sandwich Hybrid for Efficient Charge Separation and High Photochemical Performance under Visible-light. Powder Technol. 2019, 351, 222–228. DOI: 10.1016/j.powtec.2019.03.043.
  • Zhao, D.; Wu, T.; Zhou, Y. Dual II Heterojunctions Metallic Phase MoS2/ZnS/ZnO Ternary Composite with Superior Photocatalytic Performance for Removing Contaminants. Chem. Eur. J. 2019, 25(41), 9710–9720. DOI: 10.1002/chem.201901715.
  • Umukoro, E. H.; Kumar, N.; Ngila, J. C.; Arotiba, O. A. Expanded Graphite Supported P-n MoS2-SnO2 Heterojunction Nanocomposite Electrode for Enhanced Photo-electrocatalytic Degradation of a Pharmaceutical Pollutant. J. Electroanal. Chem. 2018, 827, 193–203. DOI: 10.1016/j.jelechem.2018.09.027.
  • Lu, X.; Wang, Y.; Zhang, X.; Xu, G.; Wang, D.; Lv, J.; Zheng, Z.; Wu, Y. NiS and MoS2 Nanosheet Co-modified Graphitic C3N4 Ternary Heterostructure for High Efficient Visible Light Photodegradation of Antibiotic. J. Hazard. Mater. 2018, 341, 10–19. DOI: 10.1016/j.jhazmat.2017.07.004.
  • Shi, Z.; Zhang, Y.; Duoerkun, G.; Cao, W.; Liu, T.; Zhang, L.; Liu, J.; Li, M.; Chen, Z. Fabrication of MoS2/BiOBr Heterojunctions on Carbon Fibers as a Weaveable Photocatalyst for Tetracycline Hydrochloride Degradation and Cr(VI) Reduction under Visible Light. Environ. Sci.: Nano. 2020, 7, 2708–2722. DOI: 10.1039/D0EN00551G.
  • Wan, J.; Zhang, Y.; Wang, R.; Liu, L.; Liu, E.; Fan, J.; Fu, F. Effective Charge Kinetics Steering in Surface Plasmons Coupled Two-Dimensional Chemical Au/Bi2WO6-MoS2 Heterojunction for Superior Photocatalytic Detoxification Performance. J. Hazard. Mater. 2020, 384, 121484. DOI: 10.1016/j.jhazmat.2019.121484.
  • Li, X.; Zhang, Z.; Yao, C.; Lu, X.; Zhao, X.; Ni, C. Attapulgite-CeO2/ MoS2 Ternary Nanocomposite for Photocatalytic Oxidative Desulfurization. Appl. Surf. Sci. 2016, 364, 589–596. DOI: 10.1016/j.apsusc.2015.12.196.
  • Luo, L.-J.; Li, J.; Dai, J.; Xia, L.; Barrow, C. J.; Wang, H.; Jegatheesan, J.; Yang, M. Bisphenol A Removal on TiO2– MoS2–reduced Graphene Oxide Composite by Adsorption and Photocatalysis. Process Saf. Environ. 2017, 112, 274–279. DOI: 10.1016/j.psep.2017.04.032.
  • Ghasemipour, P.; Fattahi, M.; Rasekh, B.; Yazdian, F. Developing the Ternary ZnO Doped MoS2 Nanostructures Grafted on CNT and Reduced Graphene Oxide (RGO) for Photocatalytic Degradation of Aniline. Sci. Rep. 2020, 10(1), 4414. DOI: 10.1038/s41598-020-61367-7.
  • Zhao, J.; Yin, J.; Zhong, J.; Jiao, T.; Bai, Z.; Wang, S.; Zhang, L.; Peng, Q. Facile Preparation of a Self-assembled Artemia Cyst shell–TiO2–MoS2 Porous Composite Structure with Highly Efficient Catalytic Reduction of Nitro Compounds for Wastewater Treatment. Nanotechnology. 2020, 31(8), 085603. DOI: 10.1088/1361-6528/ab53c1.
  • Zhao, T.; Xing, Z.; Xiu, Z.; Li, Z.; Chen, P.; Zhu, Q.; Zhou, W. Synergistic Effect of Surface Plasmon Resonance, Ti3+ and Oxygen Vacancy Defects on Ag/MoS2/TiO2-x Ternary Heterojunctions with Enhancing Photothermal Catalysis for Low-temperature Wastewater Degradation. J. Hazard. Mater. 2019, 364, 117–124. DOI: 10.1016/j.jhazmat.2018.09.097.
  • Peng, W.; Chen, Y.; Li, X. MoS2/reduced Graphene Oxide Hybrid with CdS Nanoparticles as a Visible Light-driven Photocatalyst for the Reduction of 4-nitrophenol. J. Hazard. Mater. 2016, 309, 173–179. DOI: 10.1016/j.jhazmat.2016.02.021.
  • Wu, Z.; He, X.; Xue, Y.; Yang, X.; Li, Y.; Li, Q.; Yu, B. Cyclodextrins Grafted MoS2/g-C3N4 as High-Performance Photocatalysts for the Removal of Glyphosate and Cr (VI) from Simulated Agricultural Runoff. Chem. Eng. J. 2020, 399, 125747. DOI: 10.1016/j.cej.2020.125747.
  • Huang, Q.; Zhao, J.; Liu, M.; Li, Y.; Ruan, J.; Li, Q.; Tian, J.; Zhu, X.; Zhang, X.; Wei, Y. Synthesis of Polyacrylamide Immobilized Molybdenum Disulfide (Mos2@pda@pam) Composites via Mussel-Inspired Chemistry and Surface-Initiated Atom Transfer Radical Polymerization for Removal of Copper (II) Ions. J. Taiwan Inst. Chem. Eng. 2018, 86, 174–184. DOI: 10.1016/j.jtice.2017.12.027.
  • Wang, Q.; Peng, L.; Gong, Y.; Jia, F.; Song, S.; Li, Y. Mussel-Inspired Fe3O4@Polydopamine(PDA)-MoS2 Core–Shell Nanosphere as a Promising Adsorbent for Removal of Pb2+ from Water. J. Mol. Liq. 2019, 282, 598–605. DOI: 10.1016/j.molliq.2019.03.052.
  • Hickman, R.; Walker, E.; Chowdhury, S. TiO2-PDMS Composite Sponge for Adsorption and Solar Mediated Photodegradation of Dye Pollutants. J. Water Process Eng. 2018, 24, 74–82. DOI: 10.1016/j.jwpe.2018.05.015.
  • Vautier, M.; Guillard, C.; Herrmann, J. M. Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine. J. Catal. 2001, 201(1), 46–59. DOI: 10.1006/jcat.2001.3232.
  • Topkaya, E.; Konyar, M.; Yatmaz, H. C.; Ozturk, K. Pure ZnO and Composite ZnO/TiO2 Catalyst Plates: A Comparative Study for the Degradation of Azo Dye, Pesticide and Antibiotic in Aqueous Solutions. J. Colloid Interface Sci. 2014, 430, 6–11. DOI: 10.1016/j.jcis.2014.05.022.
  • Koe, W. S.; Lee, J. W.; Chong, W. C.; Pang, Y. L.; Sim, L. C. An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. DOI: 10.1007/s11356-019-07193-5.
  • Deng, F.; Zhao, L.; Luo, X.; Luo, S.; Dionysiou, D. D. Highly Efficient Visible-light Photocatalytic Performance of Ag/AgIn5S8 for Degradation of Tetracycline Hydrochloride and Treatment of Real Pharmaceutical Industry Wastewater. Chem. Eng. J. 2018, 333, 423–433. DOI: 10.1016/j.cej.2017.09.022.
  • Burrows, H. D.; Canle L, M.; Santaballa, J. A.; Steenken, S. Reaction Pathways and Mechanisms of Photodegradation of Pesticides. J. Photochem. Photobiol. B. 2002, 67, 71–108. DOI: 10.1016/s1011-1344(02)00277-4.
  • Mezcua, M.; Malato, S.; López, A.; Mezcua, M.; Malato, S.; López, A.; Mezcua, M.; Malato, S. Decontamination of Industrial Wastewater Containing Pesticides by Combining Large-scale Homogeneous Solar Photocatalysis and Biological Treatment. Chem. Eng. J. 2010, 160(2), 447–456. DOI: 10.1016/j.cej.2010.03.042.
  • Talwar, S.; Sangal, V. K.; Verma, A. Feasibility of Using Combined TiO2 Photocatalysis and RBC Process for the Treatment of Real Pharmaceutical Wastewater. Journal of Photochemistry and Photobiology A: Chemistry. 2018, 353, 263–270. DOI: 10.1016/j.jphotochem.2017.11.013.
  • Afsharnia, M.; Kianmehr, M.; Biglari, H.; Dargahi, A.; Karimi, A. Disinfection of Dairy Wastewater Effluent through Solar Photocatalysis Processes. Water Sci. Eng. 2018, 11(3), 214–219. DOI: 10.1016/j.wse.2018.10.001.
  • Wang, Y.; Zou, B.; Gao, T.; Wu, X.; Lou, S.; Zhou, S. Synthesis of Orange-like Fe3O4/PPy Composite Microspheres and Their Excellent Cr(VI) Ion Removal Properties. J. Mater. Chem. 2012, 22(18), 9034. DOI: 10.1039/c2jm30440f.
  • Liu, C.; Wang, Q.; Jia, F.; Song, S. Adsorption of Heavy Metals on Molybdenum Disulfide in Water: A Critical Review. J. Mol. Liq. 2019, 292, 111390. DOI: 10.1016/j.molliq.2019.111390.
  • Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z.; Ou, J. Z. Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020, 12(1), 66. DOI: 10.1007/s40820-020-0402-x.
  • Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nature Materials. 2009, 8(1), 76–80. DOI: 10.1038/nmat2317.
  • Wang, Z.; Mi, B. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environ. Sci. Technol. 2017, 51(15), 8229–8244. DOI: 10.1021/acs.est.7b01466.
  • Awasthi, G. P.; Adhikari, S. P.; Ko, S.; Kim, H. J.; Park, C. H.; Kim, C. S. Facile Synthesis of ZnO Flowers Modified Graphene like MoS2 Sheets for Enhanced Visible-Light-Driven Photocatalytic Activity and Antibacterial Properties. J. Alloys Compd. 2016, 682, 208–215. DOI: 10.1016/j.jallcom.2016.04.267.
  • Christus, A. A. B.; Panneerselvam, P.; Ravikumar, A.; Marieeswaran, M.; Sivanesan, S. MoS2 Nanosheet Mediated ZnO–g-C3N4 Nanocomposite as a Peroxidase Mimic: Catalytic Activity and Application in the Colorimetric Determination of Hg(ii). RSC Adv. 2019, 9(8), 4268–4276. DOI: 10.1039/C8RA09814J.
  • Nicoletti, O.; de la Peña, F.; Leary, R. K.; Holland, D. J.; Ducati, C.; Midgley, P. A. Three-Dimensional Imaging of Localized Surface Plasmon Resonances of Metal Nanoparticles. Nature. 2013, 502(7469), 80–84. DOI: 10.1038/nature12469.
  • Sau, T. K.; Rogach, A. L.; Jäckel, F.; Klar, T. A.; Feldmann, J. Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Adv. Mater. 2010, 22(16), 1805–1825. DOI: 10.1002/adma.200902557.
  • Zhou, X.; Liu, G.; Yu, J.; Fan, W. Surface Plasmon Resonance-Mediated Photocatalysis by Noble Metal-Based Composites under Visible Light. J. Mater. Chem. 2012, 22(40), 21337. DOI: 10.1039/c2jm31902k.
  • Chen, X.; Dai, Y.; Wang, X. Methods and Mechanism for Improvement of Photocatalytic Activity and Stability of Ag3PO4: A Review. J. Alloys Compd. 2015, 649, 910–932. DOI: 10.1016/j.jallcom.2015.07.174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.