Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 4
988
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Recent progress on catalyst technologies for high quality gasoline production

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • 2020 OPEC Annual Statistical Bulletin. https://www.opec.org/opec_web/en/publications/202.htm
  • Primo, A.; Garcia, H. Zeolites as Catalysts in Oil Refining. Chem. Soc. Rev. 2014, 43(22), 7548–7561. DOI: 10.1039/C3CS60394F.
  • Ivanchina, E. D.; Kirgina, M. V.; Chekantsev, N. V.; Sakhnevich, B. V.; Sviridova, E. V.; Romanovskiy, R. V. Complex Modeling System for Optimization of Compounding Process in Gasoline Pool to Produce High-Octane Finished Gasoline Fuel. Chem. Eng. J. 2015, 282, 194–205. DOI: 10.1016/j.cej.2015.03.014.
  • Cerri, T.; D’Errico, G.; Onorati, A. Experimental Investigations on High Octane Number Gasoline Formulations for Internal Combustion Engines. Fuel. 2013, 111, 305–315. DOI: 10.1016/j.fuel.2013.03.065.
  • Tamm, D. C.; Devenish, G. N.; Finelt, D. R.; Kalt, A. L. Analysis of Gasoline Octane Costs. 2018. https://www.eia.gov/analysis/octanestudy/.
  • Woo 2021 - Home https://woo.opec.org/index.php (accessed Oct 1, 2021).
  • Vogt, E. T. C.; Weckhuysen, B. M. Fluid Catalytic Cracking: Recent Developments on the Grand Old Lady of Zeolite Catalysis. Chem. Soc. Rev. 2015, 44(20), 7342–7370. DOI: 10.1039/C5CS00376H.
  • Nishimura, Y.;. Development of Catalytic Cracking Process and Catalysts. Adv. Porous Mater. 2017, 5(1), 17–25. DOI: 10.1166/apm.2017.1120.
  • Sadeghi, K.; Babolian, M. An Overview and a WBS Template for Construction Planning of Medium Sized Petroleum Refineries Academic Research International. 2016, 7(15), 9-13.
  • Avidan, A. A.;. Chapter 1 Origin, Development and Scope of Fcc Catalysis. In Studies in Surface Science and Catalysis; Magee, J. S., Mitchell, M. M., Eds.; Fluid Catalytic Cracking: Science and Technology; Elsevier, 1993; Vol. 76, pp 1–39. DOI: 10.1016/S0167-2991(08)63824-0.
  • von Ballmoos, R.; Harris, D. H.; Magee, J. S. 3.10 Catalytic Cracking. In Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH: Germany, The Netherlands, 1997; Vol. 4, pp 1955–1986.
  • Parthasarathi, R. S.; Alabduljabbar, S. S. HS-FCC High-Severity Fluidized Catalytic Cracking: A Newcomer to the FCC Family. Appl. Petrochem. Res. 2014, 4(4), 441–444. DOI: 10.1007/s13203-014-0087-5.
  • Corma, A.;. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97(6), 2373–2420. DOI: 10.1021/cr960406n.
  • ScienceDirect.com | Science, Health and Medical Journals, Full Text Articles and Books. https://www.sciencedirect.com/ (accessed Dec 6, 2021).
  • Sadeghbeigi, R.;. Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units; Elsevier: UK, USA, 2012.
  • Bai, P.; Etim, U. J.; Yan, Z.; Mintova, S.; Zhang, Z.; Zhong, Z.; Gao, X. Fluid Catalytic Cracking Technology: Current Status and Recent Discoveries on Catalyst Contamination. Catal. Rev. 2019, 61(3), 333–405. DOI: 10.1080/01614940.2018.1549011.
  • Sadrameli, S. M.;. Thermal/Catalytic Cracking of Liquid Hydrocarbons for the Production of Olefins: A State-of-the-Art Review II: Catalytic Cracking Review. Fuel. 2016, 173, 285–297. DOI: 10.1016/j.fuel.2016.01.047.
  • Farshi, A.; Shaiyegh, F.; Burogerdi, S. H.; Dehgan, A. FCC Process Role in Propylene Demands. Pet. Sci. Technol. 2011, 29(9), 875–885. DOI: 10.1080/10916460903451985.
  • Park, Y.-K.; Lee, C. W.; Kang, N. Y.; Choi, W. C.; Choi, S.; Oh, S. H.; Park, D. S. Catalytic Cracking of Lower-Valued Hydrocarbons for Producing Light Olefins. Catal. Surv. Asia. 2010, 14(2), 75–84. DOI: 10.1007/s10563-010-9089-1.
  • Hussain, A. I.; Aitani, A. M.; Kubů, M.; Čejka, J.; Al-Khattaf, S. Catalytic Cracking of Arabian Light VGO over Novel Zeolites as FCC Catalyst Additives for Maximizing Propylene Yield. Fuel. 2016, 167, 226–239. DOI: 10.1016/j.fuel.2015.11.065.
  • Hsu, C. S.; Robinson, P. R. Gasoline Production and Blending. In Springer Handbook of Petroleum Technology; Hsu, C. S., Robinson, P. R., Eds.; Springer Handbooks; Springer International Publishing: Cham, 2017; pp 551–587. DOI: 10.1007/978-3-319-49347-3_17.
  • Khande, A. R.; Dasila, P. K.; Majumder, S.; Maity, P.; Thota, C. Recent Developments in FCC Process and Catalysts. In Catalysis for Clean Energy and Environmental Sustainability: Petrochemicals and Refining Processes -; Pant, K. K., Gupta, S. K., Ahmad, E., Eds.; Springer International Publishing: Cham, 2021; Vol. 2. 65–108. DOI:10.1007/978-3-030-65021-6_3.
  • Liu, X.; Chen, D.; Zhang, W.; Qin, W.; Zhou, W.; Qiu, T.; Zhu, B. An Assessment of the Energy-Saving Potential in China’s Petroleum Refining Industry from a Technical Perspective. Energy. 2013, 59, 38–49. DOI: 10.1016/j.energy.2013.07.049.
  • Kim, S. W.; Yeo, C. E.; Lee, D. Y. Effect of Fines Content on Fluidity of FCC Catalysts for Stable Operation of Fluid Catalytic Cracking Unit. Energies. 2019, 12(2), 293. DOI: 10.3390/en12020293.
  • Occelli, M. L.;. Fluid Catalytic Cracking VII:: Materials, Methods and Process Innovations; Elsevier: UK, USA, 2011.
  • Sadeghbeigi, R.;. Fluid Catalytic Cracking Handbook; Elsevier: Oxford, UK, 2020. DOi: 10.1016/C2016-0-01176-2.
  • Kang, X.; Guo, X.; You, H. An Introduction to the Lump Kinetics Model and Reaction Mechanism of FCC Gasoline. Energy Sour. Part Recov. Util. Environ. Eff. 2013, 35(20), 1921–1928. DOI: 10.1080/15567036.2010.531508.
  • Ibarra, Á.; Hita, I.; Azkoiti, M. J.; Arandes, J. M.; Bilbao, J. Catalytic Cracking of Raw Bio-Oil under FCC Unit Conditions over Different Zeolite-Based Catalysts. J. Ind. Eng. Chem. 2019, 78, 372–382. DOI: 10.1016/j.jiec.2019.05.032.
  • Ishihara, A.; Ninomiya, M.; Hashimoto, T.; Nasu, H. Catalytic Cracking of C12-C32 Hydrocarbons by Hierarchical β- and Y-Zeolite-Containing Mesoporous Silica and Silica-Alumina Using Curie Point Pyrolyzer. J. Anal. Appl. Pyrolysis. 2020, 150, 104876. DOI: 10.1016/j.jaap.2020.104876.
  • Aghaei, E.; Karimzadeh, R.; Godini, H. R.; Gurlo, A.; Gorke, O. Improving the Physicochemical Properties of Y Zeolite for Catalytic Cracking of Heavy Oil via Sequential Steam-Alkali-Acid Treatments. Microporous Mesoporous Mater. 2020, 294, 109854. DOI: 10.1016/j.micromeso.2019.109854.
  • Gurdeep Singh, H. K.; Yusup, S.; Quitain, A. T.; Kida, T.; Sasaki, M.; Cheah, K. W.; Ameen, M. Production of Gasoline Range Hydrocarbons from Catalytic Cracking of Linoleic Acid over Various Acidic Zeolite Catalysts. Environ. Sci. Pollut. Res. 2019, 26(33), 34039–34046. DOI: 10.1007/s11356-018-3223-4.
  • Zhang, H.; Zhu, X.; Chen, X.; Miao, P.; Yang, C.; Li, C. Fluid Catalytic Cracking of Hydrogenated Light Cycle Oil for Maximum Gasoline Production: Effect of Catalyst Composition. Energy Fuels. 2017, 31(3), 2749–2754. DOI: 10.1021/acs.energyfuels.7b00185.
  • Zheng, Q.; Huo, L.; Li, H.; Mi, S.; Li, X.; Zhu, X.; Deng, X.; Shen, B. Exploring Structural Features of USY Zeolite in the Catalytic Cracking of Jatropha Curcas L. Seed Oil towards Higher Gasoline/Diesel Yield and Lower CO 2 Emission. Fuel. 2017, 202, 563–571. DOI: 10.1016/j.fuel.2017.04.073.
  • Kassargy, C.; Awad, S.; Burnens, G.; Kahine, K.; Tazerout, M. Gasoline and Diesel-like Fuel Production by Continuous Catalytic Pyrolysis of Waste Polyethylene and Polypropylene Mixtures over USY Zeolite. Fuel. 2018, 224, 764–773. DOI: 10.1016/j.fuel.2018.03.113.
  • Kianfar, E.; Razavikia, S. A. H. Zeolite Catalyst Based Selective for the Process MTG: A Review. In Zeolites: Advances in Research and Applications; Annett Mahler., Ed.; Science Publishers, Inc.: NY, USA, 2020; pp 40.
  • Azis, Z.; Susanto, B. H.; Nasikin, M. Upgrading Gasoline Yield and Octane Quality in Fluid Catalytic Cracking by Coprocessing of Vacuum Gasoil with Palm Triglyceride Fatty Acid Using REY-Type Zeolite Catalysts. Int. J. Eng. Res. Technol. 2019, 12(12), 2676–2682.
  • Oruji, S.; Khoshbin, R.; Karimzadeh, R. Combination of Precipitation and Ultrasound Irradiation Methods for Preparation of Lanthanum-Modified Y Zeolite Nano-Catalysts Used in Catalytic Cracking of Bulky Hydrocarbons. Mater. Chem. Phys. 2019, 230, 131–144. DOI: 10.1016/j.matchemphys.2019.03.038.
  • Sousa-Aguiar, E. F.; Trigueiro, F. E.; Zotin, F. M. Z. The Role of Rare Earth Elements in Zeolites and Cracking Catalysts. Catal. Today. 2013, 218-219, 115–122. DOI: 10.1016/j.cattod.2013.06.021.
  • Zhang, L.; Qin, Y.; Zhang, X.; Gao, X.; Song, L. Further Findings on the Stabilization Mechanism among Modified Y Zeolite with Different Rare Earth Ions. Ind. Eng. Chem. Res. 2019, 58(31), 14016–14025. DOI: 10.1021/acs.iecr.9b03036.
  • Ahmad, M.; Farhana, R.; Raman, A. A. A.; Bhargava, S. K. Synthesis and Activity Evaluation of Heterometallic Nano Oxides Integrated ZSM-5 Catalysts for Palm Oil Cracking to Produce Biogasoline. Energy Convers. Manag. 2016, 119, 352–360. DOI: 10.1016/j.enconman.2016.04.069.
  • Cui, Q.; Wang, S.; Wei, Q.; Mu, L.; Yu, G.; Zhang, T.; Zhou, Y. Synthesis and Characterization of Zr Incorporated Small Crystal Size Y Zeolite Supported NiW Catalysts for Hydrocracking of Vacuum Gas Oil. Fuel. 2019, 237, 597–605. DOI: 10.1016/j.fuel.2018.10.040.
  • Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Oreshina, A.; Vymyatnin, E. A Predictive Model of Catalytic Cracking: Feedstock-Induced Changes in Gasoline and Gas Composition. Fuel Process. Technol. 2021, 217, 106720. DOI: 10.1016/j.fuproc.2020.106720.
  • Ghrib, Y.; Frini-Srasra, N.; Srasra, E.; Martínez-Triguero, J.; Corma, A. Synthesis of Cocrystallized USY/ZSM-5 Zeolites from Kaolin and Its Use as Fluid Catalytic Cracking Catalysts. Catal. Sci. Technol. 2018, 8(3), 716–725. DOI: 10.1039/c7cy01477e.
  • Zhao, Y.; Liu, J.; Xiong, G.; Guo, H. Enhancing Hydrothermal Stability of Nano-Sized HZSM-5 Zeolite by Phosphorus Modification for Olefin Catalytic Cracking of Full-Range FCC Gasoline. Chin. J. Catal. 2017, 38(1), 138–145. DOI: 10.1016/S1872-2067(16)62579-2.
  • Vu, X. H.; Armbruster, U. Catalytic Cracking of Triglycerides over Micro/Mesoporous Zeolitic Composites Prepared from ZSM-5 Precursors with Varying Aluminum Contents. React. Kinet. Mech. Catal. 2018, 125(1), 381–394. DOI: 10.1007/s11144-018-1415-z.
  • Hussain, A. I.; Palani, A.; Aitani, A. M.; Čejka, J.; Shamzhy, M.; Kubů, M.; Al-Khattaf, S. S. Catalytic Cracking of Vacuum Gasoil over -SVR, ITH, and MFI Zeolites as FCC Catalyst Additives. Fuel Process. Technol. 2017, 161, 23–32. DOI: 10.1016/j.fuproc.2017.01.050.
  • Yu, Q.; Sun, H.; Sun, H.; Li, L.; Zhu, X.; Ren, S.; Guo, Q.; Shen, B. Highly Mesoporous IM-5 Zeolite Prepared by Alkaline Treatment and Its Catalytic Cracking Performance. Microporous Mesoporous Mater. 2019, 273, 297–306. DOI: 10.1016/j.micromeso.2018.08.016.
  • Sassykova, L. R.; Zhakirova, N. K.; Aubakirov, Y. A.; Sendilvelan, S.; Tashmukhambetova, Z. K.; Abildin, T. S.; Balgysheva, B. D.; Omarova, A. A.; Sarybayev, M. A.; Beisembaeva, L. K. Catalytic Cracking Using Catalysts Based on Heteropoliacids. Rasayan J. Chem. 2020, 13(3), 1444–1450. DOI: 10.31788/RJC.2020.1335822.
  • Ostroumova, V. A.; Maksimov, A. L. MWW-Type Zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (A Review). Pet. Chem. 2019, 59(8), 788–801. DOI: 10.1134/S0965544119080140.
  • Kubů, M.; Millini, R.; Žilková, N. 10-Ring Zeolites: Synthesis, Characterization and Catalytic Applications. Catal. Today. 2019, 324, 3–14. DOI: 10.1016/j.cattod.2018.06.011.
  • Bai, P.; Xie, M.; Etim, U. J.; Xing, W.; Wu, P.; Zhang, Y.; Liu, B.; Wang, Y.; Qiao, K.; Yan, Z. Zeolite Y Mother Liquor Modified γ-Al 2 O 3 with Enhanced Brönsted Acidity as Active Matrix to Improve the Performance of Fluid Catalytic Cracking Catalyst. Ind. Eng. Chem. Res. 2018, 57(5), 1389–1398. DOI: 10.1021/acs.iecr.7b04243.
  • Ishihara, A.;. Preparation and Reactivity of Hierarchical Catalysts in Catalytic Cracking. Fuel Process. Technol. 2019, 194, 106116. DOI: 10.1016/j.fuproc.2019.05.039.
  • García, J. R.; Falco, M.; Sedran, U. Intracrystalline Mesoporosity over Y Zeolites. Processing of VGO and Resid-VGO Mixtures in FCC. Catal. Today. 2017, 296, 247–253. DOI: 10.1016/j.cattod.2017.04.010.
  • Kianfar, E.;. Zeolites: Properties, Applications, Modification and Selectivity. In Zeolites: Advances in Research and Applications; Annett Mahler., Ed.; Nova Science Publishers, Inc: NY, USA, 2020; pp 1–243.
  • Rahimi, N.; Karimzadeh, R. Catalytic Cracking of Hydrocarbons over Modified ZSM-5 Zeolites to Produce Light Olefins: A Review. Appl. Catal. Gen. 2011, 398(1–2), 1–17. DOI: 10.1016/j.apcata.2011.03.009.
  • Blanch-Raga, N.; Palomares, A. E.; Martínez-Triguero, J.; Valencia, S. Cu and Co Modified Beta Zeolite Catalysts for the Trichloroethylene Oxidation. Appl. Catal. B. 2016, 187, 90–97. DOI: 10.1016/j.apcatb.2016.01.029.
  • Talebian-Kiakalaieh, A.; Tarighi, S. Synthesis of Hierarchical Y and ZSM-5 Zeolites Using Post-Treatment Approach to Maximize Catalytic Cracking Performance. J. Ind. Eng. Chem. 2020, 88, 167–177. DOI: 10.1016/j.jiec.2020.04.009.
  • Webber, J. B. W.; Livadaris, V.; Andreev, A. S. USY Zeolite Mesoporosity Probed by NMR Cryoporometry. Microporous Mesoporous Mater. 2020, 306, 110404. DOI: 10.1016/j.micromeso.2020.110404.
  • Jae, J.; Tompsett, G. A.; Foster, A. J.; Hammond, K. D.; Auerbach, S. M.; Lobo, R. F.; Huber, G. W. Investigation into the Shape Selectivity of Zeolite Catalysts for Biomass Conversion. J. Catal. 2011, 279(2), 257–268. DOI: 10.1016/j.jcat.2011.01.019.
  • Moliner, M.; González, J.; Portilla, M. T.; Willhammar, T.; Rey, F.; Llopis, F. J.; Zou, X.; Corma, A. A New Aluminosilicate Molecular Sieve with a System of Pores between Those of ZSM-5 and Beta Zeolite. J. Am. Chem. Soc. 2011, 133(24), 9497–9505. DOI: 10.1021/ja2015394.
  • Chen, C. Y.; Zones, S. I. Investigation of Shape Selective Properties of SSZ-87 and Other Zeolites via Hydrocarbon Adsorption and Catalytic Test Reactions. Microporous Mesoporous Mater. 2016, 233, 177–183. DOI: 10.1016/j.micromeso.2015.12.060.
  • Li, Y.; Guo, W.; Fan, W.; Yuan, S.; Li, J.; Wang, J.; Jiao, H.; Tatsumi, T. A DFT Study on the Distributions of Al and Brönsted Acid Sites in Zeolite MCM-22. J. Mol. Catal. Chem. 2011, 338(1), 24–32. DOI: 10.1016/j.molcata.2011.01.018.
  • Wang, Y.; Gao, Y.; Xie, S.; Liu, S.; Chen, F.; Xin, W.; Zhu, X.; Li, X.; Jiang, N.; Xu, L. Adjustment of the Al Siting in MCM-22 Zeolite and Its Effect on Alkylation Performance of Ethylene with Benzene. Catal. Today. 2018, 316, 71–77. DOI: 10.1016/j.cattod.2018.02.040.
  • Zukal, A.; Mayerová, J.; Kubů, M. Adsorption of Carbon Dioxide on High-Silica Zeolites with Different Framework Topology. Top. Catal. 2010, 53(19–20), 1361–1366. DOI: 10.1007/s11244-010-9594-5.
  • Park, S. Y.; Shin, C.-H.; Bae, J. W. Selective Carbonylation of Dimethyl Ether to Methyl Acetate on Ferrierite. Catal. Commun. 2016, 75, 28–31. DOI: 10.1016/j.catcom.2015.12.006.
  • Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater. 2012, 149(1), 134–141. DOI: 10.1016/j.micromeso.2011.08.020.
  • Peng, P.; Gao, X.-H.; Yan, Z.-F.; Mintova, S. Diffusion and Catalyst Efficiency in Hierarchical Zeolite Catalysts. Natl. Sci. Rev. 2020, 7(11), 1726–1742. DOI: 10.1093/nsr/nwaa184.
  • Fals, J.; García, J. R.; Falco, M.; Sedran, U. Coke from SARA Fractions in VGO. Imp. Y Zeol. Acid. Phys. Prop. Fuel. 2018, 225, 26–34. DOI: 10.1016/j.fuel.2018.02.180.
  • Blay, V.; Louis, B.; Miravalles, R.; Yokoi, T.; Peccatiello, K. A.; Clough, M.; Yilmaz, B. Engineering Zeolites for Catalytic Cracking to Light Olefins. ACS Catal. 2017, 7(10), 6542–6566. DOI: 10.1021/acscatal.7b02011.
  • Li, W.; Zheng, J.; Luo, Y.; Tu, C.; Zhang, Y.; Da, Z. Hierarchical Zeolite Y with Full Crystallinity: Formation Mechanism and Catalytic Cracking Performance. Energy Fuels. 2017, 31(4), 3804–3811. DOI: 10.1021/acs.energyfuels.6b03421.
  • Gusev, A. A.; Psarras, A. C.; Triantafyllidis, K. S.; Lappas, A. A.; Diddams, P. A.; Vasalos, I. A. ZSM-5 Additive Deactivation with Nickel and Vanadium Metals in the Fluid Catalytic Cracking (FCC) Process. Ind. Eng. Chem. Res. 2020, 59(6), 2631–2641. DOI: 10.1021/acs.iecr.9b04819.
  • Kuvettu, M. P.; Kadgaonkar, M.; Sarkar, B.; Chidambaram, V.; Karthikeyani, A. V.; Pulikottil, A.; Christopher, J.; Kumar, B.; B, D. A. S. Process and Composition for Preparation of Cracking Catalyst Suitable for Enhancing Lpg. US20170056865A1. March 2, 2017
  • Sabahi, A.; Loebl, A.; Gavalda, S.; Francis, J.; Iyyamperumal, E.; Li, M.; Marcinkova, A.; Fcc Catalyst Prepared by a Process Involving More than One Silica Material. US20200330960A1. October 22, 2020.
  • Murugan, S. T.; Gopal, R.; Jethalaljani, N.; Duraisamy, D.; Kumar, A.; Das, A. K.; An FCC Catalyst Composition and a Process for Its Preparation. WO2021064703A1. April 8, 2021.
  • Armendariz Herrera, H.; Guzmán Castillo, M. D. L. A.; Hernández Beltrán, F. J.; Pérez Romo, P.; Sánchez Valente, J.; Fripiat, J. M. M.; Process for Modifying the Physical and Chemical Properties of Faujasite Y-Type Zeolites. US20160375427A1. December 29, 2016.
  • Tarighi, S.; Modanlou Juibari, N.; Binaeizadeh, M. Different Binders in FCC Catalyst Preparation: Impact on Catalytic Performance in VGO Cracking. Res. Chem. Intermed. 2019, 45(4), 1737–1752. DOI: 10.1007/s11164-018-3700-x.
  • Stockwell, D. M.; Macaoay, J. M. Structurally Enhanced Cracking Catalysts. US20160030930A1, February 4, 2016.
  • Sachse, A.; García-Martínez, J. Surfactant-Templating of Zeolites: From Design to Application. Chem. Mater. 2017, 29(9), 3827–3853. DOI: 10.1021/acs.chemmater.7b00599.
  • García-Martínez, J.; Li, K.; Krishnaiah, G. A Mesostructured Y Zeolite as a Superior FCC Catalyst – from Lab to Refinery. Chem. Commun. 2012, 48(97), 11841. DOI: 10.1039/c2cc35659g.
  • Mitchell, S.; Pinar, A. B.; Kenvin, J.; Crivelli, P.; Kärger, J.; Pérez-Ramírez, J. Structural Analysis of Hierarchically Organized Zeolites. Nat. Commun. 2015, 6(1), 8633. DOI: 10.1038/ncomms9633.
  • García-Martínez, J.; Johnson, M.; Valla, J.; Li, K.; Ying, J. Y. Mesostructured Zeolite Y—High Hydrothermal Stability and Superior FCC Catalytic Performance. Catal. Sci. Technol. 2012, 2(5), 987–994. DOI: 10.1039/c2cy00309k.
  • Cerqueira, H. S.; Caeiro, G.; Costa, L.; Ramôa Ribeiro, F. Deactivation of FCC Catalysts. J. Mol. Catal. Chem. 2008, 292(1–2), 1–13. DOI: 10.1016/j.molcata.2008.06.014.
  • Souza, N. L. A.; Tkach, I.; Morgado, E.; Krambrock, K. Vanadium Poisoning of FCC Catalysts: A Quantitative Analysis of Impregnated and Real Equilibrium Catalysts. Appl. Catal. Gen. 2018, 560, 206–214. DOI: 10.1016/j.apcata.2018.05.003.
  • Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Oreshina, A.; Dolganova, I.; Pasyukova, M. Modeling of the Catalytic Cracking: Catalyst Deactivation by Coke and Heavy Metals. Fuel Process. Technol. 2020, 200, 106318. DOI: 10.1016/j.fuproc.2019.106318.
  • Sheng, Q.; Wang, G.; Liu, Y.; Husein, M. M.; Gao, C.; Shi, Q.; Gao, J. Combined Hydrotreating and Fluid Catalytic Cracking Processing for the Conversion of Inferior Coker Gas Oil: Effect on Nitrogen Compounds and Condensed Aromatics. Energy Fuels. 2018, 32(4), 4979–4987. DOI: 10.1021/acs.energyfuels.8b00436.
  • Chen, X.; Liu, Y.; Li, S.; Feng, X.; Shan, H.; Yang, C. Structure and Composition Changes of Nitrogen Compounds during the Catalytic Cracking Process and Their Deactivating Effect on Catalysts. Energy Fuels. 2017, 31(4), 3659–3668. DOI: 10.1021/acs.energyfuels.6b03230.
  • Senter, M.; Mannion, M.; Houtz, Y.; Houtz, Y. Quantitative Visual Characterization of Contaminant Metals and Their Mobility in Fluid Catalytic Cracking Catalysts. Catalysts. 2019, 9(10), 831. DOI: 10.3390/catal9100831.
  • Zhou, J.; Zhao, J.; Zhang, J.; Zhang, T.; Ye, M.; Liu, Z. Regeneration of Catalysts Deactivated by Coke Deposition: A Review. Chin. J. Catal. 2020, 41(7), 1048–1061. DOI: 10.1016/S1872-2067(20)63552-5.
  • Etim, U. J.; Bai, P.; Ullah, R.; Subhan, F.; Yan, Z. Vanadium Contamination of FCC Catalyst: Understanding the Destruction and Passivation Mechanisms. Appl. Catal. Gen. 2018, 555, 108–117. DOI: 10.1016/j.apcata.2018.02.011.
  • Vogt, E. T. C.; Whiting, G. T.; Dutta Chowdhury, A.; Weckhuysen, B. M. Zeolites and Zeotypes for Oil and Gas Conversion. In Advances in Catalysis; Friedeike C. Jentoft., Ed.;Elsevier: USA, UK, 2015, Vol. 58, pp 143–314. DOI:10.1016/bs.acat.2015.10.001.
  • O’Connor, P.;. Chapter 15 Catalytic Cracking: The Future of an Evolving Process. In Studies in Surface Science and Catalysis; Ocelli, M. L., Ed.; Fluid Catalytic Cracking VII Materials, Methods and Process Innovations; M.L. Ocelli., Ed.; Elsevier: Netherlands, 2007; Vol. 166, pp 227–251. DOI: 10.1016/S0167-2991(07)80198-4.
  • Pinheiro, C. I. C.; Fernandes, J. L.; Domingues, L.; Chambel, A. J. S.; Graça, I.; Oliveira, N. M. C.; Cerqueira, H. S.; Ribeiro, F. R. Fluid Catalytic Cracking (FCC) Process Modeling, Simulation, and Control. Ind. Eng. Chem. Res. 2012, 51(1), 1–29. DOI: 10.1021/ie200743c.
  • Alkhlel, A.; de Lasa, H. Catalytic Cracking of Hydrocarbons in a CREC Riser Simulator Using a Y-Zeolite-Based Catalyst: Assessing the Catalyst/Oil Ratio Effect. Ind. Eng. Chem. Res. 2018, 57(41), 13627–13638. DOI: 10.1021/acs.iecr.8b02427.
  • Gutiérrez Sama, S.; Barrère-Mangote, C.; Bouyssière, B.; Giusti, P.; Lobinski, R. Recent Trends in Element Speciation Analysis of Crude Oils and Heavy Petroleum Fractions. TrAC Trends Anal. Chem. 2018, 104, 69–76. DOI: 10.1016/j.trac.2017.10.014.
  • Alotaibi, F. M.; González-Cortés, S.; Alotibi, M. F.; Xiao, T.; Al-Megren, H.; Yang, G.; Edwards, P. P. Enhancing the Production of Light Olefins from Heavy Crude Oils: Turning Challenges into Opportunities. Catal. Today. 2018, 317, 86–98. DOI: 10.1016/j.cattod.2018.02.018.
  • Li, Y.; Shang, H.; Zhang, Q.; Elabyouki, M.; Zhang, W. Theoretical Study of the Structure and Properties of Ni/V Porphyrins under Microwave Electric Field: A DFT Study. Fuel. 2020, 278, 118305. DOI: 10.1016/j.fuel.2020.118305.
  • Scherzer, J.;. Octane-Enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Catal. Rev. 1989, 31(3), 215–354. DOI: 10.1080/01614948909349934.
  • Jiao, S.; Guo, A.; Wang, F.; Yu, Y.; Biney, B. W.; Liu, H.; Chen, K.; Liu, D.; Wang, Z.; Sun, L. Sequential Pretreatments of an FCC Slurry Oil Sample for Preparation of Feedstocks for High-Value Solid Carbon Materials. Fuel. 2021, 285, 119169. DOI: 10.1016/j.fuel.2020.119169.
  • EID Energie Informationsdienst, E. E. K./O. G. E. M. Effect of Feedstock Properties on Conversion and Yields, 6th ed ed.; DE: EID Energie Informationsdienst, 2017.
  • Berrouk, A. S.; Pornsilph, C.; Bale, S. S.; Du, Y.; Nandakumar, K. Simulation of a Large-Scale FCC Riser Using a Combination of MP-PIC and Four-Lump Oil-Cracking Kinetic Models. Energy Fuels. 2017, 31(5), 4758–4770. DOI: 10.1021/acs.energyfuels.6b03380.
  • García, J. R.; Bidabehere, C. M.; Sedran, U. Non-Uniform Size of Catalyst Particles. Impact on the Effectiveness Factor and the Determination of Kinetic Parameters. Chem. Eng. J. 2020, 396, 124994. DOI: 10.1016/j.cej.2020.124994.
  • Chen, Z.; Feng, S.; Zhang, L.; Wang, G.; Shi, Q.; Xu, Z.; Zhao, S.; Xu, C. Molecular‐level Kinetic Modeling of Heavy Oil Fluid Catalytic Cracking Process Based on Hybrid Structural Unit and Bond‐electron Matrix. AIChE J. 2021, 67(1), 1. DOI: 10.1002/aic.17027.
  • Liu, J.; Chen, H.; Pi, Z.; Liu, Y.; Sun, H.; Shen, B. Molecular-Level-Process Model with Feedback of the Heat Effects on a Complex Reaction Network in a Fluidized Catalytic Cracking Process. Ind. Eng. Chem. Res. 2017, 56(13), 3568–3577. DOI: 10.1021/acs.iecr.7b00320.
  • Guan, H.; Ye, L.; Shen, F.; Song, Z. Economic Operation of a Fluid Catalytic Cracking Process Using Self-Optimizing Control and Reconfiguration. J. Taiwan Inst. Chem. Eng. 2019, 96, 104–113. DOI: 10.1016/j.jtice.2019.01.004.
  • van Riesen-Haupt, L., Abelleira Fernandez, J., Seryi, A., & Cruz Alaniz, E. (2017). Exploring the triplet parameter space to optimise the final focus of the FCC-hh. IPAC 2017, 2155–2158.
  • Gilbert, W. R.; Morgado, E.; de Abreu, M. A. S.; de la Puente, G.; Passamonti, F.; Sedran, U. A Novel Fluid Catalytic Cracking Approach for Producing Low Aromatic LCO. Fuel Process. Technol. 2011, 92(12), 2235–2240. DOI: 10.1016/j.fuproc.2011.07.006.
  • Palos, R.; Gutiérrez, A.; Fernández, M. L.; Azkoiti, M. J.; Bilbao, J.; Arandes, J. M. Taking Advantage of the Excess of Thermal Naphthas to Enhance the Quality of FCC Unit Products. J. Anal. Appl. Pyrolysis. 2020, 152, 104943. DOI: 10.1016/j.jaap.2020.104943.
  • Bakhtyari, A.; Makarem, M. A.; Rahimpour, M. R. Light Olefins/Bio-Gasoline Production from Biomass. In Bioenergy Systems for the Future; Francesco Dalena, Angelo Basile and Claudio Rossi., Eds.; Elsevier: USA, UK, 2017; pp 87–148. doi:10.1016/B978-0-08-101031-0.00004-1
  • Rezaei, P. S.; Shafaghat, H.; Daud, W. M. A. W. Production of Green Aromatics and Olefins by Catalytic Cracking of Oxygenate Compounds Derived from Biomass Pyrolysis: A Review. Appl. Catal. Gen. 2014, 469, 490–511. DOI: 10.1016/j.apcata.2013.09.036.
  • Hydrocarbon Engineering September 2019 https://www.hydrocarbonengineering.com/magazine/hydrocarbon-engineering/september-2019/ (accessed Jul 13, 2021).
  • Nabgan, W.; Rashidzadeh, M.; Nabgan, B. The Catalytic Naphtha Reforming Process: Hydrodesulfurization, Catalysts and Zeoforming. Environ. Chem. Lett. 2018, 16(2), 507–522. DOI: 10.1007/s10311-018-0707-x.
  • Haensel, V.; https://nae.edu/55060/Vladimir-Haensel (accessed Jun 7, 2021).
  • Vladimir, H.;. Process of Reforming a Gasoline with an Alumina-Platinum-Halogen Catalyst; US2479110A, August 16, 1949.
  • Mills, G. A.; Heinemann, H.; Milliken, T. H.; Oblad, A. G. (Houdriforming Reactions) Catalytic Mechanism. Ind. Eng. Chem. 1953, 45(1), 134–137. DOI: 10.1021/ie50517a043.
  • Heinemann, H.; Mills, G. A.; Hattman, J. B.; Kirsch, F. W. Houdriforming Reactions: Studies with Pure Hydrocarbons. Ind. Eng. Chem. 1953, 45(1), 130–134. DOI: 10.1021/ie50517a042.
  • Monzón, A.; Garetto, T. F.; Borgna, A. Sintering and Redispersion of Pt/γ-Al2O3 Catalysts: A Kinetic Model. Appl. Catal. Gen. 2003, 248(1–2), 279–289. DOI: 10.1016/S0926-860X(03)00300-4.
  • Cochegrue, H.; Gauthier, P.; Verstraete, J. J.; Surla, K.; Guillaume, D.; Galtier, P.; Barbier, J. Reduction of Single Event Kinetic Models by Rigorous Relumping: Application to Catalytic Reforming. Oil Gas Sci. Technol. - Rev. IFPEN. 2011, 66(3), 367–397. DOI: 10.2516/ogst/2011122.
  • le Goff, P.-Y.; Kostka, W.; Ross, J. Catalytic Reforming. In Springer Handbook of Petroleum Technology; Hsu, C. S., Robinson, P. R., Eds.; Springer Handbooks; Springer International Publishing: Cham, 2017; pp 589–616. DOI: 10.1007/978-3-319-49347-3_18.
  • In Catalytic Reforming Unit What Is the Significance of N+2A, N+3.5A, and N+A in Feed? http://www.eptq.com/qandaquestion.aspx?q=2c0a1f8e-6c74-455f-ae5f-28184b728749 (accessed Jun 16, 2021).
  • Meyers, R. A.;. Handbook of Petroleum Refining Processes, Third Edition ed.; McGraw-Hill Education: USA, 2004.
  • Boukezoula, T. F.; Bencheikh, L. Theoretical Investigation of Non-Uniform Bifunctional Catalyst for the Aromatization of Methyl Cyclopentane. React. Kinet. Mech. Catal. 2018, 124(1), 15–25. DOI: 10.1007/s11144-017-1308-6.
  • Lapinski, M. P.; Metro, S.; Pujadó, P. R.; Moser, M. Catalytic Reforming in Petroleum Processing. In Handbook of Petroleum Processing; Treese, S. A., Jones, D. S., Pujado, P. R., Eds.; Springer International Publishing: Cham, 2015; pp 1–25. DOI: 10.1007/978-3-319-05545-9_1-1.
  • Coker, A. K.;. Catalytic Reforming and Isomerization. In Petroleum Refining Design and Applications Handbook; John Wiley & Sons, Ltd: USA, 2018; pp 305–338. doi:10.1002/9781119257110.ch9
  • O’Reilly, C.; Refining capacity boom set to keep utilisation low https://www.hydrocarbonengineering.com/refining/26112020/refining-capacity-boom-set-to-keep-utilisation-low/ (accessed Jun 17, 2021).
  • Platts,; Platts Future Energy Outlooks https://public.flourish.studio/story/417852/ (accessed Jun 15, 2021).
  • Catalytic Reforming | Axens https://www.axens.net/markets/oil-refining/catalytic-reforming (accessed Jul 15, 2021).
  • Octanizing reformer options https://www.digitalrefining.com/article/1000276/octanizing-reformer-options#.YU84R5rMI2x (accessed Sep 25, 2021).
  • Yusuf, A. Z.; Aderemi, B. O.; Patel, R.; Mujtaba, I. M. Study of Industrial Naphtha Catalytic Reforming Reactions via Modelling and Simulation. Processes. 2019, 7(4), 1–26. DOI: 10.3390/pr7040192.
  • Ahmedzeki, N.; Al-Tabbakh, B.; Antwan, M.; Yilmaz, S. Heavy Naphtha Upgrading by Catalytic Reforming over Novel Bi-Functional Zeolite Catalyst. React. Kinet. Mech. Catal. 2018, 125. DOI: 10.1007/s11144-018-1432-y.
  • Van Trimpont, P. A.; Marin, G. B.; Froment, G. F. Kinetics of Methylcyclohexane Dehydrogenation on Sulfided Commercial Platinum/Alumina and Platinum-Rhenium/Alumina Catalysts. Ind. Eng. Chem. Fundam. 1986, 25(4), 544–553. DOI: 10.1021/i100024a014.
  • Sinfelt, J. H.; Hurwitz, H.; Shulman, R. A. Kinetics of Methylcyclohexane Dehydrogenation over Pt-Al 2O3. J. Phys. Chem. 1960, 64(10), 1559–1562. DOI: 10.1021/j100839a054.
  • Usman, M.; Cresswell, D.; Garforth, A. Detailed Reaction Kinetics for the Dehydrogenation of Methylcyclohexane over Pt Catalyst. Ind. Eng. Chem. Res. 2012, 51(1), 158–170. DOI: 10.1021/ie201539v.
  • Figoli, N. S.; Beltramini, J. N.; Martinelli, E. E.; Aloe, P. E.; Parera, J. M. Influence of Feedstock Characteristics on Activity and Stability of Pt/Al2O3-Cl Reforming Catalyst. Appl. Catal. 1984, 11(2), 201–215. DOI: 10.1016/S0166-9834(00)81879-5.
  • Ali, M. A.; Ali, S. A.; Siddiqui, M. A. B. An Appraisal of Hydrocarbons Conversion Reactions During Naphtha Reforming Process. Pet. Sci. Technol. 2007, 25(10), 1321–1331. DOI: 10.1080/10916460701428847.
  • Taskar, U.; Riggs, J. B. Modeling and Optimization of a Semiregenerative Catalytic Naphtha Reformer. AIChE J. 1997, 43(3), 740–753. DOI: 10.1002/aic.690430319.
  • Paál, Z.;. On the Possible Reaction Scheme of Aromatization in Catalytic Reforming. J. Catal. 1987, 105(2), 540–542. DOI: 10.1016/0021-9517(87)90083-2.
  • Parera, J. M.; Beltramini, J. N.; Querini, C. A.; Martinelli, E. E.; Churin, E. J.; Aloe, P. E.; Figoli, N. S. The Role of Re and S in the Pt-Re-Al2O3 Catalyst. J. Catal. 1986, 99(1), 39–52. DOI: 10.1016/0021-9517(86)90196-X.
  • Menon, P. G.; Paál, Z. Some Aspects of the Mechanisms of Catalytic Reforming Reactions. Ind. Eng. Chem. Res. 1997, 36(8), 3282–3291. DOI: 10.1021/ie960606p.
  • Anabtawi, J. A.; Redwan, D. S.; Al-Jarallah, A. M.; Aitani, A. M. Advances in the Chemistry of Catalytic Reforming of Naphtha. Fuel Sci. Technol. Int. 1991, 9(1), 1–23. DOI: 10.1080/08843759108942250.
  • Pieck, C. L.; Sad, M. R.; Parera, J. M. Chlorination of Pt–Re/Al2O3 during Naphtha Reforming. J. Chem. Technol. Biotechnol. 1996, 67(1), 61–66. DOI: 10.1002/(SICI)1097-4660(199609)67:1<61::AID-JCTB529>3.0.CO;2-4.
  • Hodala, J. L.; Kotni, S.; B, R.; Chelliahn, B. Metal Carbide as a Potential Non Noble Metal Catalyst for Naphtha Reforming. Fuel. 2021, 288, 119610. DOI: 10.1016/j.fuel.2020.119610.
  • Figoli, N. S.; Beltramini, J. N.; Marinelli, E. E.; Sad, M. R.; Parera, J. M. Operational Conditions and Coke Formation on Pt-Al2O3 Reforming Catalyst. Appl. Catal. 1983, 5(1), 19–32. DOI: 10.1016/0166-9834(83)80292-9.
  • Mazzieri, V. A.; Grau, J. M.; Vera, C. R.; Yori, J. C.; Parera, J. M.; Pieck, C. L. Role of Sn in Pt–Re–Sn/Al2O3–Cl Catalysts for Naphtha Reforming. Catal. Today. 2005, 107-108, 643–650. DOI: 10.1016/j.cattod.2005.07.042.
  • Pieck, C. L.; Vera, C. R.; Parera, J. M.; Giménez, G. N.; Serra, L. R.; Carvalho, L. S.; Rangel, M. C. Metal Dispersion and Catalytic Activity of Trimetallic Pt-Re-Sn/Al2O3 Naphtha Reforming Catalysts. Catal. Today. 2005, 107-108, 637–642. DOI: 10.1016/j.cattod.2005.07.040.
  • Haensel, V. A.-P.-H. C.; Thereof, P. US2479109A, August 16, 1949.
  • Baird, W. C.; Boyle, J. P.; S, G. A. Process for Reforming at Low Severities with High-Activity, High-Yield, Tin Modified Platinum-Iridium Catalysts; US5269907A, December 14, 1993.
  • Fürcht, Á.; Tungler, A.; Szabó, S.; Schay, Z.; Vida, L.; Gresits, I. N-Octane Reforming over Modified Catalysts: II. The Role of Au, Ir and Pd. Appl. Catal. Gen. 2002, 231(1–2), 151–157. DOI: 10.1016/S0926-860X(02)00048-0.
  • Kresge, C. T.; Krishnamurthy, S.; McHale, W. D. Separately Supported Polymetallic Reforming Catalyst; US4493764A, January 15, 1985.
  • Macleod, N.; Fryer, J. R.; Stirling, D.; Webb, G. Deactivation of Bi- and Multimetallic Reforming Catalysts: Influence of Alloy Formation on Catalyst Activity. Catal. Today. 1998, 46(1), 37–54. DOI: 10.1016/S0920-5861(98)00349-6.
  • Sinfelt, J. H.; Polymetallic Cluster Compositions Useful as Hydrocarbon Conversion Catalysts. US3953368A, April 27, 1976.
  • Ponec, V.; Bond, G. C. Chapter 13 Reactions of Alkanes and Reforming of Naphtha. In Studies in Surface Science and Catalysis; Vladimir Ponec, Geoffrey C. Bond., Eds.; Catalysis by Metals and Alloys; Elsevier: USA, 1995, Vol. 95, pp 583–677. DOI:10.1016/S0167-2991(06)80485-4.
  • Biloen, P.; Helle, J. N.; Verbeek, H.; Dautzenberg, F. M.; Sachtler, W. M. H.; Helle, J. N.; Verbeek, H.; Dautzenberg, F. M.; Sachtler, W. M. H.; Verbeek, H., et al. The Role of Rhenium and Sulfur in Platinum-Based Hydrocarbon-Conversion Catalysts. J. Catal. 1980, 63(1), 112–118. DOI: 10.1016/0021-9517(80)90064-0.
  • Kluksdahl, H. E.;. Reforming a Sulfur-Free Naphtha with a Platinum-Rhenium Catalyst; US3415737A, December 10, 1968.
  • Antos, G. J.;; United States Patent: 4312788 - Attenuated Superactive Multimetallic Catalytic Composite. 4312788. January 26, 1982.
  • Arteaga, G. J.; Anderson, J. A.; Rochester, C. H. Effects of Catalyst Regeneration with and without Chlorine on Heptane Reforming Reactions over Pt/Al2O3 and Pt–Sn/Al2O3. J. Catal. 1999, 187(1), 219–229. DOI: 10.1006/jcat.1999.2610.
  • González-Marcos, M. P.; Iñarra, B.; Guil, J. M.; Gutiérrez-Ortiz, M. A. Development of an Industrial Characterisation Method for Naphtha Reforming Bimetallic Pt-Sn/Al2O3 Catalysts through n-Heptane Reforming Test Reactions. Catal. Today. 2005, 107-108, 685–692. DOI: 10.1016/j.cattod.2005.07.052.
  • Margitfalvi, J. L.; Borbáth, I.; Heged Us, M.; Gobölös, S. Modification of Alumina Supported Platinum Catalyst by Tin Tetraethyl in a Circulation Reactor. Appl. Catal. Gen. 2001, 219(1–2), 171–182. DOI: 10.1016/S0926-860X(01)00683-4.
  • Viswanadham, N.; Kamble, R.; Sharma, A.; Kumar, M.; Saxena, A. K. Effect of Re on Product Yields and Deactivation Patterns of Naphtha Reforming Catalyst. J. Mol. Catal. Chem. 2008, 282(1–2), 74–79. DOI: 10.1016/j.molcata.2007.11.025.
  • Baghalha, M.; Mohammadi, M.; Ghorbanpour, A. Coke Deposition Mechanism on the Pores of a Commercial Pt–Re/γ-Al2O3 Naphtha Reforming Catalyst. Fuel Process. Technol. 2010, 91(7), 714–722. DOI: 10.1016/j.fuproc.2010.02.002.
  • Weisang, J. E.; Engelhard, P. Novel Hydroreforming Catalysts and a Method for Preparing the Same. US3700588A, October 24, 1972.
  • Miguel, S.; Castro, A.; Scelza, O.; Fierro, J. L. G.; Soria, J. FTIR and XPS Study of Supported PtSn Catalysts Used for Light Paraffins Dehydrogenation. Catal. Lett. 1996, 36(3–4), 201–206. DOI: 10.1007/BF00807620.
  • Völter, J.; Kürschner, U. Deactivation of Supported Pt and Pt-Sn Catalysts in the Conversion of Methylcyclopentane. Appl. Catal. 1983, 8(2), 167–176. DOI: 10.1016/0166-9834(83)80077-3.
  • Huang, Z.; Fryer, J. R.; Park, C.; Stirling, D.; Webb, G. Transmission Electron Microscopy and Energy Dispersive X-Ray Spectroscopy Studies of Pt–Sn/γ-Al2O3 Catalysts. J. Catal. 1996, 159(2), 340–352. DOI: 10.1006/jcat.1996.0096.
  • Borgna, A.; Garetto, T. F.; Apesteguıa, C. R. Simultaneous Deactivation by Coke and Sulfur of Bimetallic Pt–Re(Ge, Sn)/Al2O3 Catalysts for n-Hexane Reforming. Appl. Catal. Gen. 2000, 197(1), 11–21.
  • McCallister, K. R.; O’Neal, T. P. French Patent 2,078,056, 1971.
  • Boutzeloit, M.; Benitez, V. M.; Mazzieri, V. A.; Especel, C.; Epron, F.; Vera, C. R.; Pieck, C. L.; Marécot, P. Effect of the Method of Addition of Ge on the Catalytic Properties of Pt–Re/ Al2O3 and Pt–Ir/Al2O3 Naphtha Reforming Catalysts. Catal. Commun. 2006, 7, 627–632. DOI: 10.1016/j.catcom.2006.01.029.
  • Benitez, V.; Boutzeloit, M.; Mazzieri, V. A.; Especel, C.; Epron, F.; Vera, C. R.; Marécot, P.; Pieck, C. L. Preparation of Trimetallic Pt–Re–Ge/Al2O3 and Pt–Ir–Ge/Al2O3 Naphtha Reforming Catalysts by Surface Redox Reaction. Appl. Catal. Gen. 2007, 319, 210–217. DOI: 10.1016/j.apcata.2006.12.006.
  • D’Ippolito, S. A.; Vera, C. R.; Epron, F.; Especel, C.; Marécot, P.; Pieck, C. L. Naphtha Reforming Pt-Re-Ge/γ-Al2O3 Catalysts Prepared by Catalytic Reduction: Influence of the PH of the Ge Addition Step. Catal. Today. 2008, 133-135, 13–19. DOI: 10.1016/j.cattod.2007.11.014.
  • Epron, F.; Carnevillier, C.; Marécot, P. Catalytic Properties in N-Heptane Reforming of Pt–Sn and Pt–Ir–Sn/Al2O3 Catalysts Prepared by Surface Redox Reaction. Appl. Catal. Gen. 2005, 295, 157–169. DOI: 10.1016/j.apcata.2005.08.006.
  • Hodala, J. L.; Halgeri, A. B.; Shanbhag, G. V.; Reddy, R. S.; Choudary, N. V.; Rao, P. V. C.; SriGanesh, M. G.; Shah, G.; Ravishankar, R. Aromatization of C5-Rich Light Naphtha Feedstock over Tailored Zeolite Catalysts: Comparison with Model Compounds (n-C5 - n-C7). Chem. Sel. 2016, 1(10), 2515–2521. DOI: 10.1002/slct.201600412.
  • Guisnet, M.; Gnep, N. S.; Alario, F. Aromatization of Short Chain Alkanes on Zeolite Catalysts. Appl. Catal. Gen. 1992, 89(1), 1–30. DOI: 10.1016/0926-860X(92)80075-N.
  • Tshabalala, T. E.; Scurrell, M. S. Aromatization of N-Hexane over Ga, Mo and Zn Modified H-ZSM-5 Zeolite Catalysts. Catal. Commun. 2015, 72, 49–52. DOI: 10.1016/j.catcom.2015.06.022.
  • Wannapakdee, W.; Suttipat, D.; Dugkhuntod, P.; Yutthalekha, T.; Thivasasith, A.; Kidkhunthod, P.; Nokbin, S.; Pengpanich, S.; Limtrakul, J.; Wattanakit, C. Aromatization of C5 Hydrocarbons over Ga-Modified Hierarchical HZSM-5 Nanosheets. Fuel. 2019, 236, 1243–1253. DOI: 10.1016/j.fuel.2018.09.093.
  • Ishihara, A.; Takai, K.; Hashimoto, T.; Nasu, H. Effects of a Matrix on Formation of Aromatic Compounds by Dehydrocyclization of n -Pentane Using ZnZSM-5–Al 2 O 3 Composite Catalysts. ACS Omega. 2020, 5(19), 11160–11166. DOI: 10.1021/acsomega.0c01147.
  • Ishihara, A.; Kodama, Y.; Hashimoto, T. Effect of Matrix on Aromatics Production by Cracking and Dehydrocyclization of N-Pentane Using Ga Ion-Exchanged ZSM-5-Alumina Composite Catalysts. Fuel Process. Technol. 2021, 213, 106679. DOI: 10.1016/j.fuproc.2020.106679.
  • Levy, R. B.; Boudart, M. Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis. Science. 1973, 181(4099), 547–549. DOI: 10.1126/science.181.4099.547.
  • Pang, M.; Chen, X.; Xu, Q.; Liang, C. MoCx Species Embedded in Ordered Mesoporous Silica Framework with Hierarchical Structure for Hydrogenation of Naphthalene. Appl. Catal. Gen. 2015, 490, 146–152. DOI: 10.1016/j.apcata.2014.11.023.
  • Vasić Anićijević, D. D.; Nikolić, V. M.; Marčeta-Kaninski, M. P.; Pašti, I. A. Is Platinum Necessary for Efficient Hydrogen Evolution? – DFT Study of Metal Monolayers on Tungsten Carbide. Int. J. Hydrog. Energy. 2013, 38(36), 16071–16079. DOI: 10.1016/j.ijhydene.2013.09.079.
  • Mehdad, A.; Jentoft, R. E.; Jentoft, F. C. Single-Phase Mixed Molybdenum-Tungsten Carbides: Synthesis, Characterization and Catalytic Activity for Toluene Conversion. Catal. Today. 2019, 323, 112–122. DOI: 10.1016/j.cattod.2018.06.037.
  • Mehdad, A.; Jentoft, R. E.; Jentoft, F. C. Highly Selective Molybdenum-Based Catalysts for Ring Hydrogenation and Contraction. Appl. Catal. Gen. 2019, 569, 45–56. DOI: 10.1016/j.apcata.2018.10.012.
  • Márquez-Alvarez, C.; Calridge, J. B.; York, A. P. E.; Sloan, J.; Green, M. L. H. Benzene Hydrogenation over Transition Metal Carbides. In Studies in Surface Science and Catalysis; Froment, G. F., Delmon, B., Grange, P., Eds.; Hydrotreatment and Hydrocracking of Oil Fractions; Elsevier: Belgium, 1997; Vol. 106, pp 485–490. DOI: 10.1016/S0167-2991(97)80047-X.
  • Cheng, Y.-T.; Huber, G. W. Production of Targeted Aromatics by Using Diels–Alder Classes of Reactions with Furans and Olefins over ZSM-5. Green Chem. 2012, 14(11), 3114. DOI: 10.1039/c2gc35767d.
  • Green, S. K.; Patet, R. E.; Nikbin, N.; Williams, C. L.; Chang, -C.-C.; Yu, J.; Gorte, R. J.; Caratzoulas, S.; Fan, W.; Vlachos, D. G., et al. Diels–Alder Cycloaddition of 2-Methylfuran and Ethylene for Renewable Toluene. Appl. Catal. B. 2016, 180, 487–496. DOI: 10.1016/j.apcatb.2015.06.044.
  • Wang, J.; Jiang, J.; Ding, J.; Wang, X.; Sun, Y.; Ruan, R.; Ragauskas, A. J.; Ok, Y. S.; Tsang, D. C. W. Promoting Diels-Alder Reactions to Produce Bio-BTX: Co-Aromatization of Textile Waste and Plastic Waste over USY Zeolite. J. Clean. Prod. 2021, 314. DOI: 10.1016/j.jclepro.2021.127966.
  • Williams, C. L.; Chang, -C.-C.; Do, P.; Nikbin, N.; Caratzoulas, S.; Vlachos, D. G.; Lobo, R. F.; Fan, W.; Dauenhauer, P. J. Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p -Xylene. ACS Catal. 2012, 2(6), 935–939. DOI: 10.1021/cs300011a.
  • Pastrana-Martínez, L. M.; Morales-Torres, S.; Maldonado-Hódar, F. J. A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and Platinum-Catalysts Based on Carbon Gels. C. 2021, 7(1), 21. DOI: 10.3390/c7010021.
  • Rahimpour, M. R.; Jafari, M.; Iranshahi, D. Progress in Catalytic Naphtha Reforming Process: A Review. Appl. Energy. 2013, 109, 79–93. DOI: 10.1016/j.apenergy.2013.03.080.
  • Talaghat, M. R.; Karimi, M. S. Operation Parameters Effect on Yield and Octane Number for Monometallic, Bimetallic and Trimetallic Catalysts in Naphtha Reforming Process. Energy Sour. Part Recov. Util. Environ. Eff. 2020, 42(2), 176–193. DOI: 10.1080/15567036.2019.1587064.
  • Aitani, A.; Akhtar, M. N.; Al-Khattaf, S.; Jin, Y.; Koseoglo, O.; Klein, M. T. Catalytic Upgrading of Light Naphtha to Gasoline Blending Components: A Mini Review. Energy Fuels. 2019, 33(5), 3828–3843. DOI: 10.1021/acs.energyfuels.9b00704.
  • Velichkina, L. M.;. Hydrogen-Free Domestic Technologies for Conversion of Low-Octane Gasoline Distillates on Zeolite Catalysts. Theor. Found. Chem. Eng. 2009, 43(4), 486–493. DOI: 10.1134/S004057950904023X.
  • Stepanov, V. G.; Ione, K. G. Zeoforming — A Promising Process for Production of Unleaded Gasolines. Chem. Technol. Fuels Oils. 2000, 36(1), 1–7. DOI: 10.1007/BF02725238.
  • Krumpelt, M.; Kopasz, J. P.; Ahmed, S.; Kao, R. L.; Randhava, S. S. United States Patent: 6967063 - Autothermal Hydrodesulfurizing Reforming Method and Catalyst. 6967063, November 22, 2005.
  • Nakano, K.; Ali, S. A.; Kim, H.-J.; Kim, T.; Alhooshani, K.; Park, J.-I.; Mochida, I. Deep Desulfurization of Gas Oil over NiMoS Catalysts Supported on Alumina Coated USY-Zeolite. Fuel Process. Technol. 2013, 116, 44–51. DOI: 10.1016/j.fuproc.2013.04.012.
  • Zhu, Z.; Ma, H.; Liao, W.; Tang, P.; Yang, K.; Su, T.; Ren, W.; Lü, H. Insight into Tri-Coordinated Aluminum Dependent Catalytic Properties of Dealuminated Y Zeolites in Oxidative Desulfurization. Appl. Catal. B. 2021, 288, 120022. DOI: 10.1016/j.apcatb.2021.120022.
  • Samborskaya, M. A.; Gryaznova, I. A.; Romanenkova, V. V.; Cherednichenko, O. A. Optimal Design of Straight– Run Gasoline Conversion on Zeolite Catalyst. Pet. Coal. 2016, 58, 721–725.
  • Hun Kim, C.; Gul Hur, Y.; Ho Lee, S.; Lee, K.-Y. Hydrocracking of Vacuum Residue Using Nano-Dispersed Tungsten Carbide Catalyst. Fuel. 2018, 233, 200–206. DOI: 10.1016/j.fuel.2018.05.091.
  • Hwu, H. H.; Chen, J. G. Surface Chemistry of Transition Metal Carbides. Chem. Rev. 2005, 105(1), 185–212. DOI: 10.1021/cr0204606.
  • Babaqi, B.; Takriff, M.; Kamarudin, S. K.; Ali Othman, N. T.; Muneer, O.; Ba-Abbad, M. Comparison of Catalytic Reforming Processes for Process Integration Opportunities: Brief Review. Int. J. Appl. Eng. Res. 2016, 11, 9984–9989.
  • Elsayed, H. A.; Menoufy, M. F.; Shaban, S. A.; Ahmed, H. S.; Heakal, B. H. Optimization of the Reaction Parameters of Heavy Naphtha Reforming Process Using Pt-Re/Al 2 O 3 Catalyst System. Egypt. J. Pet. 2017, 26(4), 885–893. DOI: 10.1016/j.ejpe.2015.03.009.
  • Tregubenko, V. Y.; Veretelnikov, K. V.; Vinichenko, N. V.; Gulyaeva, T. I.; Muromtsev, I. V.; Belyi, A. S. Effect of the Indium Precursor Nature on Pt/Al2O3In-Cl Reforming Catalysts. Catal. Today. 2019, 329, 102–107. DOI: 10.1016/j.cattod.2018.11.077.
  • Musselwhite, N.; Alayoglu, S.; Melaet, G.; Pushkarev, V. V.; Lindeman, A. E.; An, K.; Somorjai, G. A. Isomerization of N-Hexane Catalyzed by Supported Monodisperse PtRh Bimetallic Nanoparticles. Catal. Lett. 2013, 143(9), 907–911. DOI: 10.1007/s10562-013-1068-5.
  • Liu, X.; Lang, W.-Z.; Long, -L.-L.; Hu, C.-L.; Chu, L.-F.; Guo, Y.-J. Improved Catalytic Performance in Propane Dehydrogenation of PtSn/γ-Al2O3 Catalysts by Doping Indium. Chem. Eng. J. 2014, 247, 183–192. DOI: 10.1016/j.cej.2014.02.084.
  • Balci, V.; Şahin, İ.; Uzun, A. Catalytic Naphtha Reforming. In Advances in Refining Catalysis; Deniz Uner, Ed. CRC Press, Boca Raton: 2017. 42pp
  • Rimaz, S.; Chen, L.; Kawi, S.; Borgna, A. Promoting Effect of Ge on Pt-Based Catalysts for Dehydrogenation of Propane to Propylene. Appl. Catal. Gen. 2019, 588, 117266. DOI: 10.1016/j.apcata.2019.117266.
  • Kianpoor, Z.; Falamaki, C.; Parvizi, M. R. Exceptional Catalytic Performance of Au–Pt/γ-Al2O3 in Naphtha Reforming at Very Low Au Dosing Levels. React. Kinet. Mech. Catal. 2019, 128(1), 427–441. DOI: 10.1007/s11144-019-01640-7.
  • Gőbölös, S.; Margitfalvi, J. L.; Margitfalvi, J. L.; Hegedűs, M.; Ryndin, Y. A.; Ryndin, Y. A. Transformation of N-Hexane on Al2O3and SiO2supported Pt, Pt+Ga and Ir+Pt+Ga Catalysts Prepared by Anchoring Methods. React. Kinet. Catal. Lett. 2006, 87(2), 313–324. DOI: 10.1007/s11144-006-0039-x.
  • Lin, C.; Pan, H.; Yang, Z.; Han, X.; Tian, P.; Li, P.; Xiao, Z.; Xu, J.; Han, Y.-F. Effects of Cerium Doping on Pt–Sn/Al2O3 Catalysts for n-Heptane Reforming. Ind. Eng. Chem. Res. 2020, 59(14), 6424–6434. DOI: 10.1021/acs.iecr.9b05953.
  • Tregubenko, V. Y.; Veretelnikov, K. V.; Belyi, A. S. Trimetallic Pt–Sn–Zr/γ-Al2O3 Naphtha-Reforming Catalysts. Kinet. Catal. 2019, 60(5), 612–617. DOI: 10.1134/S0023158419040190.
  • Tregubenko, V. Y.; Vinichenko, N. V.; Paukshtis, E. A.; Udras, I. E.; Belyi, A. S. Investigation of Pt-Re/Al2O3-ZrO2 Catalysts for n-Heptane Reforming. AIP Conf. Proc. 2019, 2141(1), 020015. DOI: 10.1063/1.5122034.
  • Elfghi, F. M.; Amin, N. A. S. Influence of Tin Content on the Texture Properties and Catalytic Performance of Bi-Metallic Pt–Re and Tri-Metallic Pt–Re–Sn Catalyst for n-Octane Reforming. React. Kinet. Mech. Catal. 2015, 114(1), 229–249. DOI: 10.1007/s11144-014-0779-y.
  • Elfghi, F. M.; Amin, N. A. S.; Elgarni, M. M. Optimization of Isomerization Activity and Aromatization Activity in Catalytic Naphtha Reforming over Tri-Metallic Modified Catalyst Using Design of Experiment Based on Central Composite Design and Response Surface Methodology. J Adv. Catal. Sci. Technol. 2015, 2(1), 1–17. DOI: 10.15379/2408-9834.2015.02.01.1.
  • Peyrovi, M. H.; Hamoule, T.; Sabour, B.; Rashidzadeh, M. S. Characterization and Catalytic Application of Bi- and Trimetallic Al-HMS Supported Catalysts in Hydroconversion of n-Heptane. J. Ind. Eng. Chem. 2012, 18(3), 986–992. DOI: 10.1016/j.jiec.2011.10.003.
  • Jumas, J.-C.; Sougrati, M. T.; Olivier-Fourcade, J.; Jahel, A.; Avenier, P.; Lacombe, S. Identification and Quantification of Sn-Based Species in Trimetallic Pt-Sn-In/Al2O3-Cl Naphtha-Reforming Catalysts. Hyperfine Interact. 2013, 217(1–3), 137–144. DOI: 10.1007/s10751-012-0717-1.
  • Carvalho, L. S.; Conceição, K. C. S.; Mazzieri, V. A.; Reyes, P.; Pieck, C. L.; Rangel, M. D. C. Pt–Re–Ge/Al2O3 Catalysts for n-Octane Reforming: Influence of the Order of Addition of the Metal Precursors. Appl. Catal. Gen. 2012, 419-420, 156–163. DOI: 10.1016/j.apcata.2012.01.023.
  • Elfghi, F. M.;. Catalytic Naphtha Reforming; Challenges for Selective Gasoline; an Overview and Optimization Case Study. J. Adv. Catal. Sci. Technol. 2016, 3(1), 27–42. DOI: 10.15379/2408-9834.2016.03.01.04.
  • Oloye, F. F.; McCue, A. J.; Anderson, J. A. N-Heptane Hydroconversion over Sulfated-Zirconia-Supported Molybdenum Carbide Catalysts. Appl. Petrochem. Res. 2016, 6(4), 341–352. DOI: 10.1007/s13203-016-0172-z.
  • Soltanali, S.; Mohaddecy, S. R. S.; Mashayekhi, M.; Rashidzadeh, M. Catalytic Upgrading of Heavy Naphtha to Gasoline: Simultaneous Operation of Reforming and Desulfurization in the Absence of Hydrogen. J. Environ. Chem. Eng. 2020, 8(6), 104548. DOI: 10.1016/j.jece.2020.104548.
  • Ahmedzeki, N. S.; Al-Tabbakh, B. A. Catalytic Reforming of Iraqi Naphtha over Pt-Ti/HY Zeolite Catalyst. Iraqi J Chem Pet Eng. 2016, 17, 46–56.
  • Liu, G.; Liu, J.; He, N.; Sheng, S.; Wang, G.; Guo, H. Pt Supported on Zn Modified Silicalite-1 Zeolite as a Catalyst for n-Hexane Aromatization. J. Energy Chem. 2019, 34, 96–103. DOI: 10.1016/j.jechem.2018.09.009.
  • Belinskaya, N.; Altynov, A.; Bogdanov, I.; Popok, E.; Kirgina, M.; Simakov, D. S. A. Production of Gasoline Using Stable Gas Condensate and Zeoforming Process Products as Blending Components. Energy Fuels. 2019, 33(5), 4202–4210. DOI: 10.1021/acs.energyfuels.9b00591.
  • Fukunaga, T.; Katsuno, H. Halogen-Promoted Pt/KL Zeolite Catalyst for the Production of Aromatic Hydrocarbons from Light Naphtha. Catal. Surv. Asia. 2010, 14(3–4), 96–102. DOI: 10.1007/s10563-010-9092-6.
  • Xing, Y.; Khare, G. P.; Suib, S. L. Deactivation of Pt/F-KL Zeolite-Type Naphtha Reforming Catalysts: In-Situ IR and on-Line Mass Spectrometry Studies of Fluorine Loss. Appl. Catal. Gen. 2011, 399(1–2), 179–183. DOI: 10.1016/j.apcata.2011.03.048.
  • Viswanadham, N.; Saxena, S. K.; Garg, M. O. Octane Number Enhancement Studies of Naphtha over Noble Metal Loaded Zeolite Catalysts. J. Ind. Eng. Chem. 2013, 19(3), 950–955. DOI: 10.1016/j.jiec.2012.11.014.
  • Beltramini, J.; Tanksale, A. Improved Performance of Naphtha Reforming Process by the Use of Metal Zeolite Composite Catalysts. In Studies in Surface Science and Catalysis; A. Gédéon, P. Massiani, F. Babonneau., Eds.; Elsevier: Paris, France, 2008, Vol. 174, pp 1235–1238. DOI:10.1016/S0167-2991(08)80111-5.
  • Smith, R. B.;. Kinetic Analysis of Naphtha Reforming with Platinum Catalyst. Chem. Eng. Prog. 1959, 55(6), 76–80.
  • Krane, H. G.; Groh, A. B.; Schulman, B. L.; Sinfelt, J. H. Reactions in Catalytic Reforming of Naphthas. Presented at 5th World Petroleum Congress, New York, USA. May 30, 1959. Paper WPC-8204
  • Rodríguez, M. A.; Ancheyta, J. Detailed Description of Kinetic and Reactor Modeling for Naphtha Catalytic Reforming. Fuel. 2011, 90(12), 3492–3508. DOI: 10.1016/j.fuel.2011.05.022.
  • Ramage, M. P.; Graziani, K. R.; Krambeck, F. J. 6 Development of Mobil’s Kinetic Reforming Model. Chem. Eng. Sci. 1980, 35(1–2), 41–48. DOI: 10.1016/0009-2509(80)80068-6.
  • Szczygiel, J.;. On the Kinetics of Catalytic Reforming with the Use of Various Raw Materials. Energy Fuels. 1999, 13(1), 29–39. DOI: 10.1021/ef980028k.
  • Zhorov, Y. M.; Panchenkov, G. M.; Zel’tser, S. P.; Tirakyan, Y. A. Mathematical Description of Platforming for Optimization of a Process (I). Kinet. Katal. 1965, 6(6), 1092–1098.
  • Zhorov, Y. M.; Panchenkov, G. M.; Shapiro, I. Y. Mathematical Description of Platforming Carried out under Severe Conditions. Chem. Technol. Fuels Oils. 1970, 6(11), 849–852. DOI: 10.1007/BF00717689.
  • Rahimpour, M. R.; Esmaili, S.; Bagheri Yazdi, S. A. A Kinetic and Deactivation Model for Industrial Catalytic Naphtha Reforming. Iran. J. Sci. Technol. Trans. B- Eng. 2003, 27(2), 279–290.
  • Hu, Y.; Su, H.; Chu, J. M., Simulation and Optimization of Commercial Naphtha Catalytic Reforming Process. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Maui, HI, USA, 2003; Vol. 6, pp 6206–6211 Vol.6. 10.1109/CDC.2003.1272272.
  • Henningsen, J.; Bundgaar, M. Catalytic Reforming. Br. Chem. Eng. 1970, 15(11), 1433–1436.
  • Stijepovic, M. Z.; Vojvodic-Ostojic, A.; Milenkovic, I.; Linke, P. Development of a Kinetic Model for Catalytic Reforming of Naphtha and Parameter Estimation Using Industrial Plant Data. Energy Fuels. 2009, 23(2), 979–983. DOI: 10.1021/ef800771x.
  • Yusuf, A. Z.; John, Y. M.; Aderemi, B. O.; Patel, R.; Mujtaba, I. M. Effect of Compressibility Factor on the Hydrodynamics of Naphtha Catalytic-Reforming Reactors. Appl. Petrochem. Res. 2019, 9(2), 147–168. DOI: 10.1007/s13203-019-0233-1.
  • Yusuf, A. Z.; John, Y. M.; Aderemi, B. O.; Patel, R.; Mujtaba, I. M. M. Simulation and Sensitivity Analysis of Naphtha Catalytic Reforming Reactions. Comput. Chem. Eng. 2019, 130, 106531. DOI: 10.1016/j.compchemeng.2019.106531.
  • Kmak, W. S. A Kinetic Simulation Model of the Powerforming Process. Presented at AIChE Meeting, Houston, TX; 1972.
  • Coppens, M.-O.; Froment, G. F. Fractal Aspects in the Catalytic Reforming of Naphtha. Chem. Eng. Sci. 1996, 51(10), 2283–2292. DOI: 10.1016/0009-2509(96)00085-1.
  • Marin, G. B.; Froment, G. F. Reforming of C6 Hydrocarbons on a Pt-Al2O3 Catalyst. Chem. Eng. Sci. 1982, 37(5), 759–773. DOI: 10.1016/0009-2509(82)85037-9.
  • Taskar, U. M. Modeling and Optimization of a Catalytic Naphtha Reformer. Ph.D. Dissertation, Texas Tech University: Texas, USA, 1996.
  • Sotelo-Boyás, R.; Froment, G. F. Fundamental Kinetic Modeling of Catalytic Reforming. Ind. Eng. Chem. Res. 2009, 48(3), 1107–1119. DOI: 10.1021/ie800607e.
  • Burgazli, C. Catalytic Reforming of C5 to C12 Naphtha Modeled through the Kinetic Modeling Toolkit. Ph.D. Dissertation, University of Delaware, Delaware, USA, 2013.
  • Zhou, X.; Hou, Z.; Wang, J.; Fang, W.; Ma, A.; Guo, J.; Klein, M. T. Molecular-Level Kinetic Model for C12 Continuous Catalytic Reforming. Energy Fuels. 2018, 32(6), 7078–7085. DOI: 10.1021/acs.energyfuels.8b00950.
  • Wei, W.; Bennett, C. A.; Tanaka, R.; Hou, G.; Klein, M. T. Detailed Kinetic Models for Catalytic Reforming. Fuel Process. Technol. 2008, 89(4), 344–349. DOI: 10.1016/j.fuproc.2007.11.014.
  • Avenier, P.; Bazer-Bachi, D.; Bazer-Bachi, F.; Chizallet, C.; Deleau, F.; Diehl, F.; Gornay, J.; Lemaire, É.; Moizan-Basle, V.; Plais, C., et al. Catalytic Reforming: Methodology and Process Development for a Constant Optimisation and Performance Enhancement. Oil Gas Sci. Technol. – Rev. D’IFP Energ. Nouv.2016, 71(3), 41. DOI: 10.2516/ogst/2015040.
  • Padmavathi, G.; Chaudhuri, K. K. Modelling and Simulation of Commercial Catalytic Naphtha Reformers. Can. J. Chem. Eng. 1997, 75(5), 930–937. DOI: 10.1002/cjce.5450750513.
  • Ancheyta-Juárez, J.; Villafuerte-Macías, E. Kinetic Modeling of Naphtha Catalytic Reforming Reactions. Energy Fuels. 2000, 14(5), 1032–1037. DOI: 10.1021/ef0000274.
  • Parkash, S.;. Refining Processes Handbook; Gulf Professional Pub: Amsterdam ; Boston, 2003.
  • Refining-Process-Solution-Guide-Blending https://www.emerson.com/documents/automation/training-refining-process-solution-guide-blending-micro-motion-en-65876.pdf.
  • Wang, P.; Yue, Y.; Wang, T.; Bao, X. Alkane Isomerization over Sulfated Zirconia Solid Acid System. Int. J. Energy Res. 2020, 44(5), 3270–3294. DOI: 10.1002/er.4995.
  • Agus, B.; Octane upgrading technology to boost value of light paraffinic feeds https://www.hydrocarbonprocessing.com/magazine/2019/january-2019/special-focus-process-optimization/octane-upgrading-technology-to-boost-value-of-light-paraffinic-feeds (accessed Apr 10, 2021).
  • Ron, I.; Axens Commercial experience isomerization C5-C6 https://www.axens.net/markets/oil-refining/c5c6-isomerization.
  • DWC Innovations, Maximize Margins in Light Naptha Isoerization Unit https://www.dwcinnovations.com/maximize-margins-in-light-naphtha-isomerization/ (accessed Apr 10, 2021).
  • Mohamed, M. F.; Shehata, W. M.; Abdel Halim, A. A.; Gad, F. K. Improving Gasoline Quality Produced from MIDOR Light Naphtha Isomerization Unit. Egypt. J. Pet. 2017, 26(1), 111–124. DOI: 10.1016/j.ejpe.2016.02.009.
  • DWC Innovations, Maximize Margins in Light Naptha Isoerization Unit https://www.dwcinnovations.com/maximize-margins-in-light-naphtha-isomerization/ (accessed Apr 10, 2021).
  • Honeywell Introduces Process to Convert 100% of Naphta into Cleaner Burning Euro V Gasoline https://www.digitalrefining.com/news/1006422/honeywell-introduces-process-to-convert-100-of-naphta-into-cleaner-burning-euro-v-gasoline#.YHI1jOhKg2y (accessed Apr 10, 2021).
  • Discover Isomalk-3: C4 Isomerization Process - Sulzer GTC Tech https://gtctech.com/technology-licensing/isomalk/isomalk-3/ (accessed Sep 24, 2021)
  • Valavarasu, G.; Sairam, B. Light Naphtha Isomerization Process: A Review. Pet. Sci. 5170 Technol. 2013, 31(6), 580–595. DOI: 10.1080/10916466.2010.504931.
  • Akhmedov, V. M.; Al‐Khowaiter, S. H. Recent Advances and Future Aspects in the Selective Isomerization of High N‐Alkanes. Catal. Rev. 2007, 49(1), 33–139. DOI: 10.1080/01614940601128427.
  • Santiesteban, J. G.; Calabro, D. C.; Chang, C. D.; Vartuli, J. C.; Fiebig, T. J.; Bastian, R. D. The Role of Platinum in Hexane Isomerization over Pt/FeOy/WOx/ZrO2. J. Catal. 2001, 202(1), 25–33. DOI: 10.1006/jcat.2001.3229.
  • Li, X.; Nagaoka, K.; Simon, L. J.; Lercher, J. A.; Wrabetz, S.; Jentoft, F. C.; Breitkopf, C.; Matysik, S.; Papp, H. Interaction between Sulfated Zirconia and Alkanes: Prerequisites for Active Sites - Formation and Stability of Reaction Intermediates. J. Catal. 2005, 230(1), 214–225. DOI: 10.1016/j.jcat.2004.11.045.
  • Dhar, A.; Vekariya, R. L.; Bhadja, P.; Weaver, G. W. N -alkane Isomerization by Catalysis—a Method of Industrial Importance: An Overview. Cogent Chem. 2018, 4(1), 1514686. DOI: 10.1080/23312009.2018.1514686.
  • Ono, Y.;. A Survey of the Mechanism in Catalytic Isomerization of Alkanes. Catal. Today. 2003, 81(1), 3–16. DOI: 10.1016/S0920-5861(03)00097-X.
  • Adeeva, V.; Liu, H. Y.; Xu, B. Q.; Sachtler, W. M. H. Alkane Isomerization over Sulfated Zirconia and Other Solid Acids. Top. Catal. 1998, 6(1/4), 61–76. DOI: 10.1023/a:1019114406219.
  • Guisnet, M. R.;. Model Reactions for Characterizing the Acidity of Solid Catalysts. Acc. Chem. Res. 1990, 23(11), 392–398. DOI: 10.1021/ar00179a008.
  • de Gauw, F. J. M. M.; van Grondelle, J.; van Santen, R. A. The Intrinsic Kinetics of N-Hexane Hydroisomerization Catalyzed by Platinum-Loaded Solid-Acid Catalysts. J. Catal. 2002, 206(2), 295–304. DOI: 10.1006/jcat.2001.3479.
  • Rabindran Jermy, B.; Khurshid, M.; Al-Daous, M. A.; Hattori, H.; Al-Khattaf, S. S. Optimizing Preparative Conditions for Tungstated Zirconia Modified with Platinum as Catalyst for Heptane Isomerization. Catal. Today. 2011, 164(1), 148–153. DOI: 10.1016/j.cattod.2010.10.022.
  • Barton, D. G.; Soled, S. L.; Iglesia, E. Solid Acid Catalysts Based on Supported Tungsten Oxides. Top. Catal. 1998, 6(1/4), 87–99. DOI: 10.1023/a:1019126708945.
  • Hattori, H.;. Molecular Hydrogen-Originated Protonic Acid Site. Elsevier Masson SAS. 2001, 138. DOI: 10.1016/s0167-2991(01)80008-2.
  • Karim, A. H.; Triwahyono, S.; Jalil, A. A.; Hattori, H. WO3 Monolayer Loaded on ZrO2: Property-Activity Relationship in n-Butane Isomerization Evidenced by Hydrogen Adsorption and IR Studies. Appl. Catal. Gen. 2012, 433-434, 49–57. DOI: 10.1016/j.apcata.2012.04.039.
  • Treese, S. A.; Pujadó, P. R.; Jones, D. S. J.Eds. Handbook of Petroleum Processing; Cham: Springer International Publishing. 2015. DOI: 10.1007/978-3-319-14529-7
  • Weyda, H.; Köhler, E. Modern Refining Concepts—an Update on Naphtha-Isomerization to Modern Gasoline Manufacture. Catal. Today. 2003, 81(1), 51–55. DOI: 10.1016/S0920-5861(03)00101-9.
  • Hidalgo, J.; Zbuzek, M.; Černý, R.; Jíša, P. Current Uses and Trends in Catalytic Isomerization, Alkylation and Etherification Processes to Improve Gasoline Quality. Open Chem. 2014, 12(1), 1–13. DOI: 10.2478/s11532-013-0354-9.
  • Abbasi, H.;. Thermal Regeneration and Decoking Optimization of Chlorinated Platinum/Alumina Catalysts for the Isomerization Process. Iran. J. Catal. 2020, 10(1), 33–45.
  • Jahangiri, M.; Salehirad, F.; Alijani, S. Preparation of Pt/Al2O3-Cl Catalyst and Investigation of Operating Variables Effects on Isomerization Reaction. J. Chem. Pet. Eng. 2018, 52(1), 13–21. DOI: 10.22059/jchpe.2018.233982.1198.
  • Mohammadrezaee, A.; Nemati Kharat, A. Combined Light Naphtha Isomerization and Naphthenic Ring Opening Reaction on Modified Platinum on Chlorinated Alumina Catalyst. React. Kinet. Mech. Catal. 2019, 126(1), 513–528. DOI: 10.1007/s11144-018-1490-1.
  • Shakun, A. N.; Fedorova, M. L. Isomerization of Light Gasoline Fractions: The Efficiency of Different Catalysts and Technologies. Catal. Ind. 2014, 6(4), 298–306. DOI: 10.1134/S2070050414040163.
  • Li, K.; Valla, J.; Garcia-Martinez, J. Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem. 2014, 6(1), 46–66. DOI: 10.1002/cctc.201300345.
  • Zecevic, J.; Vanbutsele, G.; de Jong, K. P.; Martens, J. A. Nanoscale Intimacy in Bifunctional Catalysts for Selective Conversion of Hydrocarbons. Nature. 2015, 528(7581), 245–248. DOI: 10.1038/nature16173.
  • Tamizhdurai, P.; Ramesh, A.; Krishnan, P. S.; Narayanan, S.; Shanthi, K.; Sivasanker, S. Effect of Acidity and Porosity Changes of Dealuminated Mordenite on N-Pentane, n-Hexane and Light Naphtha Isomerization. Microporous Mesoporous Mater. 2019, 287, 192–202. DOI: 10.1016/j.micromeso.2019.06.012.
  • Vajglová, Z.; Kumar, N.; Peurla, M.; Hupa, L.; Semikin, K.; Sladkovskiy, D. A.; Murzin, D. Y. Effect of the Preparation of Pt-Modified Zeolite Beta-Bentonite Extrudates on Their Catalytic Behavior in n -Hexane Hydroisomerization. Ind. Eng. Chem. Res. 2019, 58(25), 10875–10885. DOI: 10.1021/acs.iecr.9b01931.
  • van der Wal, L. I.; Oenema, J.; Smulders, L. C. J.; Samplonius, N. J.; Nandpersad, K. R.; Zečević, J.; de Jong, K. P. Control and Impact of Metal Loading Heterogeneities at the Nanoscale on the Performance of Pt/Zeolite Y Catalysts for Alkane Hydroconversion. ACS Catal. 2021, 11(7), 3842–3855. DOI: 10.1021/acscatal.1c00211.
  • Li, T.; Wang, W.; Feng, Z.; Bai, X.; Su, X.; Yang, L.; Jia, G.; Guo, C.; Wu, W. The Hydroisomerization of N-Hexane over Highly Selective Pd/ZSM-22 Bifunctional Catalysts: The Improvements of Metal-Acid Balance by Room Temperature Electron Reduction Method. Fuel. 2020, 272, 117717. DOI: 10.1016/j.fuel.2020.117717.
  • V.P. Kukhar; Patrylak, L.; Krylova, M.; V.P. Kukhar; Pertko, O.; V.P. Kukhar; Voloshyna, Y.; V.P. Kukhar; Yakovenko, A.; V.P. Kukhar. N-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite. Chem. Chem. Technol., 2020, 14 (2), 234–238. https://doi.org/10.23939/chcht14.02.234.
  • Al-Rawi, U. A.; Sher, F.; Hazafa, A.; Bilal, M.; Lima, E. C.; Al-Shara, N. K.; Jubeen, F.; Shanshool, J. Synthesis of Zeolite Supported Bimetallic Catalyst and Application in N-Hexane Hydro-Isomerization Using Supercritical CO2. J. Environ. Chem. Eng. 2021, 9(4), 105206. DOI: 10.1016/j.jece.2021.105206.
  • Li, L.; Shen, K.; Huang, X.; Lin, Y.; Liu, Y. SAPO-11 with Preferential Growth along the a-Direction as an Improved Active Catalyst in Long-Alkane Isomerization Reaction. Microporous Mesoporous Mater. 2021, 313, 110827. DOI: 10.1016/j.micromeso.2020.110827.
  • Kang, Y.; Rao, X.; Yuan, P.; Wang, C.; Wang, T.; Yue, Y. Al-Functionalized Mesoporous SBA-15 with Enhanced Acidity for Hydroisomerization of n-Octane. Fuel Process. Technol. 2021, 215, 106765. DOI: 10.1016/j.fuproc.2021.106765.
  • Hino, M.; Sakari Kobayashi, K. A. Reactions of Butane and Isobutane Catalyzed by Zirconium Oxide Treated with Sulfate Ion. Solid Superacid Catal. 1979, 101(21), 6439–6441.
  • Zalewski, D. J.; Alerasool, S.; Doolin, P. K. Characterization of Catalytically Active Sulfated Zirconia. Catal. Today. 1999, 53(3), 419–432. DOI: 10.1016/S0920-5861(99)00137-6.
  • Reddy, B. M.; Patil, M. K. Organic Syntheses and Transformations Catalyzed by Sulfated Zirconia. Chem. Rev. 2009, 109(6), 2185–2208. DOI: 10.1021/cr900008m.
  • Song, X.; A, S. Sulfated Zirconia-Based Strong Solid-Acid Catalysts : Recent Progress. Cat Rev. 1996, 38(3), 329‐412. DOI: 10.1080/01614949608006462.
  • Yadav, G. D.; Nair, J. J. Sulfated Zirconia and Its Modified Versions as Promising Catalysts for Industrial Processes. Microporous Mesoporous Mater. 1999, 33(1–3), 1–48. DOI: 10.1016/S1387-1811(99)00147-X.
  • Wang, P.; Zhang, J.; Wang, G.; Li, C.; Yang, C. Nature of Active Sites and Deactivation Mechanism for N-Butane Isomerization over Alumina-Promoted Sulfated Zirconia. J. Catal. 2016, 338, 124–134. DOI: 10.1016/j.jcat.2016.02.027.
  • Jentoft, F. C.; Hahn, A.; Kröhnert, J.; Lorenz, G.; Jentoft, R. E.; Ressler, T.; Wild, U.; Schlögl, R.; Häßner, C.; Köhler, K. Incorporation of Manganese and Iron into the Zirconia Lattice in Promoted Sulfated Zirconia Catalysts. J. Catal. 2004, 224(1), 124–137. DOI: 10.1016/j.jcat.2004.02.012.
  • Paál, Z.; Wild, U.; Muhler, M.; Manoli, J. M.; Potvin, C.; Buchholz, T.; Sprenger, S.; Resofszki, G. The Possible Reasons of Irreversible Deactivation of Pt/Sulfated Zirconia Catalysts: Structural and Surface Analysis. Appl. Catal. Gen. 1999, 188(1–2), 257–266. DOI: 10.1016/S0926-860X(99)00211-2.
  • Morterra, C.; Cerrato, G.; Bolis, V. Lewis and Brønsted Acidity at the Surface of Sulfate-Doped ZrO2 Catalysts. Catal. Today. 1993, 17(3), 505–515. DOI: 10.1016/0920-5861(93)80053-4.
  • Brown, A. S. C.; Hargreaves, J. S. J. Sulfated Metal Oxide Catalysts: Superactivity through Superacidity? Green Chem. 1999, 1(1), 17–20. DOI: 10.1039/a807963c.
  • Kustov, L. M.; Kazansky, V. B.; Figueras, F.; Tichit, D. Investigation of the Acidic Properties of ZrO2 Modified by SO2−4 Anions. J. Catal. 1994, 150(1), 143–149. DOI: 10.1006/jcat.1994.1330.
  • Li, X.; Nagaoka, K.; Simon, L. J.; Olindo, R.; Lercher, J. A. Mechanism of Butane Skeletal Isomerization on Sulfated Zirconia. J. Catal. 2005, 232(2), 456–466. DOI: 10.1016/j.jcat.2005.03.025.
  • Demirci, Ü. B.; Garin, F. From Bifunctional Site to Metal-Proton Adduct Site in Alkane Reforming Reactions on Sulphated-Zirconia-Supported Pt or Pd or Ir Catalysts. Catal. Lett. 2001, 76(1/2), 45–51. DOI: 10.1023/A:1016707621813.
  • Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. A Highly Active Solid Superacid Catalyst for N-Butane Isomerization: A Sulfated Oxide Containing Iron, Manganese and Zirconium. J. Chem. Soc. Chem. Commun. 1992, 02(22), 1645–1646. DOI: 10.1039/C39920001645.
  • Lange, F. C.; Cheung, T. K.; Gates, B. C. M.; Iron, C. Nickel, and Zinc as Promoters of Sulfated Zirconia for n-Butane Isomerization. Catal. Lett. 1996, 41(1–2), 95–99. DOI: 10.1007/BF00811719.
  • Cheung, T. K.; Lange, F. C.; Gates, B. C. Propane Conversion Catalyzed by Sulfated Zirconia, Iron- and Manganese-Promoted Sulfated Zirconia, and USY Zeolite. J. Catal. 1996, 159(1), 99–106. DOI: 10.1006/jcat.1996.0068.
  • Song, X.; Reddy, K. R.; Sayari, A. Effect of Pt and H2 on N-Butane Isomerization over Fe and Mn Promoted Sulfated Zirconia. J. Catal. 1996, 161(1), 206–210. DOI: 10.1006/jcat.1996.0178.
  • Hino, M.; Arata, K. Synthesis of Solid Superacid of Tungsten Oxide Supported on Zirconia and Its Catalytic Action for Reactions of Butane and Pentane. J. Chem. Soc. Chem. Commun. 1988, 18, 1259. doi: 10.1039/c39880001259.
  • Hidalgo, J. M.; Kaucký, D.; Bortnovsky, O.; Černý, R.; Sobalík, Z. Isomerization of C5–C7 Paraffins over a Pt/WO3–ZrO2 Catalyst Using Industrial Feedstock. Monatshefte Für Chem. - Chem. Mon. 2014, 145(9), 1407–1416. DOI: 10.1007/s00706-014-1231-8.
  • Tomasek, S.; Lónyi, F.; Valyon, J.; Hancsók, J.; Honorato, D.; Honorato, R.; Alves, C.; Sergio, D.; Piva, D. H.; Piva, R. H., et al. Selective Hydroisomerization of Isobutane to N-Butane over WO3-ZrO2 Supported Ni-Cu Alloy. Energy Convers. Manag. April, 2020, 213, 100367. DOI: 10.1007/s11172-020-2953-x.
  • Ciptonugroho, W.; Al-shaal, M. G.; Mensah, J. B.; Palkovits, R. One Pot Synthesis of WO x/Mesoporous-ZrO 2 Catalysts for the Production of Levulinic-Acid Esters. J. Catal. 2016, 340, 17–29. DOI: 10.1016/j.jcat.2016.05.001.
  • Barrera, A.; Montoya, J. A.; Viniegra, M.; Navarrete, J.; Espinosa, G.; Vargas, A.; Del Angel, P.; Pérez, G. Isomerization of N-Hexane over Mono- and Bimetallic Pd-Pt Catalysts Supported on ZrO2-Al2O3-WOx Prepared by Sol-Gel. Appl. Catal. Gen. 2005, 290(1–2), 1–2. DOI: 10.1016/j.apcata.2005.05.011.
  • Cortés-Jácome, M. A.; Angeles-Chavez, C.; López-Salinas, E.; Navarrete, J.; Toribio, P.; Toledo, J. A. Migration and Oxidation of Tungsten Species at the Origin of Acidity and Catalytic Activity on WO3-ZrO2 Catalysts. Appl. Catal. Gen. 2007, 318, 178–189. DOI: 10.1016/j.apcata.2006.11.019.
  • Hernández, M. L.; Montoya, J. A.; Del Angel, P.; Hernández, I.; Espinosa, G.; Llanos, M. E. Influence of the Synthesis Method on the Nanostructure and Reactivity of Mesoporous Pt/Mn-WOx-ZrO2 Catalysts. Catal. Today. 2006, 116(2), 169–178. DOI: 10.1016/j.cattod.2006.02.084.
  • He, G.; Zhang, R.; Zhao, Q.; Yang, S.; Jin, H.; Guo, X. Effect of the Cr2O3 Promoter on Pt/WO3-ZrO2 Catalysts for n-Heptane Isomerization. Catalysts. 2018, 8(11), 1–15. DOI: 10.3390/catal8110522.
  • Smolikov, M. D.; Shkurenok, V. A.; Kir’yanov, D. I.; Belyi, A. S. Active Surface Formation of Tungstated Zirconia Catalysts for N-Heptane Isomerization. Catal. Today. January 2019, 329, 63–70. DOI: 10.1016/j.cattod.2019.01.036.
  • Piva, D. H.; Piva, R. H.; Pereira, C. A.; Silva, D. S. A.; Montedo, O. R. K.; Morelli, M. R.; Urquieta-González, E. A. Facile Synthesis of WOx/ZrO2 Catalysts Using WO3·H2O Precipitate as Synthetic Precursor of Active Tungsten Species. Mater. Today Chem. 2020, 18. DOI: 10.1016/j.mtchem.2020.100367.
  • Martínez, A.; Prieto, G.; Arribas, M. A.; Concepción, P.; Sánchez-Royo, J. F. Influence of the Preparative Route on the Properties of WOx-ZrO2catalysts: A Detailed Structural, Spectroscopic, and Catalytic Study. J. Catal. 2007, 248(2), 288–302. DOI: 10.1016/j.jcat.2007.03.022.
  • Triwahyono, S.; Yamada, T.; Hattori, H.; Motomura, M.; Takeo, G.; Matsuo, H.; Nakamura, T. IR Study of Acid Sites on WO3-ZrO2. Journal of Neurology. 2003 March, 250(1), 75–81. doi:10.1016/S0926-860X(03)00303-X.
  • Scheithauer, M.; Grasselli, R. K.; Knözinger, H. Genesis and Structure of WO x /ZrO 2 Solid Acid Catalysts †. Langmuir. 1998, 14(11), 3019–3029. DOI: 10.1021/la971399g.
  • Baertsch, C. D.; Komala, K. T.; Chua, Y.; Iglesia, E. Genesis of Brønsted Acid Sites during Dehydration of 2-Butanol on Tungsten Oxide Catalysts. J. Catal. 2002, 205(1), 44–57. DOI: 10.1006/jcat.2001.3426.
  • Zhou, W.; Soultanidis, N.; Xu, H.; Wong, M. S.; Neurock, M.; Kiely, C. J.; Wachs, I. E. Nature of Catalytically Active Sites in the Supported WO 3 /ZrO 2 Solid Acid System: A Current Perspective. ACS Catalysis. 2017, 7(3), 2181–2198. DOI: 10.1021/acscatal.6b03697.
  • Barton, D.; Soled, S. L.; Meitzner, G. D.; Fuentes, G. A.; Iglesia, E. Structural and Catalytic Characterization of Solid Acids Based on Zirconia Modified by Tungsten Oxide. J. Catal. 1999, 181(1), 57–72. DOI: 10.1006/jcat.1998.2269.
  • Yue, C.; Zhu, X.; Rigutto, M.; Hensen, E. Acid Catalytic Properties of Reduced Tungsten and Niobium-Tungsten Oxides. Appl. Catal. B. 2015, 163, 370–381. DOI: 10.1016/j.apcatb.2014.08.008.
  • Ross-Medgaarden, E.; Knowles, W.; Kim, T.; Wong, M.; Zhou, W.; Kiely, C.; Wachs, I. New Insights into the Nature of the Acidic Catalytic Active Sites Present in ZrO2-Supported Tungsten Oxide Catalysts. J. Catal. 2008, 256(1), 108–125. DOI: 10.1016/j.jcat.2008.03.003.
  • Zhou, W.; Ross-Medgaarden, E. I.; Knowles, W. V.; Wong, M. S.; Wachs, I. E.; Kiely, C. J. Identification of Active Zr-WOx Clusters on a ZrO2 Support for Solid Acid Catalysts. Nat. Chem. 2009, 1(9), 722–728. DOI: 10.1038/nchem.433.
  • Del Angel, P.; Hernandez-Pichardo, M. L.; Montoya De La Fuente, J. A. Aberration-Corrected HRTEM Study of Mn-Doped Tungstated Zirconia Catalysts. Catal. Today. 2013, 212, 201–205. DOI: 10.1016/j.cattod.2012.09.025.
  • Barton, D. G.; Shtein, M.; Wilson, R. D.; Soled, S. L.; Iglesia, E. Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures. J. Phys. Chem. B. 1999, 103(4), 630–640. DOI: 10.1021/jp983555d.
  • Hernández-Pichardo, M. L.; Montoya, J. A.; Del Angel, P.; Vargas, A.; Navarrete, J. A Comparative Study of the WOx Dispersion on Mn-Promoted Tungstated Zirconia Catalysts Prepared by Conventional and High-Throughput Experimentation. Appl. Catal. Gen. 2008, 345(2), 233–240. DOI: 10.1016/j.apcata.2008.05.005.
  • Vaudagna, S. R.; Canavese, S. A.; Comelli, R. A.; Fı́goli, N. S. Platinum Supported WOx–ZrO2: Effect of Calcination Temperature and Tungsten Loading. Appl. Catal. Gen. 1998, 168(1), 93–111. DOI: 10.1016/S0926-860X(97)00343-8.
  • Kaucký, D.; Sobalík, Z.; Hidalgo, J. M.; Černý, R.; Bortnovský, O. Impact of Dopant Metal Ions in the Framework of Parent Zirconia on the N-Heptane Isomerization Activity of the Pt/WO3-ZrO2catalysts. J. Mol. Catal. Chem. 2016, 420, 107–114. DOI: 10.1016/j.molcata.2016.04.015.
  • Kuznetsova, L. I.; Kazbanova, A. V.; Kuznetsov, P. N. Textural Properties and Crystalline Structure of Tungstated Zirconia, a Catalyst for Isomerization of Lower Alkanes. Pet. Chem. 2012, 52(5), 341–345. DOI: 10.1134/S0965544112040056.
  • Kuznetsova, L. I.; Kazbanova, A. V.; Kuznetsov, P. N. Effect of Promoters on the Structure and Catalytic Properties of Tungstated Zirconia in N-Heptane Isomerization. Pet. Chem. 2013, 53(5), 322–325. DOI: 10.1134/S0965544112020119.
  • Kuznetsov, P. N.; Obukhova, A. V.; Kuznetsova, L. I.; Mikhlin, Y. L. A Study of Pt/WO42−/ZrO2 Catalyst Deactivation in the Hydroisomerization of Heptane and a Heptane–Benzene Mixture. Pet. Chem. 2017, 57(5), 403–409. DOI: 10.1134/S0965544117050073.
  • Obukhova, A. V.; Kuznetsova, L. I.; Kaskevich, E. S.; Kuznetsov, P. N.; Mikhlin, Y. L. Effect of Reduction on the State of the Surface Layer and Catalytic Properties of Pt/WO42-/ZrO2 in the Hydroisomerization of an n-Heptane–Benzene Mixture. Pet. Chem. 2019, 59(9), 994–1000. DOI: 10.1134/S0965544119090135.
  • Nie, Y.; Shang, S.; Xu, X.; Hua, W.; Yue, Y.; Gao, Z. In2O3-Doped Pt/WO3/ZrO2 as a Novel Efficient Catalyst for Hydroisomerization of n-Heptane. Appl. Catal. Gen. 2012, 433-434, 69–74. DOI: 10.1016/j.apcata.2012.04.040.
  • Triwahyono, S.; Jalil, A. A.; Azman, H. A.; Mamat, C. R. Isomerization of C5-C7 Linear Alkanes over WO3-ZRO2 under Helium Atmosphere. J. Teknol. 2015, 75(6), 119–125. DOI: 10.11113/jt.v75.5197.
  • Hernandez-Pichardo, M. L.; Fuente, J. A. M. D. L.; Angel, P. D.; Vargas, A.; Hernández, I.; González-Brambila, M. Optimization of Manganese Content by High-Throughput Experimentation of Pt/WO –ZrO2–Mn Catalysts. Catal. Commun. 2010, 11(5), 408–413. DOI: 10.1016/j.catcom.2009.11.010.
  • Hernandez-Pichardo, M. L.; Montoya De La Fuente, J. A.; Del Angel, P.; Vargas, A.; Navarrete, J.; Hernandez, I.; Lartundo, L.; González-Brambila, M. High-Throughput Study of the Iron Promotional Effect over Pt/WO x-ZrO 2 Catalysts on the Skeletal Isomerization of n-Hexane. Appl. Catal. Gen. 2012, 431-432, 69–78. DOI: 10.1016/j.apcata.2012.04.023.
  • Hernández-Pichardo, M. L.; Del Angel, P.; Montoya-de la Fuente, J. A. Influence of the Incorporation of Fe and Mn on the Nanostructure and Reactivity of Catalysts Based on Tungstated Zirconia. Catal. Today. August 2021, 360, 72–77. DOI: 10.1016/j.cattod.2019.09.008.
  • Vera-Iturriaga, J.; Madrigal, K.;Pichardo, M. L. H; Rodríguez, J. I.; Jimenez-Izal, E.; Montoya, A. A Size-Selective Method for Increasing the Performance of Pt Supported on Tungstated Zirconia Catalysts for Alkanes Isomerization: A Combined Experimental and Theoretical DFT Study. New J. Chem., 2021, 45, 10510–10523. https://doi.org/10.1039/D1NJ01725J.
  • Li, W.; Chi, K.; Liu, H.; Ma, H.; Qu, W.; Wang, C.; Lv, G.; Tian, Z. Skeletal Isomerization of N-Pentane: A Comparative Study on Catalytic Properties of Pt/WOx–ZrO2 and Pt/ZSM-22. Appl. Catal. Gen. 2017, 537, 59–65. DOI: 10.1016/j.apcata.2017.03.005.
  • Soultanidis, N.; Wong, M. S. Olefin Impurity Effect on N-Pentane Bimolecular Isomerization over WO x/ZrO2. Catal. Commun. 2013, 32, 5–10. DOI: 10.1016/j.catcom.2012.11.017.
  • Soultanidis, N.; Zhou, W.; Psarras, A. C.; Gonzalez, A. J.; Iliopoulou, E. F.; Kiely, C. J.; Wachs, I. E.; Wong, M. S. Relating N-Pentane Isomerization Activity to the Tungsten Surface Density of WOx/ZrO2. J. Am. Chem. Soc. 2010, 132(38), 13462–13471. DOI: 10.1021/ja105519y.
  • Triwahyono, S.; Yamada, T.; Hattori, H. Kinetic Study of Hydrogen Adsorption on Pt/WO3-ZrO2 and WO3-ZrO2. Appl. Catal. Gen. 2003, 250(1), 65–73. DOI: 10.1016/S0926-860X(03)00302-8.
  • Juanjuan, Z. H. A. N. G.; Yueqin, S. O. N. G.; Yifei, Z. H. A. N. G.; Xiaolong, Z. H. O. U.; Yaqing, J. I. N.; L, X. Effect of Crystallization of Hydrous Zirconia on the Isomerization Activity of Pt/WO3-ZrO2. Chin. J. Catal. 2010, 31(4), 374–376. DOI: 10.1016/S1872-2067(09)60054-1.
  • Hernández, M. L.; Montoya, J. A.; Hernández, I.; Viniegra, M.; Llanos, M. E.; Garibay, V.; Del Angel, P. Effect of the Surfactant on the Nanostructure of Mesoporous Pt/Mn/WO x/ZrO2 Catalysts and Their Catalytic Activity in the Hydroisomerization of n-Hexane. Microporous Mesoporous Mater. 2006, 89(1–3), 186–195. DOI: 10.1016/j.micromeso.2005.10.005.
  • Wang, P.; Feng, J.; Zhao, Y.; Wang, S.; Liu, J. MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization. ACS Appl. Mater. Interfaces. 2016, 8(36), 23755–23762. DOI: 10.1021/acsami.6b08057.
  • Hernandez-Pichardo, M. L.; Montoya de la Fuente, J. A.; Del Angel, P.; Vargas, A.; Reza, C. Study by High-Throughput Experimentation of the Effect of the Pretreatment and Precursors on the Catalytic Activity of Tungstated Zirconia Catalysts. Catal. Commun. 2009, 10(14), 1828–1834. DOI: 10.1016/j.catcom.2009.06.009.
  • Shkurenok, V. A.; Smolikov, M. D.; Yablokova, S. S.; Kir’Yanov, D. I.; Paukshtis, E. A.; Koscheev, S. V.; Gulyaeva, T. I.; Belyi, A. S. The Effect of Platinum Content and Electronic State in Pt/WO3/ZrO2 Catalysts on Isomerization of n-Heptane. Procedia Eng. 2016, 152, 94–100. DOI: 10.1016/j.proeng.2016.07.638.
  • Gauw, F.; Grondelle, J. M. M. D.; Van, J.; Santen, R.; Van, A. The Intrinsic Kinetics of n -Hexane Hydroisomerization Catalyzed by Platinum-Loaded Solid-Acid Catalysts. 2002, 304, 295–304. doi:10.1006/jcat.2001.3479
  • Lukinskas, P.; Kuba, S.; Spliethoff, B.; Grasselli, R. K.; Tesche, B.; Knözinger, H. Role of Promoters on Tungstated Zirconia Catalysts. Top. Catal. August 2003, 23(1/4), 163–173. DOI: 10.1023/A:1024840808217.
  • Wong, S. T.; Li, T.; Cheng, S.; Lee, J. F.; Mou, C. Y. Aluminum-Promoted Tungstated Zirconia Catalyst in n-Butane Isomerization Reaction. J. Catal. 2003, 215(1), 45–56. DOI: 10.1016/S0021-9517(02)00176-8.
  • Santiago-Ramírez, C. R.; Vera-Iturriaga, J.; Del Angel, P.; Manzo-Robledo, A.; Hernández-Pichardo, M. L.; Soto-Hernández, J. DEMS and RAMAN Study of the Monatomic Hydrogen Adsorption during Electro-Reduction of NO3- and NO2- at Pt Nanoparticles Supported at W18O49-ZrO2-C Nanocomposite. Appl. Catal. B. 2021, June 2020, 282, 119545. DOI: 10.1016/j.apcatb.2020.119545.
  • Scheithauer, M.; Jentoft, R. E.; Gates, B. C.; Knözinger, H. N-Pentane Isomerization Catalyzed by Fe- and Mn-Containing Tungstated Zirconia Characterized by Raman Spectroscopy. J. Catal. 2000, 191(2), 271–274. DOI: 10.1006/jcat.1999.2771.
  • Vera-Iturriaga, J.; Madrigal, K.; Pichardo, M. L. H.; Rodríguez, J. I.; Jimenez-Izal, E.; Montoya, A. A Size-Selective Method for Increasing the Performance of Pt Supported on Tungstated Zirconia Catalysts for Alkanes Isomerization: A Combined Experimental and Theoretical DFT Study. New J. Chem. 2021, 45, 10510–10523. DOI: 10.1039/D1NJ01725J.
  • Parsafard, N.; Garmroodi, A.; Mirzaei, S. Gas‐phase Catalytic Isomerization of n ‐heptane Using Pt/(CrO x /ZrO 2)‐HMS Catalysts: A Kinetic Modeling. Int. J. Chem. Kinet. 2021, 53(8), 971–981. DOI: 10.1002/kin.21497.
  • Sammoury, H.; Toufaily, J.; Cherry, K.; Pouilloux, Y.; Hamieh, T.; Pinard, L. Impact of Chain Length on the Catalytic Performance in Hydroisomerization of N-Alkanes Over Commercial and Alkaline Treated *BEA Zeolites. Catal. Lett. 2018, 148(10), 3051–3061. DOI: 10.1007/s10562-018-2502-5.
  • Enikeeva, L. V.; Faskhutdinov, A. G.; Koledina, K. F.; Faskhutdinova, R. I.; Gubaydullin, I. M. Modeling and Optimization of the Catalytic Isomerization of the Pentane-Hexane Fraction with Maximization of Individual High-Octane Components Yield. React. Kinet. Mech. Catal. 2021, 133(2), 879–895. DOI: 10.1007/s11144-021-02020-w.
  • Díaz Velázquez, H.; Likhanova, N.; Aljammal, N.; Verpoort, F.; Martínez-Palou, R. New Insights into the Progress on the Isobutane/Butene Alkylation Reaction and Related Processes for High-Quality Fuel Production. A Critical Review. Energy Fuels. 2020, 34(12), 15525–15556. DOI: 10.1021/acs.energyfuels.0c02962.
  • Kore, R.; Scurto, A. M.; Shiflett, M. B. Review of Isobutane Alkylation Technology Using Ionic Liquid-Based Catalysts—Where Do We Stand? Ind. Eng. Chem. Res. 2020, 59(36), 15811–15838. DOI: 10.1021/acs.iecr.0c03418.
  • Albright, L. F.;. Alkylation of Isobutane with C 3 −C 5 Olefins To Produce High-Quality Gasolines: Physicochemical Sequence of Events. Ind. Eng. Chem. Res. 2003, 42(19), 4283–4289. DOI: 10.1021/ie0303294.
  • Hommeltoft, S. I. I. A.;. Appl. Catal. Gen. 2001, 221(1–2), 421–428. DOI: 10.1016/S0926-860X(01)00817-1.
  • Linn, C. B.; Grosse, A. V. Alkylation of Isoparaffins by Olefins in Presence of Hydrogen Fluoride. Ind. Eng. Chem. 1945, 37(10), 924–929. DOI: 10.1021/ie50430a012.
  • Miranda, A. D.; Gallo, M.; Domínguez, J. M.; Sánchez-Badillo, J.; Martínez-Palou, R. Experimental and Theoretical Assessment of the Interactions of Ionic Liquids (ILs) with Fluoridated Compounds (HF, R-F) in Organic Medium. J. Mol. Liq. 2019, 276, 779–793. DOI: 10.1016/j.molliq.2018.12.040.
  • Xin, Y.; Hu, Y.; Li, M.; Chi, K.; Zhang, S.; Gao, F.; Jiang, S.; Wang, Y.; Ren, C.; Li, G. Isobutane Alkylation Catalyzed by H2SO4: Effect of H2SO4 Acid Impurities on Alkylate Distribution. Energy Fuels. 2021, 35(2), 1664–1676. DOI: 10.1021/acs.energyfuels.0c03453.
  • Furimsky, E.;. Spent Refinery Catalysts: Environment, Safety and Utilization. Catal. Today. 1996, 30(4), 223–286. DOI: 10.1016/0920-5861(96)00094-6.
  • Clifton, R. A.;. Natural and Synthetic Zeolites; Department of the Interior, Bureau of Mines:U.S., 1987.
  • Zhu, J.; Meng, X.; Xiao, F. Mesoporous Zeolites as Efficient Catalysts for Oil Refining and Natural Gas Conversion. Front. Chem. Sci. Eng. 2013, 7(2), 233–248. DOI: 10.1007/s11705-013-1329-2.
  • Zeolites and Related Microporous Materials: State of the Art 1994, Volume 84 - 1st Edition https://www.elsevier.com/books/zeolites-and-related-microporous-materials-state-of-the-art-1994/holderich/978-0-444-81847-8 (accessed Apr 4, 2021).
  • Chen, Z.; Gao, F.; Ren, K.; Wu, Q.; Luo, Y.; Zhou, H.; Zhang, M.; Xu, Q. Mechanism of Byproducts Formation in the Isobutane/Butene Alkylation on HY Zeolites. RSC Adv. 2018, 8(7), 3392–3398. DOI: 10.1039/C7RA12629H.
  • Khadzhiev, S. N.; Gerzeliev, I. M.; Vedernikov, O. S.; Kleymenov, A. V.; Kondrashev, D. O.; Oknina, N. V.; Kuznetsov, S. E.; Saitov, Z. A.; Baskhanova, M. N. A New Alkylate Production Process. Catal. Ind. 2017, 9(3), 198–203. DOI: 10.1134/S2070050417030059.
  • Singhal, S.; Agarwal, S.; Arora, S.; Singhal, N.; Kumar, A. Solid Acids: Potential Catalysts for Alkene–Isoalkane Alkylation. Catal. Sci. Technol. 2017, 7(24), 5810–5819. DOI: 10.1039/C7CY01554B.
  • Dalla Costa, B. O.; Querini, C. A. Isobutane Alkylation with Butenes in Gas Phase. Chem. Eng. J. 2010, 162(2), 829–835. DOI: 10.1016/j.cej.2010.06.038.
  • Feller, A.; Guzman, A.; Zuazo, I.; Lercher, J. A. On the Mechanism of Catalyzed Isobutane/Butene Alkylation by Zeolites. J. Catal. 2004, 224(1), 80–93. DOI: 10.1016/j.jcat.2004.02.019.
  • Salinas, A. L. M.; Sapaly, G.; Taarit, Y. B.; Vedrine, J. C.; Essayem, N. Continuous Supercritical IC4/C4=iC4/C4= Alkylation over H-Beta and H-USYInfluence of the Zeolite Structure. Appl. Catal. Gen. 2008, 336(1–2), 61–71. DOI: 10.1016/j.apcata.2007.09.020.
  • Rosenbach, N., Jr; Mota, C. J. A. Isobutane/2-Butene Alkylation with Zeolite Y without BrÆnsted Acidity. J. Braz. Chem. Soc. 2005, 16(4), 691–694. DOI: 10.1590/S0103-50532005000500002.
  • Gerzeliev, I. M.; Temnikova, V. A.; Maksimov, A. L.; Khadzhiev, S. N. Regeneration of Zeolite Catalyst for Isobutane Alkylation with Olefins. Pet. Chem. 2018, 58(10), 827–832. DOI: 10.1134/S0965544118100067.
  • Sekine, Y.; Ichikawa, Y.; Tajima, Y.; Nakabayashi, K.; Matsukata, M.; Kikuchi, E. Alkylation of Isobutane by 1-Butene over H-Beta Zeolite in CSTR (Part 1) Effects of Zeolite-Structures and Synthesis Methods on Alkylation Performance. J. Jpn. Pet. Inst. 2012, 55(5), 299–307. DOI: 10.1627/jpi.55.299.
  • Sekine, Y.; Tajima, Y.; Ichikawa, Y.; Matsukata, M.; Kikuchi, E. Alkylation of Isobutane by 1-Butene over H-Beta Zeolite in CSTR (Part 2) Deactivation Mechanism of Zeolite Catalyst and Optimization of CSTR Conditions. J. Jpn. Pet. Inst. 2012, 55(5), 308–318. DOI: 10.1627/jpi.55.308.
  • Yuferova, E. A.; Devyatkov, S. Y.; Fedorov, S. P.; Semikin, K. V.; Sladkovskii, D. A.; Kuzichkin, N. V. Hybrid Catalysts Based on Sulfated Zirconium Dioxide and H-Beta Zeolite for Alkylation of Isobutane with Isobutylene. Russ. J. Appl. Chem. 2017, 90(10), 1605–1613. DOI: 10.1134/S1070427217100081.
  • Ro, Y.; Gim, M. Y.; Lee, J. W.; Lee, E. J.; Song, I. K. Alkylation of Isobutane/2-Butene Over Modified FAU-Type Zeolites. J. Nanosci. Nanotechnol. 2018, 18(9), 6547–6551. DOI: 10.1166/jnn.2018.15665.
  • Zhang, J.; Huang, C.; Chen, B.; Ren, P.; Pu, M. Isobutane/2-Butene Alkylation Catalyzed by Chloroaluminate Ionic Liquids in the Presence of Aromatic Additives. J. Catal. 2007, 249(2), 261–268. DOI: 10.1016/j.jcat.2007.04.019.
  • Al-Kinany, M. C.;.; Al-Drees, S. A.; Al -Megren, H. A.; Alshihri, S. M.; Alghilan, E. A.; Al-Shehri, F. A.; Al-Hamdan, A. S.; Alghamdi, A. J.; Al-Dress, S. D. High-Quality Fuel Distillates Produced from Oligomerization of Light Olefin over Supported Phosphoric Acid on H-Zeolite-Y. Appl. Petrochem. Res. 2019, 9(1), 35–45. DOI: 10.1007/s13203-019-0225-1.
  • Jiang, J.; Yu, J.; Corma, A. Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angew. Chem. Int. Ed. 2010, 49(18), 3120–3145. DOI: 10.1002/anie.200904016.
  • Aldossary, M.;. The Alkylation of 2-Butene with Isobutane over Large-Pore Zeolites. 225.
  • Zhou, S.; Zhang, C.; Li, Y.; Shao, B.; Luo, Y.; Shu, X. A Facile Way to Improve Zeolite Y-Based Catalysts’ Properties and Performance in the Isobutane–Butene Alkylation Reaction. RSC Adv. 2020, 10(49), 29068–29076. DOI: 10.1039/D0RA03762A.
  • Zhang, X.; Zhang, R.; Meng, X.; Liu, H.; Liu, Z.; Ma, H.; Xu, C.; Klusener, P. A. A. Deactivation Mechanism and Activity-Recovery Approach of Composite Ionic Liquids for Isobutane Alkylation. Appl. Catal. Gen. 2018, 557, 64–71. DOI: 10.1016/j.apcata.2018.03.010.
  • Liu, C.; van Santen, R. A.; Poursaeidesfahani, A.; Vlugt, T. J. H.; Pidko, E. A.; Hensen, E. J. M. Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study. ACS Catal. 2017, 7(12), 8613–8627. DOI: 10.1021/acscatal.7b02877.
  • Ren, K.; Long, J.; Ren, Q.; Li, Y.; Dai, Z. A Multi-Scale Computational Study on the Mechanism of Protonation of Isobutene and 2-Butene over HY Zeolite. Mol Simul. 2017, 43(13–16), 1348–1355. DOI: 10.1080/08927022.2017.1355552.
  • Alkylations. In Hydrocarbon Chemistry, Two Volume Set; Arpad Molnar, George A. Olah, G. K. Surya Prakash., Eds.; Wiley: Hoboken,USA, 2017, 305–387. DOI:10.1002/9781119390541.ch5.
  • Lavrenov, A. V.; Bogdanets, E. N.; Duplyakin, V. K. Solid Acid Alkylation of Isobutane by Butenes: The Path from the Ascertainment of the Reasons for Fast Deactivation to the Technological Execution of the Process. Catal. Ind. 2009, 1(1), 50–60. DOI: 10.1134/S2070050409010073.
  • Blasco, T.; Corma, A.; Martínez, A.; Martínez-Escolano, P. Supported Heteropolyacid (HPW) Catalysts for the Continuous Alkylation of Isobutane with 2-Butene: The Benefit of Using MCM-41 with Larger Pore Diameters. J. Catal. 1998, 177(2), 306–313. DOI: 10.1006/jcat.1998.2105.
  • Baronetti, G.; Thomas, H.; Querini, C. A. Wells–Dawson Heteropolyacid Supported on Silica: Isobutane Alkylation with C4 Olefins. Appl. Catal. Gen. 2001, 217(1–2), 131–141. DOI: 10.1016/S0926-860X(01)00576-2.
  • Sarsani, V. R.; Wang, Y.; Subramaniam, B. Toward Stable Solid Acid Catalysts for 1-Butene + Isobutane Alkylation: Investigations of Heteropolyacids in Dense CO 2 Media. Ind. Eng. Chem. Res. 2005, 44(16), 6491–6495. DOI: 10.1021/ie048911v.
  • Rørvik, T.; Dahl, I. M.; Mostad, H. B.; Ellestad, O. H. Nafion-H as Catalyst for Isobutane/2-Butene Alkylation Compared with a Cerium Exchanged Y Zeolite. Catal. Lett. 1995, 33(1–2), 127–134. DOI: 10.1007/BF00817052.
  • Botella, P.; Corma, A.; López-Nieto, J. M. The Influence of Textural and Compositional Characteristics of Nafion/Silica Composites on Isobutane/2-Butene Alkylation. J. Catal. 1999, 185(2), 371–377. DOI: 10.1006/jcat.1999.2502.
  • Kumar, P.; Vermeiren, W.; Dath, J.-P.; Hoelderich, W. F. Alkylation of Raffinate II and Isobutane on Nafion Silica Nanocomposite for the Production of Isooctane. Energy Fuels. 2006, 20(2), 481–487. DOI: 10.1021/ef050264c.
  • Shen, W.; Gu, Y.; Xu, H.; Dubé, D.; Kaliaguine, S. Alkylation of Isobutane/1-Butene on Methyl-Modified Nafion/SBA-15 Materials. Appl. Catal. Gen. 2010, 377(1–2), 1–8. DOI: 10.1016/j.apcata.2009.12.012.
  • Smirnova, M. Y.; Toktarev, A. V.; Ayupov, A. B.; Echevsky, G. V. Sulfated Alumina and Zirconia in Isobutane/Butene Alkylation and n-Pentane Isomerization: Catalysis, Acidity, and Surface Sulfate Species. Catal. Today. 2010, 152(1–4), 17–23. DOI: 10.1016/j.cattod.2009.08.013.
  • Vlasov, E. A.; Myakin, S. V.; Sychov, M. M.; Aho, A.; Postnov, A. Y.; Mal’tseva, N. V.; Dolgashev, A. O.; Omarov, S. O.; Murzin, D. Y. On Synthesis and Characterization of Sulfated Alumina–Zirconia Catalysts for Isobutene Alkylation. Catal. Lett. 2015, 145(9), 1651–1659. DOI: 10.1007/s10562-015-1575-7.
  • Li, S.; Cao, J.; Liu, Y.; Feng, X.; Chen, X.; Yang, C. Effect of Acid Strength on the Formation Mechanism of Tertiary Butyl Carbocation in Initial C4 Alkylation Reaction over H-BEA Zeolite: A Density Functional Theory Study. Catal. Today. 2020, 355, 171–179. DOI: 10.1016/j.cattod.2019.05.060.
  • Reyniers, M.-F.; Beirnaert, H.; Marin, G. B. Influence of Coke Formation on the Conversion of Hydrocarbons. Appl. Catal. Gen. 2000, 202(1), 49–63. DOI: 10.1016/S0926-860X(00)00450-6.
  • Martínez-Palou, R.;. Microwave-Assisted Synthesis Using Ionic Liquids. Mol. Divers. 2010, 14(1), 3–25. DOI: 10.1007/s11030-009-9159-3.
  • Marcus, Y.;. Ionic Liquid Properties: From Molten Salts to RTILs; Springer International Publishing: Switzerland, 2016. DOi: 10.1007/978-3-319-30313-0.
  • Cvjetko Bubalo, M.; Radošević, K.; Radojčić Redovniković, I.; Halambek, J.; Gaurina Srček, V. A Brief Overview of the Potential Environmental Hazards of Ionic Liquids. Ecotoxicol. Environ. Saf. 2014, 99, 1–12. DOI: 10.1016/j.ecoenv.2013.10.019.
  • Jordan, A.; Gathergood, N. Biodegradation of Ionic Liquids – a Critical Review. Chem. Soc. Rev. 2015, 44(22), 8200–8237. DOI: 10.1039/C5CS00444F.
  • Pârvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107(6), 2615–2665. DOI: 10.1021/cr050948h.
  • Vekariya, R. L.;. A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations. J. Mol. Liq. 2017, 227, 44–60. DOI: 10.1016/j.molliq.2016.11.123.
  • Salah, H. B.; Nancarrow, P.; Al-Othman, A. Ionic Liquid-Assisted Refinery Processes – A Review and Industrial Perspective. Fuel. 2021, 302, 121195. DOI: 10.1016/j.fuel.2021.121195.
  • Martínez-Palou, R.; Aburto, J. Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions. In Ionic Liquids - Current State of the Art; H. Scott, Ed., 305-326. IntechOpen: USA, 2015. https://www.intechopen.com/chapters/48469.
  • Palou, R. M.; Olivares-Xomelt, O.; Likhanova, V.; N, Environmentally Friendly Corrosion Inhibitors. In Developements in Corrosion Protection; M. Aliofkhazraei, Ed. IntechOpen, Croatia 2014. https://www.intechopen.com/chapters/46238.
  • Martínez-Palou, R.; Likhanova, N. V.; Olivares-Xometl, O. Supported Ionic Liquid Membranes for Separations of Gases and Liquids: An Overview. Pet. Chem. 2014, 54(8), 595–607. DOI: 10.1134/S0965544114080106.
  • Martínez-Palou, R.; Luque, R. Applications of Ionic Liquids in the Removal of Contaminants from Refinery Feedstocks: An Industrial Perspective. Energy Env. Sci. 2014, 7(8), 2414–2447. DOI: 10.1039/C3EE43837F.
  • Singh, S. K.; Savoy, A. W. Ionic Liquids Synthesis and Applications: An Overview. J. Mol. Liq. 2020, 297, 112038. DOI: 10.1016/j.molliq.2019.112038.
  • Greer, A. J.; Jacquemin, J.; Hardacre, C. Industrial Applications of Ionic Liquids. Molecules. 2020, 25(21), 5207. DOI: 10.3390/molecules25215207.
  • Nasirpour, N.; Mohammadpourfard, M.; Zeinali Heris, S. Ionic Liquids: Promising Compounds for Sustainable Chemical Processes and Applications. Chem. Eng. Res. Des. 2020, 160, 264–300. DOI: 10.1016/j.cherd.2020.06.006.
  • Ionikylation | Well Resources https://www.wellresources.ca/ionikylation (accessed Apr 13, 2021).
  • PetroChina’s Ionikylation process based on ionic liquid–Lanzhou Greenchem ILs (Center for Greenchemistry and catalysis), LICP, CAS. Ionic Liquids http://www.ionike.com/en/application/2014-04-24/40.html (accessed Apr 13, 2021).
  • Safe and sustainable alkylation: Performance and update on composite ionic liquid alkylation technology https://www.hydrocarbonprocessing.com/magazine/2020/april-2020/special-focus-clean-fuels/safe-and-sustainable-alkylation-performance-and-update-on-composite-ionic-liquid-alkylation-technology (accessed Apr 13, 2021).
  • Liu, Y.; Hu, R.; Xu, C.; Su, H. Alkylation of Isobutene with 2-Butene Using Composite Ionic Liquid Catalysts. Appl. Catal. Gen. 2008, 346(19–20), 189–193. DOI: 10.1016/j.apcata.2008.05.024.
  • Sinopec successfully starts-up largest composite ionic liquid alkylation unit https://www.hydrocarbonprocessing.com/news/2019/04/sinopec-successfully-starts-up-largest-composite-ionic-liquid-alkylation-unit (accessed Apr 13, 2021).
  • UOP Home https://uop.honeywell.com/content/uop/en/us/home.html (accessed Apr 20, 2021).
  • Wang, H.; Meng, X.; Zhao, G.; Zhang, S. Isobutane/Butene Alkylation Catalyzed by Ionic Liquids: A More Sustainable Process for Clean Oil Production. Green Chem. 2017, 19(6), 1462–1489. DOI: 10.1039/C6GC02791A.
  • Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N. Ionic Liquids: Green Catalysts for Alkene-Isoalkane Alkylation. J. Mol. Liq. 2019, 285, 299–313. DOI: 10.1016/j.molliq.2019.03.145.
  • Harris, T. V.; Driver, M.; Elomari, S.; Timken, H.-K. C.; Alkylation Process Using an Alkyl Halide Promoted Ionic Liquid Catalyst. US20080142413A1. June 19, 2008.
  • Luo, H.; Ahmed, M. Ionic Liquid Catalyzed Alkylation Processes & Systems. US20130066130A1. March 14, 2013
  • Elomari, S.; Timken, H.-K. C. Isomerization of Butene in the Ionic Liquid-Catalyzed Alkylation of Light Isoparaffins and Olefins. US20080146858A1, June 19, 2008.
  • Xiao Ying, L.; Zhigong, Z.; Ronghui, S.; Lei, P. Alkylated Gasoline Preparation Method Based on Ionic Liquid Catalyst; CN105505450A, April 20, 2016.
  • Shiwei, L.; Lu, L.; Shitao, Y.; Congxia, X.; Fusheng, L.; Chuangang, C. Method for preparing gasoline alkylate by catalyzing reaction of isobutane and C4 olefin; CN103923695A, July 16, 2014.
  • Dahai, X.; Sh. Niu, L. S.; Ch. Guang, Z. G. Method for preparing alkylate by modifying concentrated sulfuric acid by using trifluoroethanol or ionic liquid as assistant; CN102134507B, May 20, 2015.
  • Amarasekara, A. S.;. Acidic Ionic Liquids. Chem. Rev. 2016, 116(10), 6133–6183. DOI: 10.1021/acs.chemrev.5b00763.
  • Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108(1), 206–237. DOI: 10.1021/cr068040u.
  • Vafaeezadeh, M.; Alinezhad, H. Brønsted Acidic Ionic Liquids: Green Catalysts for Essential Organic Reactions. J. Mol. Liq. 2016, 218, 95–105. DOI: 10.1016/j.molliq.2016.02.017.
  • Cui, P.; Zhao, G.; Ren, H.; Huang, J.; Zhang, S. Ionic Liquid Enhanced Alkylation of Iso-Butane and 1-Butene. Catal. Today. 2013, 200, 30–35. DOI: 10.1016/j.cattod.2012.06.008.
  • Bui, T. L. T.; Korth, W.; Jess, A. Influence of Acidity of Modified Chloroaluminate Based Ionic Liquid Catalysts on Alkylation of Iso-Butene with Butene-2. Catal. Commun. 2012, 25, 118–124. DOI: 10.1016/j.catcom.2012.03.018.
  • Tang, S.; Scurto, A. M.; Subramaniam, B. Improved 1-Butene/Isobutane Alkylation with Acidic Ionic Liquids and Tunable Acid/Ionic Liquid Mixtures. J. Catal. 2009, 268(2), 243–250. DOI: 10.1016/j.jcat.2009.09.022.
  • Wang, A.; Zhao, G.; Liu, F.; Ullah, L.; Zhang, S.; Zheng, A. Anionic Clusters Enhanced Catalytic Performance of Protic Acid Ionic Liquids for Isobutane Alkylation. Ind. Eng. Chem. Res. 2016, 55(30), 8271–8280. DOI: 10.1021/acs.iecr.6b00768.
  • Sun, W.; Zheng, W.; Xie, W.; Zhao, L. Understanding Structure–Property Relationship of SO 3 H-Functionalized Ionic Liquids Together with Sulfuric Acid in Catalyzing Isobutane Alkylation with C4 Olefin. Ind. Eng. Chem. Res. 2018, acs.iecr.8b03923. DOI: 10.1021/acs.iecr.8b03923.
  • Zheng, W.; Huang, C.; Sun, W.; Zhao, L. Microstructures of the Sulfonic Acid-Functionalized Ionic Liquid/Sulfuric Acid and Their Interactions: A Perspective from the Isobutane Alkylation. J. Phys. Chem. B. 2018, 122(4), 1460–1470. DOI: 10.1021/acs.jpcb.7b09755.
  • Yu, F.-L.; Li, G.-X.; Gu, Y.-L.; Xie, C.-X.; Yuan, B.; Yu, S.-T. Preparation of Alkylate Gasoline in Polyether-Based Acidic Ionic Liquids. Catal. Today. 2018, 310, 141–145. DOI: 10.1016/j.cattod.2017.05.085.
  • Estager, J.; Holbrey, J. D.; Swadźba-Kwaśny, M.; Boukezoula, T. F.; Bencheikh, L. Halometallate Ionic Liquids – Revisited. Chem. Soc. Rev. 2014, 43(3), 847–886. DOI: 10.1039/C3CS60310E.
  • Kore, R.; Berton, P.; Kelley, S. P.; Aduri, P.; Katti, S. S.; Rogers, R. D. Group IIIA Halometallate Ionic Liquids: Speciation and Applications in Catalysis. ACS Catal. 2017, 7(10), 7014–7028. DOI: 10.1021/acscatal.7b01793.
  • Zhang, J.; Huang, C.; Chen, B.; Li, J.; Li, Y. Alkylation of Isobutane and Butene Using Chloroaluminate Imidazolium Ionic Liquid as Catalyst: Effect of Organosulfur Compound Additive. Korean J. Chem. Eng. 2008, 25(5), 982–986. DOI: 10.1007/s11814-008-0159-2.
  • Chauvin, Y.; Hirschauer, A.; Olivier, H. Alkylation of Isobutane with 2-Butene Using 1-Butyl-3-Methylimidazolium Chloride—Aluminium Chloride Molten Salts as Catalysts. J. Mol. Catal. 1994, 92(2), 155–165. DOI: 10.1016/0304-5102(94)00065-4.
  • Huang, C.-P.; Liu, Z.-C.; Xu, C.-M.; Chen, B.-H.; Liu, Y.-F. Effects of Additives on the Properties of Chloroaluminate Ionic Liquids Catalyst for Alkylation of Isobutane and Butene. Appl. Catal. Gen. 2004, 277(1–2), 41–43. DOI: 10.1016/j.apcata.2004.08.019.
  • Pöhlmann, F.; Schilder, L.; Korth, W.; Jess, A. Liquid Phase Isobutane/2-Butene Alkylation Promoted by Hydrogen Chloride Using Lewis Acidic Ionic Liquids. ChemPlusChem. 2013, 78(6), 570–577. DOI: 10.1002/cplu.201300035.
  • Zheng, W.; Xie, W.; Sun, W.; Zhao, L. Modeling of the Interfacial Behaviors for the Isobutane Alkylation with C4 Olefin Using Ionic Liquid as Catalyst. Chem. Eng. Sci. 2017, 166, 42–52. DOI: 10.1016/j.ces.2017.02.049.
  • Zheng, W.; Wang, H.; Xie, W.; Zhao, L.; Sun, W. Understanding Interfacial Behaviors of Isobutane Alkylation with C4 Olefin Catalyzed by Sulfuric Acid or Ionic Liquids. AIChE J. 2018, 64(3), 950–960. DOI: 10.1002/aic.15984.
  • Hu, P.; Wu, Z.; Wang, J.; Huang, Y.; Deng, Y.; Zhou, S. Analysis of Long Term Catalytic Performance for Isobutane Alkylation Catalyzed by NMA–AlCl3 Based Ionic Liquid Analog. Chin. J. Chem. Eng. 2019, 27(8), 1857–1862. DOI: 10.1016/j.cjche.2018.11.020.
  • Hommeltoft, S. I.; Miller, S. J.; Pradhan, A. United States Patent: 7919664 - Process for Producing a Jet Fuel. 7919664, April 5, 2011.
  • Liu, Y.; Wang, L.; Li, R.; Hu, R. Reaction Mechanism of Ionic Liquid Catalyzed Alkylation: Alkylation of 2-Butene with Deuterated Isobutene. J. Mol. Catal. Chem. 2016, 421, 29–36. DOI: 10.1016/j.molcata.2016.05.005.
  • Xing, X.; Zhao, G.; Cui, J. C., (III). Ionic Liquids: Synthesis, Acidity Determination and Their Catalytic Performances for Isobutane Alkylation. Sci. China Chem. 2012, 55(8), 1542–1547. DOI: 10.1007/s11426-012-4650-6.
  • Liu, Y.; Li, R.; Sun, H.; Hu, R. Effects of Catalyst Composition on the Ionic Liquid Catalyzed Isobutane/2-Butene Alkylation. J. Mol. Catal. Chem. 2015, 398, 133–139. DOI: 10.1016/j.molcata.2014.11.020.
  • Xing, X.; Zhao, G.; Cui, J.; Zhang, S. Isobutane Alkylation Using Acidic Ionic Liquid Catalysts. Catalysis Communications. 2012, 26, 68–71. DOI: 10.1016/j.catcom.2012.04.022.
  • Cong, Y.; Liu, Y.; Hu, R. Isobutane/2-Butene Alkylation Catalyzed by Strong Acids in the Presence of Ionic Liquid Additives. Pet. Sci. Technol. 2014, 32(16), 1981–1987. DOI: 10.1080/10916466.2012.742540.
  • Liu, Y.; Wu, G.; Pang, X.; Hu, R. Kinetics Study on Alkylation of Isobutane with Deuterated 2-Butene in Composite Ionic Liquids. Chem. Eng. J. 2020, 387, 123407. DOI: 10.1016/j.cej.2019.123407.
  • Liu, Z.; Xu, C. N.; C, C. N.; Zhang, R.; Meng, C. N.; X, C. N. United States Patent: 9096487 - Alkylation Method Using Ionic Liquid as Catalyst. 9096487, August 4, 2015.
  • Zheng, W.; Li, D.; Sun, W.; Zhao, L. Multi-Scale Modeling of Isobutane Alkylation with 2-Butene Using Composite Ionic Liquids as Catalyst. Chemical Engineering Science. 2018, 186, 209–218. DOI: 10.1080/08843759108942250.
  • Liu, Y.; Wu, G.; Hu, R.; Gao, G. Effects of Aromatics on Ionic Liquids for C4 Alkylation Reaction: Insights from Scale-up Experiment and Molecular Dynamics Simulation. Chem. Eng. J. 2020, 402, 126252. DOI: 10.1016/j.cej.2020.126252.
  • Wu, G.; Liu, Y.; Liu, G.; Hu, R.; Gao, G. Role of Aromatics in Isobutane Alkylation of Chloroaluminate Ionic Liquids: Insights from Aromatic − Ion Interaction. J. Catal. 2021, 396, 54–64. DOI: 10.1016/j.jcat.2021.01.037.
  • Bui, T. L. T.; Korth, W.; Aschauer, S.; Jess, A. Alkylation of Isobutane with 2-Butene Using Ionic Liquids as Catalyst. Green Chem. 2009, 11(12), 1961. 1961. DOI: 10.1039/b913872b.
  • Liu, S.; Chen, C.; Yu, F.; Li, L.; Liu, Z.; Yu, S.; Xie, C.; Liu, F. Alkylation of Isobutane/Isobutene Using Brønsted–Lewis Acidic Ionic Liquids as Catalysts. Fuel. 2015, 159, 803–809. DOI: 10.1016/j.fuel.2015.07.053.
  • Liu, Y.; Liu, G.; Wu, G.; Hu, R. Alkylation of Isobutane and 2-Butene in Rotating Packed-Bed Reactors: Using Ionic Liquid and Solid Acid as Catalysts. Ind. Eng. Chem. Res. 2020, 59(33), 14767–14775. DOI: 10.1021/acs.iecr.0c02520.
  • Liu, S.; Tan, S.; Bian, B.; Yu, H.; Wu, Q.; Liu, Z.; Yu, F.; Li, L.; Yu, S.; Song, X., et al. Isobutane/2-Butene Alkylation Catalyzed by Brønsted–Lewis Acidic Ionic Liquids. RSC Adv. 2018, 8(35), 19551–19559. DOI: 10.1039/C8RA03485K.
  • Wang, H.; Ma, S.; Zhou, Z.; Li, M.; Wang, H. Alkylation of Isobutane with Butene Catalyzed by Deep Eutectic Ionic Liquids. Fuel. 2020, 269, 117419. DOI: 10.1016/j.fuel.2020.117419.
  • Valkenberg, M. H.; deCastro, C.; Hölderich, W. F. Immobilisation of Ionic Liquids on Solid Supports. Green Chem. 2002, 4(2), 88–93. DOI: 10.1039/b107946h.
  • Kumar, P.; Vermeiren, W.; Dath, J.-P.; Hoelderich, W. F. Production of Alkylated Gasoline Using Ionic Liquids and Immobilized Ionic Liquids. Appl. Catal. Gen. 2006, 304, 131–141. DOI: 10.1016/j.apcata.2006.02.030.
  • Jin, K.; Zhang, T.; Yuan, S.; Tang, S. Regulation of Isobutane/1-Butene Adsorption Behaviors on the Acidic Ionic Liquids-Functionalized MCM-22 Zeolite. Chin. J. Chem. Eng. 2018, 26(1), 127–136. DOI: 10.1016/j.cjche.2017.05.023.
  • Liu, Y.; Wu, G.; Pang, X.; Gao, G. Isobutane Alkylation with 2-Butene in Novel Ionic Liquid/Solid Acid Catalysts. Fuel. 2019, 252, 316–324. DOI: 10.1016/j.fuel.2019.04.137.
  • Speight, J. G.;. Chapter 9 - Hydrocracking. In The Refinery of the Future; Speight, J. G., Ed.; William Andrew Publishing: Boston, 2011; pp 275–313. DOI: 10.1016/B978-0-8155-2041-2.10009-8.
  • Angeles, M. J.; Leyva, C.; Ancheyta, J.; Ramírez, S. A Review of Experimental Procedures for Heavy Oil Hydrocracking with Dispersed Catalyst. Catal. Today. 2014, 220-222, 274–294. DOI: 10.1016/j.cattod.2013.08.016.
  • Rana, M. S.; Samano, V.; Ancheyta, J.; Diaz, J. A. I. A Review of Recent Advances on Process Technologies for Upgrading of Heavy Oils and Residua. Fuel. 2007, 86(9), 1216–1231. DOI: 10.1016/j.fuel.2006.08.004.
  • Al-Attas, A.; T, A. A.; Zahir, S.; H, M.; Xiong, Q.; Al-Bogami, S. A.; Malaibari, Z. O.; Razzak, S.; Hossain, M. M. Recent Advances in Heavy Oil Upgrading Using Dispersed Catalysts. Energy Fuels 2019, 339, 7917–7949 10.1021/acs.energyfuels.9b01532 accessed Apr 12, 2021
  • Sahu, R.; Song, B. J.; Im, J. S.; Jeon, Y.-P.; Lee, C. W. A Review of Recent Advances in Catalytic Hydrocracking of Heavy Residues. J. Ind. Eng. Chem. 2015, 27, 12–24. DOI: 10.1016/j.jiec.2015.01.011.
  • Weitkamp, J.;. Catalytic Hydrocracking, Mechanisms and Versatility of the Process. ChemCatChem. 2012, 4(3), 292–306. DOI: 10.1002/cctc.201100315.
  • Saab, R.; Polychronopoulou, K.; Zheng, L.; Kumar, S.; Schiffer, A. Synthesis and Performance Evaluation of Hydrocracking Catalysts: A Review. J. Ind. Eng. Chem. 2020, 89, 83–103. DOI: 10.1016/j.jiec.2020.06.022.
  • Brouwer, D. M.; Hogeveen, H. The Importance of Orbital Orientation as a Rate-Controlling Factor in Intramolecular Reactions of Carbonium Ions. Recl. Trav. Chim. Pays-Bas. 1970, 89(2), 211–224. DOI: 10.1002/recl.19700890213.
  • Haag, W. O.; Dessau, R. M.; Lago, R. M. Kinetics and Mechanism of Paraffin Cracking with Zeolite Catalysts. In Studies in Surface Science and Catalysis; Lnui, T., Namba, S., Tatsumi, T., Eds.; Chemistry of Microporous Crystals; Elsevier: Tokyo, 1991; Vol. 60, pp 255–265. DOI: 10.1016/S0167-2991(08)61903-5.
  • Weitkamp, J.; Raichle, A.; Traa, Y. Novel Zeolite Catalysis to Create Value from Surplus Aromatics: Preparation of C2+-n-Alkanes, a High-Quality Synthetic Steamcracker Feedstock. Appl. Catal. Gen. 2001, 222(1–2), 277–297. DOI: 10.1016/S0926-860X(01)00841-9.
  • McVicker, G. B.; Daage, M.; Touvelle, M. S.; Hudson, C. W.; Klein, D. P.; Baird, W. C.; Cook, B. R.; Chen, J. G.; Hantzer, S.; Vaughan, D. E. W., et al. Selective Ring Opening of Naphthenic Molecules. J. Catal. 2002, 210(1), 137–148. DOI: 10.1006/jcat.2002.3685.
  • Gault, F. G.;. Mechanisms of Skeletal Isomerization of Hydrocarbons on Metals. In Advances in Catalysis; Eley, D. D., Pines, H., Weisz, P. B., Eds.; Academic Press: UK, 1981; Vol. 30, pp 1–95. DOI: 10.1016/S0360-0564(08)60325-9.
  • Du, H.; Fairbridge, C.; Yang, H.; Ring, Z. The Chemistry of Selective Ring-Opening Catalysts. Appl. Catal. Gen. 2005, 294(1), 1–21. DOI: 10.1016/j.apcata.2005.06.033.
  • Fahim, M. A.; Alsahhaf, T. A.; Elkilani, A. Chapter 7 - Hydroconversion. In Fundamentals of Petroleum Refining; Fahim, M. A., Alsahhaf, T. A., Elkilani, A., Eds.; Elsevier: Amsterdam, 2010; pp 153–198. DOI: 10.1016/B978-0-444-52785-1.00007-3.
  • Sánchez, S.; Rodríguez, M. A.; Ancheyta, J. Kinetic Model for Moderate Hydrocracking of Heavy Oils. Ind. Eng. Chem. Res. 2005, 44(25), 9409–9413. DOI: 10.1021/ie050202+.
  • Ancheyta, J.;. Chapter 2. Properties of Catalysts for Heavy Oil Hydroprocessing. In Deactivation of Heavy Oil Hydroprocessing Catalysts; J. Ancheyta, J. G. Speight, Eds., 31–87. John Wiley & Sons, Inc, New York, 2016.
  • Čejka, J.; Corma, A.; Stacey, Z. Zeolites and Catalysis. Synthesis, Reactions and Applications.; Wiley-VCH: Weinheim, Germany, 2010; Vol. 50.
  • Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis. Synthesis, Reactions and Applications.; Wiley‐VCH Verlag GmbH & Co. KGaA, 2010.
  • Juneau, M.; Liu, R.; Peng, Y.; Malge, A.; Ma, Z.; Porosoff, M. D. Characterization of Metal-Zeolite Composite Catalysts: Determining the Environment of the Active Phase. ChemCatChem. 2020, 12(7), 1826–1852. DOI: 10.1002/cctc.201902039.
  • Galadima, A.; Muraza, O. Hydrocracking Catalysts Based on Hierarchical Zeolites: A Recent Progress. J. Ind. Eng. Chem. 2018, 61, 265–280. DOI: 10.1016/j.jiec.2017.12.024.
  • Chorkendorff, I.; N, J. W. Chapter 9. Oil Refining and Petrochemistry. In Concepts of Modern Catalysis and Kinetics; Wiley‐VCH Verlag GmbH & Co. KGaA: Germany, 2003; pp 349–376.
  • Busto, M.; Grau, J. M.; Sepulveda, J. H.; Tsendra, O. M.; Vera, C. R. Hydrocracking of Long Paraffins over Pt–Pd/WO3–ZrO2 in the Presence of Sulfur and Aromatic Impurities. Energy Fuels. 2013, 27(11), 6962–6972. DOI: 10.1021/ef401138v.
  • Yan, G. X.; Wang, A.; Wachs, I. E.; Baltrusaitis, J. Critical Review on the Active Site Structure of Sulfated Zirconia Catalysts and Prospects in Fuel Production. Appl. Catal. Gen. 2019, 572, 210–225. DOI: 10.1016/j.apcata.2018.12.012.
  • Khowatimy, F. A.; Priastomo, Y.; Febriyanti, E.; Riyantoko, H.; Trisunaryanti, W. Study of Waste Lubricant Hydrocracking into Fuel Fraction over the Combination of Y-Zeolite and ZnO Catalyst. Procedia Environ. Sci. 2014, 20, 225–234. DOI: 10.1016/j.proenv.2014.03.029.
  • Robinson, P. R.;. 2011. 10 - Hydroconversion Processes and Technology for Clean Fuel and Chemical Production. In Advances in Clean Hydrocarbon Fuel Processing, Khan, M. R., Ed., 287–325. Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, doi:10.1533/9780857093783.3.287.
  • Laredo, G. C.; Vega Merino, P. M.; Sacht Hernandez, P. Light Cycle Oil Upgrading to High Quality Fuels and Petrochemicals: A Review |. Ind. Eng. Chem. Res. 2018, 57(22), 7315–7321. DOI: 10.1021/acs.iecr.8b00248.
  • Bezergianni, S.; Kalogianni, A.; Dimitriadis, A. Catalyst Evaluation for Waste Cooking Oil Hydroprocessing. Fuel. 2012, 93, 638–641. DOI: 10.1016/j.fuel.2011.08.053.
  • Chang, F.; Saikat, D.; Mascal, M. Hydrogen‐Economic Synthesis of Gasoline‐like Hydrocarbons by Catalytic Hydrodecarboxylation of the Biomass‐derived Angelica Lactone Dimer. ChemCatChem. 2017, 9(14), 2622–2626. DOI: 10.1002/cctc.201700314.
  • Mansur, D.; Aminuddin, . A. Chemical conversion of Calophyllum inophyllum oil into bio-hydrocarbons fuel over presulfided NiMo / Al 2 O 3 catalyst. Int. J. Energy Res. 2020, 44(9), 7746–7760. DOI: 10.1002/er.5506.
  • Galadima, A.; Muraza, O. Hydrothermal Liquefaction of Algae and Bio-Oil Upgrading into Liquid Fuels: Role of Heterogeneous Catalysts. Renew. Sustain. Energy Rev. 2018, 81, 1037–1048. DOI: 10.1016/j.rser.2017.07.034.
  • Tomasek, S.; Lónyi, F.; Valyon, J.; Hancsók, J. Fuel Purpose Hydrocracking of Biomass Based Fischer-Tropsch Paraffin Mixtures on Bifunctional Catalysts. Energy Convers. Manag. 2020, 213, 112775. DOI: 10.1016/j.enconman.2020.112775.
  • Gutierrez, A.; Arandes, J. M.; Castaño, P.; Aguayo, A. T.; Bilbao, J. Role of Acidity in the Deactivation and Steady Hydroconversion of Light Cycle Oil on Noble Metal Supported Catalysts. Energy Fuels. 2011, 25(8), 3389–3399. DOI: 10.1021/ef200523g.
  • Gutiérrez, A.; Arandes, J. M.; Castaño, P.; Olazar, M.; Bilbao, J. Preliminary Studies on Fuel Production through LCO Hydrocracking on Noble-Metal Supported Catalysts. Fuel. 2012, 94, 504–515. DOI: 10.1016/j.fuel.2011.10.010.
  • Gutiérrez, A.; Arandes, J. M.; Castaño, P.; Olazar, M.; Bilbao, J. Effect of Pressure on the Hydrocracking of Light Cycle Oil with a Pt–Pd/HY Catalyst. Energy Fuels. 2012, 26(9), 5897–5904. DOI: 10.1021/ef3009597.
  • Gutiérrez, A.; Arandes, J. M.; Castaño, P.; Olazar, M.; Barona, A.; Bilbao, J. Effect of Space Velocity on the Hydrocracking of Light Cycle Oil over a Pt–Pd/HY Zeolite Catalyst. Fuel Process. Technol. 2012, 95, 8–15. DOI: 10.1016/j.fuproc.2011.11.003.
  • Seo, M.; Lee, D.-W.; Lee, K.-Y.; Moon, D. J. Pt/Al-SBA-15 Catalysts for Hydrocracking of C21–C34 n-Paraffin Mixture into Gasoline and Diesel Fractions. Fuel. 2015, 143, 63–71. DOI: 10.1016/j.fuel.2014.11.028.
  • Peng, C.; Zhou, Z.; Cheng, Z.; Fang, X. Upgrading of Light Cycle Oil to High-Octane Gasoline through Selective Hydrocracking over Non-Noble Metal Bifunctional Catalysts. Energy Fuels. 2019, 33(2), 1090–1097. DOI: 10.1021/acs.energyfuels.8b04229.
  • Peng, C.; Huang, X.; Duan, X.; Cheng, Z.; Zeng, R.; Guo, R.; Fang, X. Direct Production of High Octane Gasoline and ULSD Blend Stocks by LCO Hydrocracking. Catal. Today. 2016, 271, 149–153. DOI: 10.1016/j.cattod.2015.11.049.
  • Calemma, V.; Giardino, R.; Ferrari, M. Upgrading of LCO by Partial Hydrogenation of Aromatics and Ring Opening of Naphthenes over Bi-Functional Catalysts. Fuel Process. Technol. 2010, 91(7), 770–776. DOI: 10.1016/j.fuproc.2010.02.012.
  • Anilkumar, M.; Loke, N.; Patil, V.; Panday, R.; Sreenivasarao, G. Hydrocracking of Hydrotreated Light Cycle Oil to Mono Aromatics over Non-Noble Bi-Functional (Ni-w Supported) Zeolite Catalysts. Catal. Today. 2020, 358, 221–227. DOI: 10.1016/j.cattod.2019.12.027.
  • Oh, Y.; Shin, J.; Noh, H.; Kim, C.; Kim, Y.-S.; Lee, Y.-K.; Lee, J. K. Selective Hydrotreating and Hydrocracking of FCC Light Cycle Oil into High-Value Light Aromatic Hydrocarbons. Appl. Catal. Gen. 2019, 577, 86–98. DOI: 10.1016/j.apcata.2019.03.004.
  • Cao, Z.; Zhang, X.; Xu, C.; Huang, X.; Wu, Z.; Peng, C.; Duan, A. Selective Hydrocracking of Light Cycle Oil into High-Octane Gasoline over Bi-Functional Catalysts. J. Energy Chem. 2021, 52, 41–50. DOI: 10.1016/j.jechem.2020.04.055.
  • Escalona, G.; Rai, A.; Betancourt, P.; Sinha, A. K. Selective Poly-Aromatics Saturation and Ring Opening during Hydroprocessing of Light Cycle Oil over Sulfided Ni-Mo/SiO2-Al2O3 Catalyst. Fuel. 2018, 219, 270–278. DOI: 10.1016/j.fuel.2018.01.134.
  • Dabbagh, H. A.; Ghobadi, F.; Ehsani, M. R.; Moradmand, M. The Influence of Ester Additives on the Properties of Gasoline. Fuel. 2013, 104, 216–223. DOI: 10.1016/j.fuel.2012.09.056.
  • Schifter, I.; González, U.; Díaz, L.; Sánchez-Reyna, G.; Mejía-Centeno, I.; González-Macías, C. Comparison of Performance and Emissions for Gasoline-Oxygenated Blends up to 20 Percent Oxygen and Implications for Combustion on a Spark-Ignited Engine. Fuel. 2017, 208, 673–681. DOI: 10.1016/j.fuel.2017.07.065.
  • Babazadeh Shayan, S.; Seyedpour, S. M.; Ommi, F. Effect of Oxygenates Blending with Gasoline to Improve Fuel Properties. Chin. J. Mech. Eng. 2012, 25(4), 792–797. DOI: 10.3901/CJME.2012.04.792.
  • Nadim, F.; Zack, P.; Hoag, G. E.; Liu, S. United States Experience with Gasoline Additives. Energy Policy. 2001, 29(1), 1–5. DOI: 10.1016/S0301-4215(00)00099-9.
  • Amaral, L. V.; Santos, N. D. S. A.; Roso, V. R.; Sebastião, R. D. C. D. O.; Pujatti, F. J. P. Effects of Gasoline Composition on Engine Performance, Exhaust Gases and Operational Costs. Renew. Sustain. Energy Rev. 2021, 135, 110196. DOI: 10.1016/j.rser.2020.110196.
  • Vinuesa, J.-F.; Mirabel, P.; Ponche, J.-L. Air Quality Effects of Using Reformulated and Oxygenated Gasoline Fuel Blends: Application to the Strasbourg Area (F). Atmos. Environ. 2003, 37(13), 1757–1774. DOI: 10.1016/S1352-2310(03)00067-0.
  • Worldwide Fuel Charter 2019 - Gasoline and Diesel Fuel | ACEA - European Automobile Manufacturers’ Association https://www.acea.be/publications/article/worldwide-fuel-charter-2019-gasoline-and-diesel-fuel (accessed May 8, 2021).
  • Aldrees, S. New Catalytic Approaches for Producing Alternative to MTBE Additives for Reformulation of Gasoline. In Advanced Catalysis Processes in Petrochemicals and Petroleum Refining: Emerging Research and Opportunities, M. Al-Kinany, & S. Aldrees, Eds., 172-189. IGI Global, Oxford: 2020. https://doi.org/10.4018/978-1-5225-8033-1.ch006
  • García Martínez, J. A.;. Determination of Oxygenated Additives in Mexican Gasolines by GC-MS (in Spanish). Rev. Soc. Quím. México. 2000, 44(3), 237–242.
  • García-Martínez, J. A.;. Application of nuclear magnetic resonance to the montoring of oxigenated additives in gasoline (in spanish). Rev. Int. Contam. Ambient. 2004, 20(3), 129–135.
  • Castillo-Hernández, P.; Mendoza-Domínguez, A.; Caballero-Mata, P. Analysis of physicochemical properties of mexican gasolines and dielsel feedstocks reformulated with ethanol (in spanish). Ing. Investig. Tecnol. 2012, 13(3), 293–306.
  • Badra, J.; AlRamadan, A. S.; Sarathy, S. M. Optimization of the Octane Response of Gasoline/Ethanol Blends. Appl. Energy. 2017, 203, 778–793. DOI: 10.1016/j.apenergy.2017.06.084.
  • Salomón, M. A.; Coronas, J.; Menéndez, M.; Santamarı́a, J. Synthesis of MTBE in Zeolite Membrane Reactors. Appl. Catal. Gen. 2000, 200(1), 201–210. DOI: 10.1016/S0926-860X(00)00640-2.
  • Rechnia, P.; Malaika, A.; Kozłowski, M. Synthesis of Tert-Amyl Methyl Ether (TAME) over Modified Activated Carbon Catalysts. Fuel. 2015, 154, 338–345. DOI: 10.1016/j.fuel.2015.03.086.
  • Badia, J. H.; Fité, C.; Bringué, R.; Ramírez, E.; Cunill, F. Byproducts Formation in the Ethyl Tert-Butyl Ether (ETBE) Synthesis Reaction on Macroreticular Acid Ion-Exchange Resins. Appl. Catal. Gen. 2013, 468, 384–394. DOI: 10.1016/j.apcata.2013.09.012.
  • Chami, F.; Dermeche, L.; Saadi, A.; Rabia, C. Propan-2-Ol Conversion to Diisopropyl Ether over (NH4)XXyPMo12O40 Salts with X = Sn, Sb, and Bi. The Effect of Salt Preparation PH. Appl. Petrochem. Res. 2013, 3(19), 35–45. DOI: 10.1007/s13203-013-0027-9.
  • Mikus, V.; Ridzonova, M.; Steltenpohl, P. Fuel Additives Production: Ethyl-t-Butyl Ether, a Case Study. Acta Chim. Slovaca. 2013, 6(2), 211–226. DOI: 10.2478/acs-2013-0034.
  • Karas, L. and Piel, W.J. Ethers. In Encyclopedia of Chemical Technology, Kirk-Othmer, Ed. John Wiley & Sons, Inc., UK: 2000.https://doi.org/10.1002/0471238961.0520080511011801.a01
  • Pecci, G.; Floris, T. Ether Ups Antiknock of Gasoline. Hydrocarb. Process. 1977, 56, 98–102.
  • Ancillotti, F.; Fattore, V. Oxygenate Fuels: Market Expansion and Catalytic Aspect of Synthesis. Fuel Process. Technol. 1998, 57(3), 163–194. DOI: 10.1016/S0378-3820(98)00081-2.
  • Awad, O. I.; Mamat, R.; Ali, O. M.; Sidik, N. A. C.; Yusaf, T.; Kadirgama, K.; Kettner, M. Alcohol and Ether as Alternative Fuels in Spark Ignition Engine: A Review. Renew. Sustain. Energy Rev. 2018, 82, 2586–2605. DOI: 10.1016/j.rser.2017.09.074.
  • Awad, O. I.; Mamat, R.; Ibrahim, T. K.; Hammid, A. T.; Yusri, I. M.; Hamidi, M. A.; Humada, A. M.; Yusop, A. F. Overview of the Oxygenated Fuels in Spark Ignition Engine: Environmental and Performance. Renew. Sustain. Energy Rev. 2018, 91, 394–408. DOI: 10.1016/j.rser.2018.03.107.
  • Di Iorio, S., Catapano, F., Sementa, P., Vaglieco, B.M., Florio S., Rebesco E., Scorletti P. and Terna D. “Effect of Octane Number Obtained with Different Oxygenated Components on the Engine Performance and Emissions of a Small GDI Engine”, Technical Paper presented at SAE/JSAE 2014 Small Engine Technology Conference & Exhibition. SAE Technical Paper 2014-32-0038; SAE International, DOI:10.4271/2014-32-0038.
  • Schifter, I.; González, U.; Díaz, L.; Rodríguez, R.; Mejía-Centeno, I.; González-Macías, C. From Actual Ethanol Contents in Gasoline to Mid-Blends and E-85 in Conventional Technology Vehicles. Emission Control Issues and Consequences. Fuel. 2018, 219, 239–247. DOI: 10.1016/j.fuel.2018.01.118.
  • Varol, Y.; Öner, C.; Öztop, H. F.; Altun, Ş. Comparison of Methanol, Ethanol, or n-Butanol Blending with Unleaded Gasoline on Exhaust Emissions of an SI Engine. Energy Sour. Part Recov. Util. Environ. Eff. 2014, 36(9), 938–948. DOI: 10.1080/15567036.2011.572141.
  • Reed, T. B.; Lerner, R. M. Methanol: A Versatile Fuel for Immediate Use: Methanol Can Be Made from Gas, Coal, or Wood. It Is Stored and Used in Existing Equipment. Science. 1973, 182(4119), 1299–1304. DOI: 10.1126/science.182.4119.1299.
  • Hu, T.; Wei, Y.; Liu, S.; Zhou, L. Improvement of Spark-Ignition (SI) Engine Combustion and Emission during Cold Start, Fueled with Methanol/Gasoline Blends. Energy Fuels. 2007, 21(1), 171–175. DOI: 10.1021/ef0603479.
  • He, B.-Q.; Wang, J.-X.; Hao, J.-M.; Yan, X.-G.; Xiao, J.-H. A Study on Emission Characteristics of an EFI Engine with Ethanol Blended Gasoline Fuels. Atmos. Environ. 2003, 37(7), 949–957. DOI: 10.1016/S1352-2310(02)00973-1.
  • Yan, J.; Lin, T. Biofuels in Asia. Appl. Energy. 2009, 86, S1–S10. DOI: 10.1016/j.apenergy.2009.07.004.
  • Turner, J. W. G.; Pearson, R. J.; Dekker, E.; Iosefa, B.; Johansson, K.; Ac Bergström, K. Extending the Role of Alcohols as Transport Fuels Using Iso-Stoichiometric Ternary Blends of Gasoline, Ethanol and Methanol. Appl. Energy. 2013, 102, 72–86. DOI: 10.1016/j.apenergy.2012.07.044.
  • Balat, M.; Balat, H. Recent Trends in Global Production and Utilization of Bio-Ethanol Fuel. Appl. Energy. 2009, 86(11), 2273–2282. DOI: 10.1016/j.apenergy.2009.03.015.
  • Moreira, J. R.; Romeiro, V.; Fuss, S.; Kraxner, F.; Pacca, S. A. BECCS Potential in Brazil: Achieving Negative Emissions in Ethanol and Electricity Production Based on Sugar Cane Bagasse and Other Residues. Appl. Energy. 2016, 179, 55–63. DOI: 10.1016/j.apenergy.2016.06.044.
  • Grady, J. L.; Chen, G. J. Bioconversion of Waste Biomass to Useful Products; US5821111A, October 13, 1998.
  • Spindler, D. D.; Grohmann, K.; Wyman, C. E. Simultaneous Saccharification and Fermentation (SSF) Using Cellobiose Fermenting Yeast Brettanomyces Custersii. US5100791A, March 31, 1992.
  • Chiaramonti, D.; Lidén, G.; Yan, J. Advances in Sustainable Biofuel Production and Use: The XIX International Symposium on Alcohol Fuels. Appl. Energy. 2013, 102, 1–4. DOI: 10.1016/j.apenergy.2012.09.021.
  • Simpson, S. D.; Tizard, J. H.; Alcohol Production Process. US9624512B2. April 18, 2017.
  • Lewis, R. S.; Tanner, R. S.; Huhnke, R. L.; Indirect or Direct Fermentation of Biomass to Fuel Alcohol. US20070275447A1. November 29, 2007.
  • Oakley, S. D.;; Improved Carbon Capture in Fermentation. WO2010126382A1. November 4, 2010.
  • Nguyen, Q. A.;. Tower Reactors for Bioconversion of Lignocellulosic Material. US5733758A. March 31, 1998
  • Baustian, J.;; Oxygenated Gasoline Composition Having Good Driveability Performance. AU2009244552B2. July 17, 2014.
  • Kuberka, M.; Placzek, P.; Uso de alcoholes en combustibles para motores de encendido por chispa. ES2390814T3. November 16, 2012.
  • Lapuerta, M.; Ballesteros, R.; Barba, J. Strategies to Introduce N-Butanol in Gasoline Blends. Sustainability. 2017, 9(4), 589. DOI: 10.3390/su9040589.
  • Tian, Z.; Zhen, X.; Wang, Y.; Liu, D.; Li, X. Combustion and Emission Characteristics of N-Butanol-Gasoline Blends in SI Direct Injection Gasoline Engine. Renew. Energy. 2020, 146, 267–279. DOI: 10.1016/j.renene.2019.06.041.
  • Oktar, N.; Mürtezaoğlu, K.; Doğu, G.; Gönderten, İ.; Doğu, T. Etherification Rates of 2-Methyl-2-Butene and 2-Methyl-1-Butene with Ethanol for Environmentally Clean Gasoline Production. J. Chem. Technol. Biotechnol. 1999, 74(2), 155–161. DOI: 10.1002/(SICI)1097-4660(199902)74:2<155::AID-JCTB982>3.0.CO;2-T.
  • Evans, T. W.; Edlund, K. R. Tertiary Alkyl Ethers Preparation and Properties. Ind. Eng. Chem. 1936, 28(10), 1186–1188. DOI: 10.1021/ie50322a015.
  • López-Salinas, E.; Hernández-Cortéz, J. G.; Navarrete, J.; Salmón, M.; Schifter, I. Formation of Diisopropyl Ether from 2-Propanol Using Keggin-Type H3[W12PO40] and H4[W12SiO40] Heteropolyacids Supported on Zirconia. In Studies in Surface Science and Catalysis; Corma, A., Melo, F. V., Mendioroz, S., Fierro, J. L. G., Eds.; 12th International Congress on Catalysis; Elsevier: Granada, Spain, 2000; Vol. 130, pp 2591–2596. DOI: 10.1016/S0167-2991(00)80860-5.
  • Hernández-Cortez, J. G.; López-Salinas, E.; Manríquez, M.; Toledo, J. A.; Cortes-Jacome, M. A. Acid and Base Properties of Molybdophosphoric Acid Supported on Zirconia: Characterized by IR Spectroscopy, TPD and Catalytic Activity. Fuel. 2012, 100, 144–151. DOI: 10.1016/j.fuel.2012.03.003.
  • Hernández-Cortez, J. G.; Manríquez, M.; Lartundo-Rojas, L.; López-Salinas, E. Study of Acid–Base Properties of Supported Heteropoly Acids in the Reactions of Secondary Alcohols Dehydration. Catal. Today. 2014, 23, 32–38. DOI: 10.1016/j.cattod.2013.09.007.
  • Kovalchuk, T. V.; Kochkin, J.; Sfihi, N.; Zaitsev, H.; N, V.; Fraissard, J. Oniumsilica-Immobilized-Keggin Acids: Acidity and Catalytic Activity for Ethyl Tert-Butyl Ether Synthesis and Acetic Acid Esterification with Ethanol. J. Catal. 2009, 263(2), 247–257. DOI: 10.1016/j.jcat.2009.02.016.
  • Obalı, Z.; Doğu, T. Activated Carbon–Tungstophosphoric Acid Catalysts for the Synthesis of Tert-Amyl Ethyl Ether (TAEE). Chem. Eng. J. 2008, 138(1), 548–555. DOI: 10.1016/j.cej.2007.07.077.
  • de Boer, J. H.; Fahim, R. B.; Linsen, B. G.; Visseren, W. J.; de Vleesschauwer, W. F. N. M. Kinetics of the Dehydration of Alcohol on Alumina. J. Catal. 1967, 7(2), 163–172. DOI: 10.1016/0021-9517(67)90055-3.
  • Gao, X.; Wang, F.; Li, H.; Li, X. Heat-Integrated Reactive Distillation Process for TAME Synthesis. Sep. Purif. Technol. 2014, 132, 468–478. DOI: 10.1016/j.seppur.2014.06.003.
  • Al‐Arfaj, M. A.; Luyben, W. L. Plantwide Control for TAME Production Using Reactive Distillation. AIChE J. 2004, 50(7), 1462–1473. DOI: 10.1002/aic.10138.
  • Yuan, H. (2006). ETBE as an additive in gasoline: advantages and disadvantages (Dissertation, Linköping University, The Tema Institute). http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-6686
  • Raman, C. A.; Varatharajan, K.; Abinesh, P.; Venkatachalapathi, N. Analysis of MTBE as an Oxygenate Additive to Gasoline. Int. J. Eng. Res. Appl. 2014, 4, 712–718.
  • USEPA (1997). Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Methyl Tertiary-Butyl Ether (MtBE), Office of Water.; EPA-822-F-97-008, USA. https://nepis.epa.gov
  • Vakili, M.; Rafatullah, M.; Salamatinia, B.; Ibrahim, M. H.; Ismail, N.; Abdullah, A. Z. Adsorption Studies of Methyl Tert-Butyl Ether from Environment. Separation & Purification Reviews. 2017, 46(4), 273–290. DOI: 10.1080/15422119.2016.1270966.
  • Ahmed, S.; El-Faer, M. Z.; Abdillahi, M. M.; Shirokoff, J.; Siddiqui, M. A. B.; Barri, S. A. I. Production of Methyl Tert-Butyl Ether (MTBE) over MFI-Type Zeolites Synthesized by the Rapid Crystallization Method and Modified by Varying Si/Ai Ratio and Steaming. Appl. Catal. Gen. 1997, 161(1–2), 47–58. DOI: 10.1016/S0926-860X(97)00108-7.
  • Axelrod, M.; Coleman, S. Process for Manufacturing Methyl Tertiary-butyl Ether (Mtbe) and Other Hydrocarbons. ES2764150T3. June 2, 2020
  • Françoisse, O.; Thyrion, F. C. Kinetics and Mechanism of Ethyl Tert-Butyl Ether Liquid-Phase Synthesis. Chem. Eng. Process. Process. Intensif. 1991, 30(3), 141–149. DOI: 10.1016/0255-2701(91)85003-7.
  • Ancillotti, F.; Massi Mauri, M.; Pescarollo, E.; Romagnoni, L. Mechanisms in the Reaction between Olefins and Alcohols Catalyzed by Ion Exchange Resins. J. Mol. Catal. 1978, 4(1), 37–48. DOI: 10.1016/0304-5102(78)85033-0.
  • Yee, K. F.; Mohamed, A. R.; Tan, S. H. A Review on the Evolution of Ethyl Tert-Butyl Ether (ETBE) and Its Future Prospects. Renew. Sustain. Energy Rev. 2013, 22, 604–620. DOI: 10.1016/j.rser.2013.02.016.
  • Jayadeokar, S. S.; Sharma, M. M. Absorption of Isobutylene in Aqueous Ethanol and Mixed Alcohols: Cation Exchange Resins as Catalyst. Chem. Eng. Sci. 1992, 47(1), 3777–3784. DOI: 10.1016/0009-2509(92)85097-U.
  • Child, J. E.; Choi, B. C.; Ragonese, F. P. Conversion of Olefins to Ethers. European Patent Office EP0404931B1, 1990.
  • Marker, T. L.; Funk, G. A.; Barger, P. T.; Hammershaimb, H. U. Two-Stage Process for Producing Diisopropyl Ether Using Catalytic Distillation. United States Patent US5504258A, 1996.
  • Taylor Jr, R. J.; Dai, P-S. E.; Knifton, J. F. Integrated Process for the Production of Isopropyl Alcohol and Diisopropyl Ethers. United States Patent US5583266A, 1996.
  • Dhamodaran, G.; Esakkimuthu, G. S. Experimental Measurement of Physico-Chemical Properties of Oxygenate (DIPE) Blended Gasoline. Measurement. 2019, 134, 280–285. DOI: 10.1016/j.measurement.2018.10.077.
  • Bielański, A.; Micek-Ilnicka, A. Kinetics and Mechanism of Gas Phase MTBE and ETBE Formation on Keggin and Wells–Dawson Heteropolyacids as Catalysts. Inorganica Chim. Acta. 2010, 363(15), 4158–4162. DOI: 10.1016/j.ica.2010.06.030.
  • Kaur, J.; Sangal, V. K. Reducing Energy Requirements for ETBE Synthesis Using Reactive Dividing Wall Distillation Column. Energy. 2017, 126, 671–676. DOI: 10.1016/j.energy.2017.03.072.
  • Degirmenci, L.; Oktar, N.; Dogu, G. Activated Carbon Supported Silicotungstic Acid Catalysts for Ethyl-Tert-Butyl Ether Synthesis. AIChE J. 2011, 57(11), 3171–3181. DOI: 10.1002/aic.12524.
  • Vlasenko, N. V.; Kochkin, Y. N.; Puziy, A. M.; Strizhak, P. E. Crucial Role of Weak Acid Sites for Catalytic Performance of Zeolites in Ethyl Tert-Butyl Ether Synthesis. Chem. Eng. Commun. 2017, 204(8), 937–941. DOI: 10.1080/00986445.2017.1328411.
  • Puziy, A. M.; Kochkin, Y. N.; Poddubnaya, O. I.; Tsyba, M. M. Ethyl Tert-Butyl Ether Synthesis Using Carbon Catalysts from Lignocellulose. Adsorpt. Sci. Technol. 2017, 35(5–6), 473–481. DOI: 10.1177/0263617417696091.
  • Puziy, A. M.; Poddubnaya, O. I.; Kochkin, Y. N.; Vlasenko, N. V.; Tsyba, M. M. Acid Properties of Phosphoric Acid Activated Carbons and Their Catalytic Behavior in Ethyl-Tert-Butyl Ether Synthesis. Carbon. 2010, 48(3), 706–713. DOI: 10.1016/j.carbon.2009.10.015.
  • Rihko, L. K.; Krause, A. O. I. Kinetics of Heterogeneously Catalyzed Tert-Amyl Methyl Ether Reactions in the Liquid Phase. Ind. Eng. Chem. Res. 1995, 34(4), 1172–1180. DOI: 10.1021/ie00043a020.
  • Sassykova, L. R.; Basheva, Zh. T.; Kalykberdyev, M. K.; Nurakhmetova, M.; Massenova, A. T.; Rakhmetova, K. S. The Selective Catalytic Reactions for Improvement of Characteristics of Gasolines. Bulgarian Chemical Communications. 2018, 50(1), 82–88. http://www.bcc.bas.bg/BCC_Volumes/Volume_50_Number_1_2018/BCC-50-1-2018-82-88-4340-Sassykova.pdf
  • Armenta, M. A.; Valdez, R.; Silva-Rodrigo, R.; Olivas, A. Diisopropyl Ether Production via 2-Propanol Dehydration Using Supported Iron Oxides Catalysts. Fuel. 2019, 236, 934–941. DOI: 10.1016/j.fuel.2018.06.138.
  • Canakci, M.; Ozsezen, A. N.; Alptekin, E.; Eyidogan, M. Impact of Alcohol–Gasoline Fuel Blends on the Exhaust Emission of an SI Engine. Renew. Energy. 2013, 52, 111–117. DOI: 10.1016/j.renene.2012.09.062.
  • Hsieh, W.-D.; Chen, R.-H.; Wu, T.-L.; Lin, T.-H. Engine Performance and Pollutant Emission of an SI Engine Using Ethanol–Gasoline Blended Fuels. Atmos. Environ. 2002, 36(3), 403–410. DOI: 10.1016/S1352-2310(01)00508-8.
  • Zhang, Z.; Wang, T.; Jia, M.; Wei, Q.; Meng, X.; Shu, G. Combustion and Particle Number Emissions of a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline and n-Butanol/Gasoline Blends with Exhaust Gas Recirculation. Fuel. 2014, 130, 177–188. DOI: 10.1016/j.fuel.2014.04.052.
  • Song, C.-L.; Zhang, W.-M.; Pei, Y.-Q.; Fan, G.-L.; Xu, G.-P. Comparative Effects of MTBE and Ethanol Additions into Gasoline on Exhaust Emissions. Atmos. Environ. 2006, 40(11), 1957–1970. DOI: https://doi.org/10.1016/j.atmosenv.2005.11.028.
  • Feng, R.; Yang, J.; Zhang, D.; Deng, B.; Fu, J.; Liu, J.; Liu, X. Experimental Study on SI Engine Fuelled with Butanol–Gasoline Blend and H2O Addition. Energy Convers. Manag. 2013, 74, 192–200. DOI: 10.1016/j.enconman.2013.05.021.
  • Abdellatief, T. M. M.; Ershov, M. A.; Kapustin, V. M.; Ali Abdelkareem, M.; Kamil, M.; Olabi, A. G. Recent Trends for Introducing Promising Fuel Components to Enhance the Anti-Knock Quality of Gasoline: A Systematic Review. Fuel. 2021, 291, 120112. DOI: 10.1016/j.fuel.2020.120112.
  • Christensen, E.; Yanowitz, J.; Ratcliff, M.; McCormick, R. L. Renewable Oxygenate Blending Effects on Gasoline Properties. Energy Fuels. 2011, 25(10), 4723–4733. DOI: 10.1021/ef2010089.
  • Wagnon, S. W.; Thion, S.; Nilsson, E. J. K.; Mehl, M.; Serinyel, Z.; Zhang, K.; Dagaut, P.; Konnov, A. A.; Dayma, G.; Pitz, W. J. Experimental and Modeling Studies of a Biofuel Surrogate Compound: Laminar Burning Velocities and Jet-Stirred Reactor Measurements of Anisole. Combust. Flame. 2018, 189, 325–336. DOI: 10.1016/j.combustflame.2017.10.020.
  • Hoppe, F.; Burke, U.; Thewes, M.; Heufer, A.; Kremer, F.; Pischinger, S. Tailor-Made Fuels from Biomass: Potentials of 2-Butanone and 2-Methylfuran in Direct Injection Spark Ignition Engines. Fuel. 2016, 167, 106–117. DOI: 10.1016/j.fuel.2015.11.039.
  • Badia, J. H.; Ramírez, E.; Bringué, R.; Cunill, F.; Delgado, J. New Octane Booster Molecules for Modern Gasoline Composition. Energy Fuels. 2021, 35(14), 10949–10997. DOI: 10.1021/acs.energyfuels.1c00912.
  • Schifter, I.; González, U.; González-Macías, C. Effects of Ethanol, Ethyl-Tert-Butyl Ether and Dimethyl-Carbonate Blends with Gasoline on SI Engine. Fuel. 2016, 183, 253–261. DOI: 10.1016/j.fuel.2016.06.051.
  • Zhang, P.; Yee, W.; N, V. F.; S, E. H.; Yang, C.; B, H. G.; W, . Modeling Study of the Anti-Knock Tendency of Substituted Phenols as Additives: An Application of the Reaction Mechanism Generator (RMG). Phys. Chem. Chem. Phys. 2018, 20(16), 10637–10649. DOI: 10.1039/C7CP07058F.
  • Green, E. M.;. Fermentative Production of Butanol—the Industrial Perspective. Curr. Opin. Biotechnol. 2011, 22(3), 337–343. DOI: 10.1016/j.copbio.2011.02.004.
  • Badia, J. H.; Fité, C.; Bringué, R.; Ramírez, E.; Tejero, J. Simultaneous Etherification of Isobutene with Ethanol and 1-Butanol over Ion-Exchange Resins. Appl. Catal. Gen. 2017, 541, 141–150. DOI: 10.1016/j.apcata.2017.04.006.
  • Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Reaction of Ethanol over Hydroxyapatite Affected by Ca/P Ratio of Catalyst. J. Catal. 2008, 259(2), 183–189. DOI: 10.1016/j.jcat.2008.08.005.
  • Badia, J. H.; Fité, C.; Bringué, R.; Ramírez, E.; Iborra, M. Relevant Properties for Catalytic Activity of Sulfonic Ion-Exchange Resins in Etherification of Isobutene with Linear Primary Alcohols. J. Ind. Eng. Chem. 2016, 42, 36–45. DOI: 10.1016/j.jiec.2016.07.025.
  • O’Lenick, A. J.;. Guerbet Chemistry. J. Surfactants Deterg. 2001, 4(3), 311–315. DOI: 10.1007/s11743-001-0185-1.
  • Wojcieszyk, M.; Knuutila, L.; Kroyan, Y.; de Pinto Balsemão, M.; Tripathi, R.; Keskivali, J.; Karvo, A.; Santasalo-Aarnio, A.; Blomstedt, O.; Larmi, M. Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines. Sustainability. 2021, 13(16), 8729. DOI: 10.3390/su13168729.
  • Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, C.; Reza Rahimpour, B.; M, . Upgrading of Lignin-Derived Bio-Oils by Catalytic Hydrodeoxygenation. Energy Environ. Sci. 2014, 7(1), 103–129. DOI: 10.1039/C3EE43081B.
  • Bi, Z.; Zhang, J.; Peterson, E.; Zhu, Z.; Xia, C.; Liang, Y.; Wiltowski, T. Biocrude from Pretreated Sorghum Bagasse through Catalytic Hydrothermal Liquefaction. Fuel. 2017, 188, 112–120. DOI: 10.1016/j.fuel.2016.10.039.
  • Dahmen, M.; Marquardt, W. Model-Based Design of Tailor-Made Biofuels. Energy Fuels. 2016, 30(2), 1109–1134. DOI: 10.1021/acs.energyfuels.5b02674.
  • McCormick, R. L.; Fioroni, G.; Fouts, L.; Christensen, E.; Yanowitz, J.; Polikarpov, E.; Albrecht, K.; Gaspar, D. J.; Gladden, J.; George, A. Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines. SAE Int. J. Fuels Lubr. 2017, 10(2), 442–460. DOI: 10.4271/2017-01-0868.
  • Yoneda, H.; Tantillo, D. J.; Atsumi, S. Biological Production of 2-Butanone in Escherichia Coli. ChemSusChem. 2014, 7(1), 92–95. DOI: 10.1002/cssc.201300853.
  • Bramucci, M. G.; Flint, D.; Miller, Jr. E. S.; Nagarajan, V.; Sedkova, N.; Singh, M.; Van Dyk, T. K.; Method for the Production of 2-Butanol. United State Patent US8426174B2. 2013.
  • Black, J. R.; Yang, J.; Buechele, J. L.; Process for Producing Phenol and Methyl Ethyl Ketone. United States Patent US7282613B2. 2007.
  • Dunn, J. B.; Biddy, M.; Jones, S.; Cai, H.; Benavides, P. T.; Markham, J.; Tao, L.; Tan, E.; Kinchin, C.; Davis, R., et al. Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks. ACS Sustain. Chem. Eng.2018, 6(1), 561–569. DOI: 10.1021/acssuschemeng.7b02871.
  • Boot, M. D.; Tian, M.; Hensen, E. J. M.; Mani Sarathy, S. Impact of Fuel Molecular Structure on Auto-Ignition Behavior – Design Rules for Future High Performance Gasolines. Prog. Energy Combust. Sci. 2017, 60, 1–25. DOI: 10.1016/j.pecs.2016.12.001.
  • Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R. L. Properties and Performance of Levulinate Esters as Diesel Blend Components. Energy Fuels. 2011, 25(11), 5422–5428. DOI: 10.1021/ef201229j.
  • Tejero, M. A.; Ramírez, E.; Fité, C.; Tejero, J.; Cunill, F. Esterification of Levulinic Acid with Butanol over Ion Exchange Resins. Appl. Catal. Gen. 2016, 517, 56–66. DOI: 10.1016/j.apcata.2016.02.032.
  • Ershov, M. A.; Grigor’eva, E. V.; Guseva, A. I.; Vinogradova, N. Y.; Potanin, D. A.; Dorokhov, V. S.; Nikul’shin, P. A.; Ovchinnikov, K. A. A Review of Furfural Derivatives as Promising Octane Boosters. Russ. J. Appl. Chem. 2017, 90(9), 1402–1411. DOI: 10.1134/S1070427217090051.
  • Ershov, M. A.; Grigor’eva, E. V.; Guseva, A. I.; Vinogradova, N. Y.; Nikul’shin, P. A.; Dorokhov, V. S. Prospects for the Use of Furfural Derivatives in Gasoline. Chem. Technol. Fuels Oils. 2018, 53(6), 830–834. DOI: 10.1007/s10553-018-0868-0.
  • Tiunov, I. A.; Kotelev, M. S.; Vinokurov, V. A.; Gushchin, P. A.; Bardin, M. E.; Novikov, A. A. Antiknock Properties of Blends of 2-Methylfuran and 2,5-Dimethylfuran with Reference Fuel. Chem. Technol. Fuels Oils. 2017, 53(2), 147–153. DOI: 10.1007/s10553-017-0790-x.
  • Tiunov, I. A.; Kotelev, M. S.; Burluka, A.; Gushchin, P. A.; Novikov, A. A.; Vinokurov, V. A. The Effect of Methylfurans on the Physicochemical and Performance Characteristics of Finished Motor Gasoline. Pet. Chem. 2017, 57(10), 914–922. DOI: 10.1134/S0965544117100176.
  • Luo, H.-P.; Xiao, W.-D. A Reactive Distillation Process for a Cascade and Azeotropic Reaction System: Carbonylation of Ethanol with Dimethyl Carbonate. Chem. Eng. Sci. 2001, 56(2), 403–410. DOI: 10.1016/S0009-2509(00)00242-6.
  • Dunn, B. C.; Guenneau, C.; Hilton, S. A.; Pahnke, J.; Eyring, E. M.; Dworzanski, J.; Meuzelaar, H. L. C.; Hu, J. Z.; Solum, M. S.; Pugmire, R. J. Production of Diethyl Carbonate from Ethanol and Carbon Monoxide over a Heterogeneous Catalyst. Energy Fuels. 2002, 16(1), 177–181. DOI: 10.1021/ef0101816.
  • Wang, D.; Yang, B.; Zhai, X.; Zhou, L. Synthesis of Diethyl Carbonate by Catalytic Alcoholysis of Urea. Fuel Process. Technol. 2007, 88(8), 807–812. DOI: 10.1016/j.fuproc.2007.04.003.
  • Hao, C.; Wang, S.; Ma, X. Gas Phase Decarbonylation of Diethyl Oxalate to Diethyl Carbonate over Alkali-Containing Catalyst. J. Mol. Catal. Chem. 2009, 306(1–2), 130–135. DOI: 10.1016/j.molcata.2009.02.038.
  • Gouli, S., Stournas, S., and Lois, E., “Antiknock Performance of Gasoline Substitutes and their Effects on Gasoline Properties,” SAE Technical Paper 981367, 1998 by SAE International in United States, https://doi.org/10.4271/981367.
  • Shang, J.; Bisson, B.; Wynkoop, R. Gasoline Containing a Methyl Phenol and an Ether; United State Patent US3836342A, 1974.
  • Di Girolamo, M.; Brianti, M.; Marchionna, M.; (2017). Octane Enhancers. In Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag Ed., 1-19. GmbH & Co. KGaA: Weinheim, Germany, pp 1–19. DOI: 10.1002/14356007.a18_037.pub3.
  • Fischer, F.; Tropsch, H. Brennst.Chem. 1923, 4, 276–285.
  • Basu, P.;. 2018. Chapter 12 - Production of Synthetic Fuels and Chemicals from Biomass. In Biomass Gasification, Pyrolysis and Torrefaction (Third Edition), Basu, P., Ed., 415–443. Academic Press: Haliafax, NS, Canada, doi:10.1016/B978-0-12-812992-0.00012-1.
  • James, O. O.; Chowdhury, B.; Mesubi, M. A.; Maity, S. Reflections on the Chemistry of the Fischer–Tropsch Synthesis. RSC Adv. 2012, 2(19), 7347. DOI: 10.1039/c2ra20519j.
  • Martinelli, M.; Gnanamani, M. K.; LeViness, S.; Jacobs, G.; Shafer, W. D. An Overview of Fischer-Tropsch Synthesis: XtL Processes, Catalysts and Reactors. Appl. Catal. Gen. 2020, 608, 117740. DOI: 10.1016/j.apcata.2020.117740.
  • de Klerk, A.; Furimsky, E. Front Matter. In Catalysis in the Refining of Fischer-Tropsch Syncrude; Royal Society of Chemistry: James J. Spivey., Ed.; Cambridge, 2010; 001–004. DOI:10.1039/9781849732017-FP001.
  • de Klerk, A.; Furimsky, E. Chapter 3:Fischer–Tropsch Synthesis. Catal. Refin. Fischer-Tropsch Syncrude. 2010, 11–23. DOI: 10.1039/9781849732017-00011.
  • de Klerk, A.; Furimsky, E. Chapter 9. Commercial Products from Fischer–Tropsch Syncrude. In Catalysis in the Refining of Fischer-Tropsch Syncrude; James J. Spivey., Ed.; Royal Society of Chemistry: Cambridge, 2010; 210–235. DOI:10.1039/9781849732017-00210.
  • Speight, J. G.;. Coal Gasification Processes for Synthetic Liquid Fuel Production. In Gasification for Synthetic Fuel Production; Rafael Luque, James G. Speight., Eds.; Elsevier: Cambridge, UK, 2015; pp 201–220. doi:10.1016/B978-0-85709-802-3.00009-6
  • Speight, J. G.;. The Refinery of the Future and Technology Integration. In The Refinery of the Future; Katie Hammon., Ed.; Elsevier: Oxford, UK, 2020; pp 549–578. doi:10.1016/B978-0-12-816994-0.00015-4
  • Klerk, A. D.;. Fischer–Tropsch Fuels Refinery Design. Energy Environ. Sci. 2011, 4(4), 1177. DOI: 10.1039/c0ee00692k.
  • Sasol Advances Major Chemicals And Fuels Projects https://cen.acs.org/articles/90/i50/Sasol-Advances-Major-Chemicals-Fuels.html (accessed Apr 26, 2021).
  • Guo, X.; Liu, G.; Larson, E. D. High-Octane Gasoline Production by Upgrading Low-Temperature Fischer–Tropsch Syncrude. Ind. Eng. Chem. Res. 2011, 50(16), 9743–9747. DOI: 10.1021/ie200041m.
  • Chen, W.; Lin, T.; Dai, Y.; An, Y.; Yu, F.; Zhong, L.; Li, S.; Sun, Y. Recent Advances in the Investigation of Nanoeffects of Fischer-Tropsch Catalysts. Catal. Today. 2018, 311, 8–22. DOI: 10.1016/j.cattod.2017.09.019.
  • Zhang, Q.; Cheng, K.; Kang, J.; Deng, W.; Wang, Y. Fischer-Tropsch Catalysts for the Production of Hydrocarbon Fuels with High Selectivity. ChemSusChem. 2014, 7(5), 1251–1264. DOI: 10.1002/cssc.201300797.
  • Ershov, M. A.; Potanin, D. A.; Grigorieva, E. V.; Abdellatief, T. M. M.; Kapustin, V. M. Discovery of a High-Octane Environmental Gasoline Based on the Gasoline Fischer–Tropsch Process. Energy Fuels. 2020, 34(4), 4221–4229. DOI: 10.1021/acs.energyfuels.0c00009.
  • Ershov, M.; Potanin, D.; Gueseva, A.; Abdellatief, T. M. M.; Kapustin, V. Novel Strategy to Develop the Technology of High-Octane Alternative Fuel Based on Low-Octane Gasoline Fischer-Tropsch Process. Fuel. 2020, 261, 116330. DOI: 10.1016/j.fuel.2019.116330.
  • Tu, J.; Ding, M.; Wang, T.; Ma, L.; Xu, Y.; Kang, S.; Zhang, G. Direct Conversion of Bio-Syngas to Gasoline Fuels over a Fe3O4@C Fischer-Tropsch Synthesis Catalyst. Energy Procedia. 2017, 105, 82–87. DOI: 10.1016/j.egypro.2017.03.283.
  • de Klerk, A.; Furimsky, E. Chapter 8. Catalysis in the Refining of Fischer–Tropsch Syncrude. in Catalysis in the Refining of Fischer-Tropsch Syncrude; James J. Spivey., Ed.; Royal Society of Chemistry: Cambridge, 2010; 193–209. DOI:10.1039/9781849732017-00193.
  • Sun, B.; Qiao, M.; Fan, K.; Ulrich, J.; Tao, F. F. Fischer-Tropsch Synthesis over Molecular Sieve Supported Catalysts. ChemCatChem. 2011, 3(3), 542–550. DOI: 10.1002/cctc.201000352.
  • Abelló, S.; Montané, D. Exploring Iron-Based Multifunctional Catalysts for Fischer-Tropsch Synthesis: A Review. ChemSusChem. 2011, 4(11), 1538–1556. DOI: 10.1002/cssc.201100189.
  • Calderone, V. R.; Shiju, N. R.; Ferré, D. C.; Rothenberg, G. Bimetallic Catalysts for the Fischer–Tropsch Reaction. Green Chem. 2011, 13(8), 1950. 1950. DOI: 10.1039/c0gc00919a.
  • Zhang, Q.; Deng, W.; Wang, Y. Recent Advances in Understanding the Key Catalyst Factors for Fischer-Tropsch Synthesis. J. Energy Chem. 2013, 22(1), 27–38. DOI: 10.1016/S2095-4956(13)60003-0.
  • Speight, J. G.;. Synthetic Liquid Fuel Production from Gasification. In Gasification for Synthetic Fuel Production; Elsevier: Laramie, WY, USA, 2015; pp 147–174. doi:10.1016/B978-0-85709-802-3.00007-2
  • Fischer, N.; Claeys, M. In Situ Characterization of Fischer–Tropsch Catalysts: A Review. J. Phys. Appl. Phys. 2020, 53(29), 293001. DOI: 10.1088/1361-6463/ab761c.
  • Zhu, C.; Bollas, G. M. Gasoline Selective Fischer-Tropsch Synthesis in Structured Bifunctional Catalysts. Appl. Catal. B. 2018, 235, 92–102. DOI: 10.1016/j.apcatb.2018.04.063.
  • Enger, B. C.; Fossan, Å.-L.; Borg, Ø.; Rytter, E.; Holmen, A. Modified Alumina as Catalyst Support for Cobalt in the Fischer–Tropsch Synthesis. J. Catal. 2011, 284(1), 9–22. DOI: 10.1016/j.jcat.2011.08.008.
  • Liu, Y.; Murata, K.; Sakanishi, K. Hydroisomerization-Cracking of Gasoline Distillate from Fischer–Tropsch Synthesis over Bifunctional Catalysts Containing Pt and Heteropolyacids. Fuel. 2011, 90(10), 3056–3065. DOI: 10.1016/j.fuel.2011.05.004.
  • de Beer, M.; Kunene, A.; Nabaho, D.; Claeys, M.; van Steen, E. Technical and Economic Aspects of Promotion of Cobalt-Based Fischer-Tropsch Catalysts by Noble Metals–a Review. J. South. Afr. Inst. Min. Metall. 2014, 114, 9.
  • Javed, M.; Cheng, S.; Zhang, G.; Amoo, C. C.; Wang, J.; Lu, P.; Lu, C.; Xing, C.; Sun, J.; Tsubaki, N. A Facile Solvent-Free Synthesis Strategy for Co-Imbedded Zeolite-Based Fischer-Tropsch Catalysts for Direct Gasoline Production. Chin. J. Catal. 2020, 41(4), 604–612. DOI: 10.1016/S1872-2067(19)63436-4.
  • Javed, M.; Cheng, S.; Zhang, G.; Dai, P.; Cao, Y.; Lu, C.; Yang, R.; Xing, C.; Shan, S. Complete Encapsulation of Zeolite Supported Co Based Core with Silicalite-1 Shell to Achieve High Gasoline Selectivity in Fischer-Tropsch Synthesis. Fuel. 2018, 215, 226–231. DOI: 10.1016/j.fuel.2017.10.042.
  • Wang, S.; Yin, Q.; Guo, J.; Ru, B.; Zhu, L. Improved Fischer–Tropsch Synthesis for Gasoline over Ru, Ni Promoted Co/HZSM-5 Catalysts. Fuel. 2013, 108, 597–603. DOI: 10.1016/j.fuel.2013.02.021.
  • Zhao, Y.; Li, J.; Zhang, Y.; Chen, S.; Liew, K. Al-SBA-16-Supported Cobalt Catalysts for the Fischer-Tropsch Production of Gasoline-Fraction Hydrocarbons. ChemCatChem. 2012, 4(12), 1926–1929. DOI: 10.1002/cctc.201200394.
  • Zhuo, Y.; Zhu, L.; Liang, J.; Wang, S. Selective Fischer-Tropsch Synthesis for Gasoline Production over Y, Ce, or La-Modified Co/H-β. Fuel. 2020, 262, 116490. DOI: 10.1016/j.fuel.2019.116490.
  • Wang, C.; Bu, X.; Ma, J.; Liu, C.; Chou, K.; Wang, X.; Li, Q. Wells–Dawson Type Cs 5.5 H 0.5 P 2 W 18 O 62 Based Co/Al 2 O 3 as Binfunctional Catalysts for Direct Production of Clean-Gasoline Fuel through Fischer–Tropsch Synthesis. Catal. Today. 2016, 274, 82–87. DOI: 10.1016/j.cattod.2016.01.043.
  • Ryu, J.-H.; Kang, S.-H.; Kim, J.-H.; Lee, Y.-J.; Jun, K.-W. Fischer-Tropsch Synthesis on Co-Al2O3-(Promoter)/ZSM5 Hybrid Catalysts for the Production of Gasoline Range Hydrocarbons. Korean J. Chem. Eng. 2015, 32(10), 1993–1998. DOI: 10.1007/s11814-015-0046-6.
  • Li, X.; Chen, Y.; Liu, S.; Zhao, N.; Jiang, X.; Su, M.; Li, Z. Enhanced Gasoline Selectivity through Fischer-Tropsch Synthesis on a Bifunctional Catalyst: Effects of Active Sites Proximity and Reaction Temperature. Chem. Eng. J. 2021, 416, 129180. DOI: 10.1016/j.cej.2021.129180.
  • Gual, A.; Godard, C.; Castillón, S.; Curulla-Ferré, D.; Claver, C. Colloidal Ru, Co and Fe-Nanoparticles. Synthesis and Application as Nanocatalysts in the Fischer–Tropsch Process. Catal. Today. 2012, 183(1), 154–171. DOI: 10.1016/j.cattod.2011.11.025.
  • Golestan, S.; Mirzaei, A. A.; Atashi, H. Fischer–Tropsch Synthesis over an Iron–Cobalt–Manganese (Ternary) Nanocatalyst Prepared by Hydrothermal Procedure: Effects of Nanocatalyst Composition and Operational Conditions. Int. J. Hydrog. Energy. 2017, 42(15), 9816–9830. DOI: 10.1016/j.ijhydene.2017.01.162.
  • Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G. A. A Mini Review of Cobalt-Based Nanocatalyst in Fischer-Tropsch Synthesis. Appl. Catal. Gen. 2020, 602, 117701. DOI: 10.1016/j.apcata.2020.117701.
  • Short, P. L.;. Out of the Ivory Tower: Ionic Liquids are Starting to Leave Academic Labs and Find Their Way into a Wide Variety of Industrial Applications. Chem. Eng. News. 2006, 84(17), 15–21. DOI: 10.1021/cen-v084n017.p015.
  • Plechkova, N. V.; Seddon, K. R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37(1), 123–150. DOI: 10.1039/B006677J.
  • Hallett, J. P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111(5), 3508–3576. DOI: 10.1021/cr1003248.
  • Fehér, C.; Kriván, E.; Eller, Z.; Hancsók, J.; Skoda Földes, R. The Use of Ionic Liquids in the Oligomerization of Alkenes. In Oligomerization of Chemical and Biological Compounds; Lesieur, C., Ed.; InTech: UK, 2014 pp 31-67. DOI: 10.5772/57478.
  • Scariot, M.; Silva, D. O.; Scholten, J. D.; Machado, G.; Teixeira, S. R.; Novak, M. A.; Ebeling, G.; Dupont, J. Cobalt Nanocubes in Ionic Liquids: Synthesis and Properties. Angew. Chem. Int. Ed. 2008, 47(47), 9075–9078. DOI: 10.1002/anie.200804200.
  • Silva, D. O.; Luza, L.; Gual, A.; Baptista, D. L.; Bernardi, F.; Zapata, M. J. M.; Morais, J.; Dupont, J. Straightforward Synthesis of Bimetallic Co/Pt Nanoparticles in Ionic Liquid: Atomic Rearrangement Driven by Reduction–Sulfidation Processes and Fischer–Tropsch Catalysis. Nanoscale. 2014, 6(15), 9085–9092. DOI: 10.1039/C4NR02018A.
  • Kustov, L. M.; Tarasov, A. L. Fischer—Tropsch Synthesis in Ionic Liquids. Russ. Chem. Bull. 2015, 64(12), 2841–2844. DOI: 10.1007/s11172-015-1235-5.
  • Kustov, L. M.; Tarasov, A. L. Fischer–Tropsch Synthesis in a Slurry Mode Using Ionic Liquids. Catal. Commun. 2016, 75, 42–44. DOI: 10.1016/j.catcom.2015.12.003.
  • Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G. SupportedIonic Liquid Membrane in Membrane Reactor; AIP Conference Proceedings 1788, 040003 (2017); https://doi.org/10.1063/1.4968391Published Online: 03 January 2017 Solo, Indonesia.
  • Wang, C.; Fang, W.; Wang, L.; Xiao, F.-S. Fischer-Tropsch Reaction within Zeolite Crystals for Selective Formation of Gasoline-Ranged Hydrocarbons. J. Energy Chem. 2021, 54, 429–433. DOI: 10.1016/j.jechem.2020.06.006.
  • Susu, A. A.;. Chemical Kinetics and Heterogeneous Catalysis; CJC Press: Lagos, Nigeria, 1997.
  • de Klerk, A.; Furimsky, E. Chapter 10.Patent Literature. In Catalysis in the Refining of Fischer-Tropsch Syncrude; Spivey, J.J., Ed.; Royal Society of Chemistry: Cambridge, 2010; 236–259. DOI:10.1039/9781849732017-00236.
  • Kuo, J. C.; Prater, C. D.; Wise, J. J. Method for Upgrading Products of Fischer-Tropsch Synthesis. US4041094A. August 9, 1977.
  • Berge, P. J. V. Catalysts. US Patent 7365040B2, April 29, 2008.
  • Jan Dogterum, R.;; Carolus Matthias Anna maria Mesters; Marinus Johannes Reynhout. Process for Preparing a Hydrocarbon Synthesis Catalyst. US800564B2.
  • Rytter, E.; Skagseth, H.; Wigum, H.; Nonyameko Sincadu. Fischer-Tropsch Catalysts. US8952076B2.
  • Bellusi, G.; Carluccio, L.; Zennaro, R.; Del Piero, G. Process for the Preparation Fischer-Tropsch Catalysts with a High Mechanical, Thermal, and Chemical Stability. WO2007009680A1. January, 25, 2007.
  • Ikeda, M.; Waku, T.; Aoki, N. Catalyst for Fischer-Tropsch Synthesis and Process for Producing Hydrocarbons. US7510994B2. March, 31, 2009.
  • Inga, J.; Kennedy, P.; Leviness, S. Fischer-Tropsch Process in the Prescence of Nitrogen Contaminants. WO2005071044A1. August 4, 2005.
  • de Klerk, A.; Fischer-Tropsch Gasoline Process. WO2008144782A3. March 19, 2009.
  • León Soled, S.; Fiato, R. A.; Iglesia, E. Cobalt-Ruthenium Catalyst for Fischer-Tropsch Synthesis. EP0319625B1. July, 31, 2007.
  • Srinivasan, N.; Espinoza, R. L.; Coy, K. L.; Jothimurugesan, K.; Fischer-Tropsch Catalysts Using Multiple Precursors. US6822008B2. November 23, 2004.
  • CompactGTL | The Modular Gas Solution http://www.compactgtl.com/ (accessed Apr 21, 2021).
  • Velocys,; https://www.velocys.com/ (accessed Apr 21, 2021).
  • Yuhan, S.; Runhou, R.; Debao, L.; Jingang, G.; Bin, L.; Zhiqiang, S.; Hou, B.; Litao, J.; Congbiao, C. Cobalt-copper Fischer-Tropsch synthesis catalyst and preparation. CN101979138B, July 25, 2012.
  • Loginova, A. N.; Svidersky, S. A.; Potapova, S. N.; Fadeev, V. V.; Mikhailova, Y. V.; Method for Obtaining Synthetic Liquid Fuels from Hydrocarbon Gases as per Fischer-tropsch Method, and Catalysts Used for Its Implementation. RU2444557C1. March 10, 2012.
  • Yingcong, P.; Yuewu, T.; Yimin, D. Iron-based catalyst for synthesizing light hydrocarbon and preparation method thereof. CN102371154B. June 5, 2013
  • Shurong, W.; Kunzan, Q.; Lingjun, Z.; Mengxiang, F.; Zhongyang, L.; Kefa, C.; Catalyst for selectively synthesizing gasoline and diesel components by synthesis gas and preparation method of catalyst. CN103252238B. April 15, 2015.
  • Qiwen, S.; Xianjun, X.; Zongsen, Z.; Zhengwei, Y. For catalyst and the Synthesis and applications of the oligomerisation of Fischer-Tropsch synthetic low-carbon alkene. CN103623860B. March 2, 2016
  • Moon, D.; Kwan-young, L.; Signer, L. Y.-H.; Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst. KR101564404B1. October 30, 2015.
  • Marker, T. L.; Linck, M. B.; Wawnerow, J.; Ortíz-Toral, P. Methods and systems of devices for reforming methane and light hydrocarbons into liquid hydrocarbon fuel. RU2742984C1. February 12, 2021.
  • Stobbe, E. R.; Bezemer, G. L.; Brink, P. J. V. D.; Bavel, A. P. V. Method for Starting up a Fischer Tropsch Process. US20160160128A1, June 9, 2016.
  • Ferguson, E.; Krawiec, P.; Ojeda Pineda, M.; Paterson, A.; Wells, M. J.; Fischer-Tropsch Process Using Reduced Cobalt Catalyst. US10717075B2. July 21, 2020.
  • Roger, A. H.; Deshmukh, R. S.; Paul, E. K.; Robert, D. L.; Lucas, D. S.; Andre, P. S.; Steven, T. P. Synthesis Gas Conversion Process. GB2554618A, April 4, 2018.
  • Corradini, A.; McComick, J. Catalytic Reactions Using Ionic Liquids. US20120029245A1. February 2, 2012
  • Rytter, E.; Holmen, A. Deactivation and Regeneration of Commercial TypeFischer-Tropsch Co-Catalysts—A Mini-Review. Catalysts. 2015, 5(2), 478–499. DOI: 10.3390/catal5020478.
  • Cherubini, F.; Strømman, A. H. Chapter 1 - Principles of Biorefining. In In Biofuels; Pandey; Larroche, A., Ricke, C., C, S., Dussap, C.-G., Gnansounou, E., Eds.; Academic Press: Amsterdam, 2011; pp 3–24. DOI: 10.1016/B978-0-12-385099-7.00001-2.
  • Sikarwar, V. S.; Zhao, M.; Fennell, P. S.; Shah, N.; Anthony, E. J. Progress in Biofuel Production from Gasification. Prog. Energy Combust. Sci. 2017, 61, 189–248. DOI: 10.1016/j.pecs.2017.04.001.
  • Synthetic Fuel Process | ExxonMobil Chemical http://www.exxonmobilchemical.com/en/catalysts-and-technology-licensing/synthetic-fuels? (accessed Sep 10, 2021).
  • Tabak, S.; McGihon, R.; Hindman, M.; Zhao, X.; Heinritz-Adrian, M.; Brandl, A. An Alternative Route for Coal To Liquid Fuel. In 2008 Gasification Technologies Conference; Washington, DC, 2008; p 19.
  • Mortensen, P. M.; Grunwaldt, J.-D.; Jensen, P. A.; Knudsen, K. G.; Jensen, A. D. A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels. Appl. Catal. Gen. 2011, 407(1), 1–19. DOI: 10.1016/j.apcata.2011.08.046.
  • Huber, G. W.; Corma, A. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chem. Int. Ed. 2007, 46(38), 7184–7201. DOI: 10.1002/anie.200604504.
  • Rezaei, P. S.; Shafaghat, H.; Daud, W. M. A. W. Suppression of Coke Formation and Enhancement of Aromatic Hydrocarbon Production in Catalytic Fast Pyrolysis of Cellulose over Different Zeolites: Effects of Pore Structure and Acidity. RSC Adv. 2015, 5(80), 65408–65414. DOI: 10.1039/C5RA11332F.
  • Galadima, A.; Muraza, O. In Situ Fast Pyrolysis of Biomass with Zeolite Catalysts for Bioaromatics/Gasoline Production: A Review. Energy Convers. Manag. 2015, 105, 338–354. DOI: 10.1016/j.enconman.2015.07.078.
  • Hilten, R.; Speir, R.; Kastner, J.; Das, K. C. Production of Aromatic Green Gasoline Additives via Catalytic Pyrolysis of Acidulated Peanut Oil Soap Stock. Bioresour. Technol. 2011, 102(17), 8288–8294. DOI: 10.1016/j.biortech.2011.06.049.
  • Pujro, R.; García, J. R.; Bertero, M.; Falco, M.; Sedran, U. Review on Reaction Pathways in the Catalytic Upgrading of Biomass Pyrolysis Liquids. Energy Fuels. 2021, 35(21), 16943–16964. DOI: 10.1021/acs.energyfuels.1c01931.
  • Carlson, T. R.; Cheng, Y.-T.; Jae, J.; Huber, G. W. Production of Green Aromatics and Olefins by Catalytic Fast Pyrolysis of Wood Sawdust. Energy Environ. Sci. 2010, 4(1), 145–161. DOI: 10.1039/C0EE00341G.
  • Zhang, H.; Carlson, T. R.; Xiao, R.; Huber, G. W. Catalytic Fast Pyrolysis of Wood and Alcohol Mixtures in a Fluidized Bed Reactor. Green Chem. 2012, 14(1), 98–110. DOI: 10.1039/C1GC15619E.
  • Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science. 2010, 330(6008), 1222–1227. DOI: 10.1126/science.1194218.
  • Adjaye, J. D.; Katikaneni, S. P. R.; Bakhshi, N. N. Catalytic Conversion of a Biofuel to Hydrocarbons: Effect of Mixtures of HZSM-5 and Silica-Alumina Catalysts on Product Distribution. Fuel Process. Technol. 1996, 48(2), 115–143. DOI: 10.1016/S0378-3820(96)01031-4.
  • Thring, R. W.; Katikaneni, S. P. R.; Bakhshi, N. N. The Production of Gasoline Range Hydrocarbons from Alcell® Lignin Using HZSM-5 Catalyst. Fuel Process. Technol. 2000, 62(1), 17–30. DOI: 10.1016/S0378-3820(99)00061-2.
  • Li, X.; Su, L.; Wang, Y.; Yu, Y.; Wang, C.; Li, X.; Wang, Z. Catalytic Fast Pyrolysis of Kraft Lignin with HZSM-5 Zeolite for Producing Aromatic Hydrocarbons. Front. Environ. Sci. Eng. 2012, 6(3), 295–303. DOI: 10.1007/s11783-012-0410-2.
  • Thangalazhy-Gopakumar, S.; Adhikari, S.; Gupta, R. B. Catalytic Pyrolysis of Biomass over H+ZSM-5 under Hydrogen Pressure. Energy Fuels. 2012, 26(8), 5300–5306. DOI: 10.1021/ef3008213.
  • Rezaei, P. S.; Shafaghat, H.; Daud, W. M. A. W. Aromatic Hydrocarbon Production by Catalytic Pyrolysis of Palm Kernel Shell Waste Using a Bifunctional Fe/HBeta Catalyst: Effect of Lignin-Derived Phenolics on Zeolite Deactivation. Green Chem. 2016, 18(6), 1684–1693. DOI: 10.1039/C5GC01935D.
  • Chaihad, N.; Karnjanakom, S.; Kurnia, I.; Yoshida, A.; Abudula, A.; Reubroycharoen, P.; Guan, G. Catalytic Upgrading of Bio-Oils over High Alumina Zeolites. Renew. Energy. 2019, 136, 1304–1310. DOI: 10.1016/j.renene.2018.09.102.
  • Chaihad, N.; Anniwaer, A.; Karnjanakom, S.; Kasai, Y.; Kongparakul, S.; Samart, C.; Reubroycharoen, P.; Abudula, A.; Guan, G. In-Situ Catalytic Upgrading of Bio-Oil Derived from Fast Pyrolysis of Sunflower Stalk to Aromatic Hydrocarbons over Bifunctional Cu-Loaded HZSM-5. J. Anal. Appl. Pyrolysis. 2021, 155, 105079. DOI: 10.1016/j.jaap.2021.105079.
  • Xu, D.; Yang, S.; Su, Y.; Shi, L.; Zhang, S.; Xiong, Y. Simultaneous Production of Aromatics-Rich Bio-Oil and Carbon Nanomaterials from Catalytic Co-Pyrolysis of Biomass/Plastic Wastes and in-Line Catalytic Upgrading of Pyrolysis Gas. Waste Manag. 2021, 121, 95–104. DOI: 10.1016/j.wasman.2020.12.008.
  • Chaihad, N.; Situmorang, Y. A.; Anniwaer, A.; Kurnia, I.; Karnjanakom, S.; Kasai, Y.; Abudula, A.; Reubroycharoen, P.; Guan, G. Preparation of Various Hierarchical HZSM-5 Based Catalysts for in-Situ Fast Upgrading of Bio-Oil. Renew. Energy. 2021, 169, 283–292. DOI: 10.1016/j.renene.2021.01.013.
  • Ishihara, A.; Kanamori, S.; Hashimoto, T. Effects of Zn Addition into ZSM-5 Zeolite on Dehydrocyclization-Cracking of Soybean Oil Using Hierarchical Zeolite-Al 2 O 3 Composite-Supported Pt/NiMo Sulfided Catalysts. ACS Omega. 2021, 6(8), 5509–5517. DOI: 10.1021/acsomega.0c05855.
  • Shirasaki, Y.; Nasu, H.; Hashimoto, T.; Ishihara, A. Effects of Types of Zeolite and Oxide and Preparation Methods on Dehydrocyclization-Cracking of Soybean Oil Using Hierarchical Zeolite-Oxide Composite-Supported Pt/NiMo Sulfided Catalysts. Fuel Process. Technol. 2019, 194, 106109. DOI: 10.1016/j.fuproc.2019.05.032.
  • Ishihara, A.; Ishida, R.; Ogiyama, T.; Nasu, H.; Hashimoto, T.; Salomón, M. A.; Coronas, J.; Menéndez, M.; Santamarı́a, J. Dehydrocyclization-Cracking Reaction of Soybean Oil Using Zeolite-Metal Oxide Composite-Supported PtNiMo Sulfided Catalysts. Fuel Process. Technol. 2017, 161, 17–22. DOI: 10.1016/j.fuproc.2017.02.028.
  • Ishihara, A.; Kawaraya, D.; Sonthisawate, T.; Kimura, K.; Hashimoto, T.; Nasu, H. Catalytic Cracking of Soybean Oil by Hierarchical Zeolite Containing Mesoporous Silica-Aluminas Using a Curie Point Pyrolyzer. J. Mol. Catal. Chem. 2015, 396, 310–318. DOI: 10.1016/j.molcata.2014.10.010.
  • Ishihara, A.; Fukui, N.; Nasu, H.; Hashimoto, T. Hydrocracking of Soybean Oil Using Zeolite–Alumina Composite Supported NiMo Catalysts. Fuel. 2014, 134, 611–617. DOI: 10.1016/j.fuel.2014.06.004.
  • Ishihara, A.; Tsuchimori, Y.; Hashimoto, T. Dehydrocyclization–Cracking of Methyl Oleate by Pt Catalysts Supported on a ZnZSM-5–Al2O3 Hierarchical Composite. RSC Adv. 2021, 11(32), 19864–19873. DOI: 10.1039/D1RA02677A.
  • Ishihara, A.; Takemoto, K.; Hashimoto, T. Aromatics Formation by Dehydrocyclization-Cracking of Methyl Oleate Using ZnZSM-5-Alumina Composite-Supported NiMo Sulfide Catalysts. Fuel. 2021, 289, 119885. DOI: 10.1016/j.fuel.2020.119885.
  • Ishihara, A.; Kawaraya, D.; Sonthisawate, T.; Nasu, H.; Hashimoto, T. Preparation and Characterization of Zeolite-Containing Silica-Aluminas with Three Layered Micro-Meso-Meso-Structure and Their Reactivity for Catalytic Cracking of Soybean Oil Using Curie Point Pyrolyzer. Fuel Process. Technol. 2017, 161, 8–16. DOI: 10.1016/j.fuproc.2017.03.002.
  • Carlson, T. R.; Tompsett, G. A.; Conner, W. C.; Huber, G. W. Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Top. Catal. 2009, 52(3), 241. DOI: 10.1007/s11244-008-9160-6.
  • Kubička, D.; Kikhtyanin, O. Opportunities for Zeolites in Biomass Upgrading—Lessons from the Refining and Petrochemical Industry. Catal. Today. 2015, 243, 10–22. DOI: 10.1016/j.cattod.2014.07.043.
  • Gollakota, A. R. K.; Reddy, M.; Subramanyam, M. D.; Kishore, N. A Review on the Upgradation Techniques of Pyrolysis Oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. DOI: 10.1016/j.rser.2015.12.180.
  • Fisk, C. A.; Morgan, T.; Ji, Y.; Crocker, M.; Crofcheck, C.; Lewis, S. A. Bio-Oil Upgrading over Platinum Catalysts Using in Situ Generated Hydrogen. Appl. Catal. Gen. 2009, 358(2), 150–156. DOI: 10.1016/j.apcata.2009.02.006.
  • Bui, V. N.; Toussaint, G.; Laurenti, D.; Mirodatos, C.; Geantet, C. Co-Processing of Pyrolisis Bio Oils and Gas Oil for New Generation of Bio-Fuels: Hydrodeoxygenation of Guaïacol and SRGO Mixed Feed. Catal. Today. 2009, 143(1–2), 172–178. DOI: 10.1016/j.cattod.2008.11.024.
  • Elliott, D. C.; Hart, T. R. Catalytic Hydroprocessing of Chemical Models for Bio-Oil. Energy Fuels. 2009, 23(2), 631–637. DOI: 10.1021/ef8007773.
  • Elliott, D. C.;. Historical Developments in Hydroprocessing Bio-Oils. Energy Fuels. 2007, 21(3), 1792–1815. DOI: 10.1021/ef070044u.
  • Ameen, M.; Azizan, M. T.; Ramli, A.; Yusup, S.; Alnarabiji, M. S. Catalytic Hydrodeoxygenation of Rubber Seed Oil over Sonochemically Synthesized Ni-Mo/γ-Al2O3 Catalyst for Green Diesel Production. Ultrason. Sonochem. 2019, 51, 90–102. DOI: 10.1016/j.ultsonch.2018.10.011.
  • Oh, S.; Lee, J. H.; Choi, I.-G.; Choi, J. W. Enhancement of Bio-Oil Hydrodeoxygenation Activity over Ni-Based Bimetallic Catalysts Supported on SBA-15. Renew. Energy. 2020, 149, 1–10. DOI: 10.1016/j.renene.2019.12.027.
  • Zhu, Y.; Zhang, Z.; Cheng, J.; Guo, H.; Yang, W. Ni-BTC Metal-Organic Framework Loaded on MCM-41 to Promote Hydrodeoxygenation and Hydrocracking in Jet Biofuel Production. Int. J. Hydrog. Energy. 2021, 46(5), 3898–3908. DOI: 10.1016/j.ijhydene.2020.10.216.
  • Rajesh Banu, J.; Kavitha, S.; Yukesh Kannah, R.; Poornima Devi, T.; Gunasekaran, M.; Kim, S.-H.; Kumar, G. A Review on Biopolymer Production via Lignin Valorization. Bioresour. Technol. 2019, 290, 121790. DOI: 10.1016/j.biortech.2019.121790.
  • Ponnusamy, V. K.; Nguyen, D. D.; Dharmaraja, J.; Shobana, S.; Banu, J. R.; Saratale, R. G.; Chang, S. W.; Kumar, G. A Review on Lignin Structure, Pretreatments, Fermentation Reactions and Biorefinery Potential. Bioresour. Technol. 2019, 271, 462–472. DOI: 10.1016/j.biortech.2018.09.070.
  • Becker, J.; Wittmann, C. A Field of Dreams: Lignin Valorization into Chemicals, Materials, Fuels, and Health-Care Products. Biotechnol. Adv. 2019, 37(6), 107360. DOI: 10.1016/j.biotechadv.2019.02.016.
  • Garlapati, V. K.; Chandel, A. K.; Kumar, S. P. J.; Sharma, S.; Sevda, S.; Ingle, A. P.; Pant, D. Circular Economy Aspects of Lignin: Towards a Lignocellulose Biorefinery. Renew. Sustain. Energy Rev. 2020, 130, 109977. DOI: 10.1016/j.rser.2020.109977.
  • Mascal, M.; Dutta, S. Synthesis of Highly-Branched Alkanes for Renewable Gasoline. Fuel Process. Technol. 2020, 197, 106192. DOI: 10.1016/j.fuproc.2019.106192.
  • Lei, L.; Wang, Y.; Zhang, Z.; An, J.; Wang, F. Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catal. 2020, 10(15), 8788–8814. DOI: 10.1021/acscatal.0c01900.
  • Kumar, A.; Biswas, B.; Krishna, B. B.; Bhaskar, T. Potential of Petrochemicals from Lignin. In Biomass, Biofuels, Biochemicals; Elsevier: London, 2021; pp 147–171. doi:10.1016/B978-0-12-820294-4.00007-7
  • Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water. Nature. 2002, 418, 4.
  • Wang, C.; Zhang, X.; Liu, Q.; Zhang, Q.; Chen, L.; Ma, L. A Review of Conversion of Lignocellulose Biomass to Liquid Transport Fuels by Integrated Refining Strategies. Fuel Process. Technol. 2020, 208, 106485. DOI: 10.1016/j.fuproc.2020.106485.
  • Coronado, I.; Stekrova, M.; Reinikainen, M.; Simell, P.; Lefferts, L.; Lehtonen, J. A Review of Catalytic Aqueous-Phase Reforming of Oxygenated Hydrocarbons Derived from Biorefinery Water Fractions. Int. J. Hydrog. Energy. 2016, 41(26), 11003–11032. DOI: 10.1016/j.ijhydene.2016.05.032.
  • Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous Phase Reforming Process for the Valorization of Wastewater Streams: Application to Different Industrial Scenarios. Catal. Today. 2021, S0920586121002662. 10.1016/j.cattod.2021.06.002.
  • Huber, G. W.;. Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science. 2005, 308(5727), 1446–1450. DOI: 10.1126/science.1111166.
  • Xia, Q.; Chen, Z.; Shao, Y.; Gong, X.; Wang, H.; Liu, X.; Parker, S. F.; Han, X.; Yang, S.; Wang, Y. Direct Hydrodeoxygenation of Raw Woody Biomass into Liquid Alkanes. Nat. Commun. 2016, 7(1), 11162. DOI: 10.1038/ncomms11162.
  • Zhang, Q.; Wang, T.; Li, B.; Jiang, T.; Ma, L.; Zhang, X.; Liu, Q. Aqueous Phase Reforming of Sorbitol to Bio-Gasoline over Ni/HZSM-5 Catalysts. Appl. Energy. 2012, 97, 509–513. DOI: 10.1016/j.apenergy.2011.12.044.
  • Qiu, S.; Wang, T.; Fang, Y. High-Efficient Preparation of Gasoline-Ranged C5–C6 Alkanes from Biomass-Derived Sugar Polyols of Sorbitol over Ru-MoO3−x/C Catalyst. Fuel Process. Technol. 2019, 183, 19–26. DOI: 10.1016/j.fuproc.2018.11.002.
  • Li, N.; Tompsett, G. A.; Zhang, T.; Shi, J.; Wyman, C. E.; Huber, G. W. Renewable Gasoline from Aqueous Phase Hydrodeoxygenation of Aqueous Sugar Solutions Prepared by Hydrolysis of Maple Wood. Green Chem. 2011, 13(1), 91–101. DOI: 10.1039/C0GC00501K.
  • Wu, K.; Wu, Y.; Chen, Y.; Chen, H.; Wang, J.; Yang, M. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase. ChemSusChem. 2016, 9(12), 1355–1385. DOI: 10.1002/cssc.201600013.
  • Xiong, H.; Pham, H. N.; Datye, A. K. Hydrothermally Stable Heterogeneous Catalysts for Conversion of Biorenewables. Green Chem. 2014, 16(11), 4627–4643. DOI: 10.1039/C4GC01152J.
  • Perkins, G.; Batalha, N.; Kumar, A.; Bhaskar, T.; Konarova, M. Recent Advances in Liquefaction Technologies for Production of Liquid Hydrocarbon Fuels from Biomass and Carbonaceous Wastes. Renew. Sustain. Energy Rev. 2019, 115, 109400. DOI: 10.1016/j.rser.2019.109400.
  • Niemi, S.; Hissa, M.; Ovaska, T.; Sirviö, K.; Vauhkonen, V. Performance and Emissions of a Non-Road Diesel Engine Driven with a Blend of Renewable Naphtha and Diesel Fuel Oil. OSUVA Open Science. Technische Akademie Esslingen 2019.
  • Akah, A.; Al-Ghrami, M.; Saeed, M.; Siddiqui, M. A. B. Reactivity of Naphtha Fractions for Light Olefins Production. Int. J. Ind. Chem. 2017, 8(2), 221–233. DOI: 10.1007/s40090-016-0106-8.
  • Pyl, S. P.; Schietekat, C. M.; Reyniers, M.-F.; Abhari, R.; Marin, G.; Van Geem, B.; M, K.; M, K.; M, K.; M, K. Biomass to Olefins: Cracking of Renewable Naphtha. Chem. Eng. J. 2011, 176-177, 178–187. DOI: 10.1016/j.cej.2011.04.062.
  • Pahl, R. H.; McNally, M. J. Fuel Blending and Analysis for the Auto/Oil Air Quality Improvement Research Program. In International Fuels & Lubricants Meeting & Exposition; SAE International: USA, 1990; p 902098. https://doi.org/10.4271/902098.
  • Fahim, M. A.; Alsahhaf, T. A.; Elkilani, A. Chapter 9 - Product Blending. In Fundamentals of Petroleum Refining; Fahim, M. A., Alsahhaf, T. A., Elkilani, A., Eds.; Elsevier: Amsterdam, 2010; pp 237–261. DOI: 10.1016/B978-0-444-52785-1.00009-7.
  • Bruno, T. J.; Wolk, A.; Naydich, A. Composition-Explicit Distillation Curves for Mixtures of Gasoline with Four-Carbon Alcohols (Butanols). Energy Fuels. 2009, 23(4), 2295–2306. DOI: 10.1021/ef801117c.
  • Mendes, G.; Aleme, H. G.; Barbeira, P. J. S. Determination of Octane Numbers in Gasoline by Distillation Curves and Partial Least Squares Regression. Fuel. 2012, 97, 131–136. DOI: 10.1016/j.fuel.2012.01.058.
  • Gilchrist, J. D.;. 1977. 7 - Liquid Fuels. In Fuels, Furnaces and Refractories, Gilchrist, J. D., Ed., 60–73. International Series on Materials Science and Technology; Pergamon: Surrey, UK, doi:10.1016/B978-0-08-020430-7.50012-8.
  • Rodríguez-Antón, L. M.; Gutiérrez-Martín, F.; Hernández-Campos, M. Physical Properties of Gasoline-ETBE-Isobutanol (In Comparison with Ethanol) Ternary Blends and Their Impact on Regulatory Compliance. Energy. 2019, 185, 68–76. DOI: 10.1016/j.energy.2019.07.050.
  • AlRamadan, A. S.; Badra, J.; Javed, T.; Al-Abbad, M.; Bokhumseen, N.; Gaillard, P.; Babiker, H.; Farooq, A.; Sarathy, S. M. Mixed Butanols Addition to Gasoline Surrogates: Shock Tube Ignition Delay Time Measurements and Chemical Kinetic Modeling. Combust. Flame. 2015, 162(10), 3971–3979. DOI: 10.1016/j.combustflame.2015.07.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.