Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 4
671
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Molecular Kinetic Modeling of Catalytic Naphtha Reforming: A Review of Complexities and Solutions

, , , &

References

  • Antos, G. J.; Aitani, A. M. Catalytic Naphtha Reforming, Second ed.; Marcel Dekker, New York: USA, 2004.
  • Babaqi, B. S.; Takriff, M. S.; Kamarudin, S. K.; Othman, N. T. A.; Modeling, M. Simulation, and Analysis for Predicting Improvement Opportunities in the Continuous Catalytic Regeneration Reforming Process. Chem. Eng. Res. Des. 2018, 132, 235–251. DOI: 10.1016/j.cherd.2018.01.025.
  • Rahimpour, M. R.; Jafari, M.; Iranshahi, D. Progress in Catalytic Naphtha Reforming Process: A Review. Appl. Energy. 2013, 109, 79–93. DOI: 10.1016/j.apenergy.2013.03.080.
  • Zhang, N.; Zhu, X. X. A Novel Modeling and Decomposition Strategy for Overall Refinery Optimisation. Comput. Chem. Eng. 2000, 24, 1543–1548. DOI: 10.1016/S0098-1354(00)00545-7.
  • Katzer, J. R.; Ramage, M. P.; Sapre, A. V. Petroleum Refining: Poised for Profound Changes. Chem. Eng. Prog. 2000, 96, 41–51.
  • Briesen, H.; Marquardt, W. New Approach to Refinery Process Simulation with Adaptive Composition Representation. AIChE J. 2004, 50, 633–645. DOI: 10.1002/aic.10057.
  • Hu, S.; Towler, G.; Zhu, X. Combine Molecular Modeling with Optimization to Stretch Refinery Operation. Ind. Eng. Chem. Res. 2002, 41, 825–841. DOI: 10.1021/ie0010215.
  • Prestvik, R.; Moljord, K.; Grande, K.; Holmen, A. Compositional Analysis of Naphtha and Reformate. In Catalytic Naphtha Reforming; Second; Antos, G., and Aitani, A. Eds.; Marcel Dekker 1–34 : New York, USA, 2004.
  • Rodríguez, M. A.; Ancheyta, J. Detailed Description of Kinetic and Reactor Modeling for Naphtha Catalytic Reforming. Fuel. 2011, 90, 3492–3508. DOI: 10.1016/j.fuel.2011.05.022.
  • Zainullin, R. Z.; Koledina, K. F.; Akhmetov, A. F.; Gubaidullin, I. M. Kinetics of the Catalytic Reforming of Gasoline. Kinet. Catal. 2017, 58(3), 279–289. DOI: 10.1134/S0023158417030132.
  • Polovina, S.; Vojtech, M.; Dejanović, I.; Grujić, A.; Stijepović, M. Modeling a Reaction Section of a Commercial Continuous Catalytic Reformer. Energy Fuels. 2018, 32, 6378–6396. DOI: 10.1021/acs.energyfuels.7b03897.
  • Lapinski, M. P.; Metro, S.; Pujado, P. R.; Moser, M. Catalytic Reforming in Petroleum Processing. In Handbook of Petroleum Processing; Treese, S. A., Pujado, P. A., and Jones, D. S. J., Eds.; Springer International Publishing 243–245 : Switzerland, 2015.
  • Ancheyta-Juarez, J.; Kinetic, V.-M. E. Modeling of Naphtha Catalytic Reforming Reactions. Energy Fuels. 2000, 14, 1032–1037. DOI: 10.1021/ef0000274.
  • Fahim, M. A.; Al-Sahhaf, T. A.; Elkilani., A. Fundamentals of Petroleum Refining, First ed.; Oxford, U.K.: Elsevier Science 95–100 , 2009.
  • Ali, S. A.; Hydrotreating, N. In Catalytic Naphtha Reforming, Second; Antos, G., Aitani, A. Eds; Marcel Dekker: New York, USA, 2004.
  • Kubic, W. L. A Group Contribution Method for Estimating Cetane and Octane Numbers, Report No. LA-UR-16-25529, issued by Los Alamos National Laboratory, 2016.
  • Smith, R. B. Kinetic Analysis of Naphtha Reforming with Platinum Catalyst. Chem. Eng. Prog. 1959, 55, 76–80.
  • Zhou, X.; Hou, Z.; Wang, J.; Fang, W.; Ma, A.; Guo, J.; Klein, M. T. Molecular-Level Kinetic Model for C12 Continuous Catalytic Reforming. Energy Fuels. 2018, 32(6), 7078–7085. DOI: 10.1021/acs.energyfuels.8b00950.
  • Stijepovic, M. Z.; Vojvodic-Ostojic, A.; Milenkovic, I.; Linke, P. Development of a Kinetic Model for Catalytic Reforming of Naphtha and Parameter Estimation Using Industrial Plant Data. Energy Fuels. 2009, 23(2), 979–983. DOI: 10.1021/ef800771x.
  • Turaga, U. T.; Ramanathan, R. Catalytic Naphtha Reforming: Revisiting Its Importance in the Modern Refinery, J. Sci. Ind. Res. 2003, 62, 963–978.
  • Elsayed, H. A.; Menoufy, M. F.; Shaban, S. A.; Ahmed, H. S.; Heakal, B. H. Optimization of the Reaction Parameters of Heavy Naphtha Reforming Process Using Pt-Re/Al2O3 Catalyst System. Egypt. J. Pet. 2017, 26(4), 885–893. DOI: 10.1016/j.ejpe.2015.03.009.
  • Gjervan, T.; Prestvik, R.; Holmen, A. Catalytic Reforming. In Basic Principles in Applied Catalysis; Baerns, M., Ed.; Springer-Verlag 127–137 : Berlin, Heidelberg, 2004.
  • LeGoff, P.-Y.; Kostka, W.; Ross, J. Catalytic Naphtha Reforming. In Springer Handbook of Petroleum Technology; Hsu, C. S., and Robinson, P. R., Eds.; Cham, Switzerland: Springer International Publishing, 2017; pp 589–616.
  • Yusuf, A. Z.; John, Y. M.; Aderemi, B. O.; Patel, R.; Mujtaba, I. M. Modelling, Simulation and Sensitivity Analysis of Naphtha Catalytic Reforming Reactions. Comput. Chem. Eng. 2019, 130, 5–20. DOI: 10.1016/j.compchemeng.2019.106531.
  • Coker, A. K. Petroleum Refining Design and Applications Handbook, Vol. 1, Sep 2018. Beverly, MA: Wiley
  • Aitani, A. M. Licensed Reforming Processes. In Catalytic Naphtha Reforming; Second; Antos, G., and Aitani, A. Eds.; Marcel Dekker 477–496 : New York, USA, 2004.
  • Ali, S. A.; Siddiqui, M. A.; Ali, M. A. Parametric Study of Catalytic Reforming Process. React. Kinet. Catal. Lett. 2008, 87, 199–206. DOI: 10.1007/s11144-006-0001-y.
  • Yusuf, A. Z.; John, Y. M.; Aderemi, B. O.; Patel, R.; Mujtaba, I. M. Effect of Hydrogen Partial Pressure on Catalytic Reforming Process of Naphtha. Comput. Chem. Eng. 2020, 143, 107090. DOI: 10.1016/j.compchemeng.2020.107090.
  • Moljord, K.; Hellenes, H. G.; Hoff, A.; Tanem, I.; Grande, K.; Holmen, A. Effect of Reaction Pressure on Octane Number and Reformate and Hydrogen Yields in Catalytic Reforming. Ind. Eng. Chem. Res. 1996, 35, 99–105. DOI: 10.1021/ie940582r.
  • Mazzieri, V. A.; Pieck, C. L.; Vera, C. R.; Yori, J. C.; Grau, J. M. Effect of Ge Content on the Metal and Acid Properties of Pt-Re-Ge/Al2O3-Cl Catalysts for Naphtha Reforming. Appl. Catal. A-Gen. 2009, 353, 93–100. DOI: 10.1016/j.apcata.2008.10.024.
  • Pieck, C. L.; Sad, M. R.; Parera, J. M. Chlorination of Pt-Re/Al2O3 during Naphtha Reforming. J. Chem. Technol. Biotechnol. 1996, 67, 61–66. DOI: 10.1002/(SICI)1097-4660(199609)67:1<61::AID-JCTB529>3.0.CO;2-4.
  • Palmer, R. E.; Shipman, R.; Kao, S. H. Options for Reducing Benzene in the Refinery Gasoline Pool, NPRA Annual Meeting, March 9-11, 2008, San Diego, CA, USA.
  • Benitez, V. M.; Mazzieri, V. A.; Especel, C.; Epron, F.; Vera, C. R.; Mare´cot, P. Preparation of Trimetallic Pt-Re-Ge/Al2O3 and Pt-Ir-Ge/Al2O3 Naphtha Reforming Catalysts by Surface Redox Reaction. Appl. Catal. A. 2007, 319, 210–217. DOI: 10.1016/j.apcata.2006.12.006.
  • González-Marcos, M. P.; Iñarra, B.; Guil, J. M.; Gutiérrez-Ortiz, M. A. Development of an Industrial Characterisation Method for Naphtha Reforming Bimetallic Pt-Sn/Al2O3 Catalysts through n-Heptane Reforming Test Reactions. Catal. Today. 2005, 107-108, 685–692. DOI: 10.1016/j.cattod.2005.07.052.
  • Epron, F.; Carnevillier, C.; Catalytic, M. P. Properties in N-heptane Reforming of Pt-Sn and Pt-Ir-Sn/Al2O3 Catalysts Prepared by Surface Redox Reaction. Appl. Catal. A. Gen. 2005, 295, 157–169. DOI: 10.1016/j.apcata.2005.08.006.
  • Talaghat, M. R.; Karimi, M. S. Operation Parameters Effect on Yield and Octane Number for Monometallic, Bimetallic and Trimetallic Catalysts in Naphtha Reforming Process. Energy Sources Part A. 2020, 42, 176–193. DOI: 10.1080/15567036.2019.1587064.
  • Zaera, F. Selectivity in Hydrocarbon Catalytic Reforming: A Surface Chemistry Perspective. Appl. Catal. A: General. 2002, 229, 75–91. DOI: 10.1016/S0926-860X(02)00017-0.
  • Said-Aizpuru, O.; Allain, F.; Diehl, F.; Farrusseng, D.; Joly, J. F.; Dandeu, A.; Naphtha Reforming, A. Process Development Methodology Based on the Identification of Catalytic Reactivity Descriptors. New J. Chem. 2020, 44, 7243–7260. DOI: 10.1039/C9NJ05349B.
  • Jahel, A. N.; Moizan-Baslé, V.; Chizallet, C.; Raybaud, P.; Olivier-Fourcade, J.; Jumas, J. C.; Avenier, P.; Lacombe, S. Effect of Indium Doping of γ-Alumina on the Stabilization of Pt-Sn Alloyed Clusters Prepared by Surface Organostannic Chemistry. J. Phys. Chem. C. 2012, 116, 10073–10083. DOI: 10.1021/jp301282r.
  • Bartholomew, C. H. Mechanisms of Catalyst Deactivation. Appl. Catal., A. 2001, 212, 17–60. DOI: 10.1016/S0926-860X(00)00843-7.
  • Otal, L. M. R.; García, T. V.; Rubio, M. S. A Model for Catalyst Deactivation in Industrial Catalytic Reforming. Stud. Surf. Sci. Catal. 1997, 111, 19–25.
  • Iranshahi, D.; Rafiei, R.; Jafari, M.; Amiri, S.; Karimi, M.; Rahimpour, M. R. Applying New Kinetic and Deactivation Models in Simulation of a Novel Thermally Coupled Reactor in Continuous Catalytic Regenerative Naphtha Process. Chem. Eng. J. 2013, 229, 153–176. DOI: 10.1016/j.cej.2013.05.052.
  • Wei, J.; Kuo, J. C. W. Lumping Analysis in Monomolecular Reaction Systems. Analysis of the Exactly Lumpable System. Ind. Eng. Chem. Fundam. 1969, 8, 114–123. DOI: 10.1021/i160029a019.
  • Li, G.; Rabitz, H. The Direct Lumping Approach: An Application to a Catalytic Reforming Model, Chem. Eng. Sci. 1993, 48, 1903–1909. DOI: 10.1016/0009-2509(93)80360-3.
  • Quann, R. J.; Jaffe, S. B. Building Useful Models of Complex Reaction Systems in Petroleum Refining. Chem. Eng. Sci. 1615-1635, 1996(51).
  • Quann, R. J. Modeling the Chemistry of Complex Petroleum Mixtures. Environ. Health Perspect. 1998, 106, 1441–1448. DOI: 10.1289/ehp.98106s61441.
  • Froment, G. F. Single Event Kinetic Modelling of Complex Catalytic Processes. Catal. Rev.-Sci. Eng. 2005, 47, 83–124. DOI: 10.1081/CR-200047793.
  • Bommannan, D.; Srivastava, R. D.; Saraf, D. N. Modeling of Catalytic Naphtha Reformers. Can. J. Chem. Eng. 1989, 67, 405–411. DOI: 10.1002/cjce.5450670309.
  • Moharir, A. S.; Agarwal, A. B. L.; Saraf, D. N. Symposium on Science of Catalysis and Its Application in Industry, FPDIL, Sindri, 163–170, 1979.
  • Dorozhov, A. P.; Moskva. Ph.D. dissertation, 1971.
  • Viñas, J. M.; Gonzalez, M. G.; Barreto, G. F.; Kinetic, A. Model for Simulating Naphtha Reforming Reactors. Lat. Am. Appl. Res. 1996, 26, 21–34.
  • Henningsen, J.; Bundgaard-Nielson, M. Catalytic Reforming. Bri. Chem. Eng. 1970, 15, 1433–1436.
  • Krane, H. G.; Groh, A. B.; Schulman, B. L. Sinfelt, J. H. Reactions in Catalytic Reforming of Naphthas. World Petroleum Congress Proceedings New York, USA, 1959, 39–53.
  • Zhorov, Y. M.; Panchenkov, G. M.; Shapiro, I. Y. Mathematical Description of Platforming Carried Out under Severe Conditions. Khimiya i Tekhnologiya Topliv i Masel = Chemistry and technology of fuels and oils. 1970, 15, 37–40.
  • Ramage, M. P.; Graziani, K. R.; Krambeck, F. J. Development of Mobil’s Kinetic Reforming Model. Chem. Eng. Sci. 1980, 35, 41–48. DOI: 10.1016/0009-2509(80)80068-6.
  • Ramage, M. P.; Graziani, K. R.; Schipper, P. H.; Krambeck, F. J.; Choi, B. C. KINPTR (Mobil’s Kinetic Reforming Model): A Review of Mobil’s Industrial Process Modeling Philosophy. Adv. Chem. Eng. 1987, 13, 193–266.
  • Jenkins, J. H.; Stephens, T. W. Kinetics of Cat Reforming. Hydrocarbon Proc. 1980, 59, 163–167.
  • Padmavathi, G.; Chaudhuri, K. K. Modelling and Simulation of Commercial Catalytic Naphtha Reformers. Can. J. Chem. Eng. 1997, 75, 930–937. DOI: 10.1002/cjce.5450750513.
  • Ancheyta, -J.; Villafuerte, E.; García, L.; González, E. Modeling and Simulation of Four Catalytic Reactors in Series for Naphtha Reforming. Energy Fuels. 2001, 15, 887–893. DOI: 10.1021/ef000273f.
  • Ancheyta, -J.; Villafuerte, E.; Schacht, P.; Aguilar, R.; Gonzalez, E. Simulation of a Semi-Regenerative Reforming Plant Using Feedstocks with and without Benzene Precursors. Chem. Eng. Technol. 2002, 25, 541–546. DOI: 10.1002/1521-4125(200205)25:5<541::AID-CEAT541>3.0.CO;2-4.
  • Hu, Y.; Su, H.; Modeling, C. J. Simulation and Optimization of Commercial Naphtha Reforming Process. In Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, USA, December 9-12, 2003., 6206–6211.
  • Hou, W.; Su, H.; Hu, Y.; Modelling, C. J. Simulation and Optimization of a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus Platform. Chin. J. Chem. Eng. 2006, 14, 584–591. DOI: 10.1016/S1004-9541(06)60119-5.
  • Hou, W.; Su, H.; Mu, S.; Chu, J. Multiobjective Optimization of the Industrial Naphtha Catalytic Reforming Process. Chin. J. Chem. Eng. 2007, 15, 75–80. DOI: 10.1016/S1004-9541(07)60036-6.
  • Hongjun, Z.; Mingliang, S.; Huixin, W.; Zeji, L.; Modeling, H. J. Simulation of Moving Bed Reactor for Catalytic Naphtha Reforming, Petrol. Sci. Tech. 2010, 28, 667–676.
  • Shakor, Z. M.; AbdulRazak, A. A.; Sukkar, K. A.; Detailed Reaction, A. Kinetic Model of Heavy Naphtha Reforming. Arab. J. Sci. Eng. 2020, 45, 7361–7370. DOI: 10.1007/s13369-020-04376-y.
  • Van Trimpont, P. A.; Marin, G. B.; Froment, G. F. Reforming of C7 Hydrocarbons on a Sulfided Commercial Pt/Al2O3 Catalyst. Ind. Eng. Chem. Res. 1988, 27, 51–57. DOI: 10.1021/ie00073a012.
  • Kmak, W. S. A Kinetic Simulation Model of the Powerformimg Process. Presented at the AIChE National Meeting, Houston, TX, USA, 1972.
  • Kmak, W. S.; Stuckey, T. W. Powerforming Process Studies with a Kinetic Simulation Model, Paper 56a, Proceedings of the AIChE National Meeting, New Orleans, LA, USA, 1973.
  • Marin, G. B.; Froment, G. F.; Lerou, J. J.; De Backer, W. Simulation of a Catalytic Naphtha Reforming Unit. In EFCE Publication Series (European Federation of Chemical Engineering), 1983; pp C117.1–C117.7.
  • Marin, G. B.; Froment, G. F. Reforming of C6 Hydrocarbons on a Platinum-Alumina Catalyst. Chem. Eng. Sci. 1982, 37, 759–773. DOI: 10.1016/0009-2509(82)85037-9.
  • Turpin, L. E. Cut Benzene Out of Reformate, Hydrocarbon Process. (Houston, TX, USA: Gulf Energy Information), 1992; pp 81–92.
  • Taskar, U.; Modeling and Optimization of a Catalytic Naphtha Reformer, Ph.D. Thesis, Texas Tech University, USA, 1996.
  • Taskar, U.; Riggs, J. B. Modeling and Optimization of a Semi-Regenerative Catalytic Naphtha Reformer. AIChE J. 1997, 43, 740–753. DOI: 10.1002/aic.690430319.
  • Coppens, M. O.; Froment, G. F. Fractal Aspects in the Catalytic Reforming of Naphtha. Chem. Eng. Sci. 1996, 51, 2283–2292. DOI: 10.1016/0009-2509(96)00085-1.
  • Hu, S.; Zhu, X. X.; Modeling, M. Optimization for Catalytic Reforming. Chem. Eng. Commun. 2004, 191, 500–512. DOI: 10.1080/00986440390255933.
  • Villaverde, A. F.; Fröhlich, F.; Weindl, D.; Hasenauer, J.; Banga, J. R. Benchmarking Optimization Methods for Parameter Estimation in Large Kinetic Models. Bioinformatics. 2019, 35, 830–838. DOI: 10.1093/bioinformatics/bty736.
  • Arani, H. M.; Shirvani, M.; Safdarian, K.; Dorostkar, E. Lumping Procedure for a Kinetic Model of Catalytic Naphtha Reforming. Braz. J. Chem. Eng. 2009, 26, 723–732. DOI: 10.1590/S0104-66322009000400011.
  • Peyrovi, M. H.; Parsafard, N.; Kinetic Study, S. A. Modelling of n-Heptane Reforming Process over Pt/Zr-HMS/HZSM-5 Composite Catalysts. Phys. Chem. Res. 2019, 7, 1–9.
  • Petrova, D. A.; Gushchin, P. A.; Ivanov, E. V.; Lyubimenko, V. A.; Kolesnikov, I. M. Modelling Industrial Catalytic Reforming of Low Octane Gasoline. Chem. Technol. Fuels Oils. 2021, 57, 143–159. DOI: 10.1007/s10553-021-01234-x.
  • Wei, W.; Bennett, C. A.; Tanaka, R.; Hou, G.; Klein, M. T. Computer Aided Kinetic Modeling with KMT and KME. Fuel Process. Technol. 2008, 89, 350–363. DOI: 10.1016/j.fuproc.2007.11.015.
  • Wei, W.; Bennett, C.; Tanaka, R.; Hou, G.; Klein, M. T. Detailed Kinetic Models for Catalytic Reforming. In ACS National Meeting Book of Abstracts; 2005; Vol. 230 344–349 .
  • Klein, M. T. Software Tools for Molecular-Level Kinetic Modeling of Refinery and Petrochemical Reactors. Proceedings/Abstracts of the 26th Annual Symposium Technology in Petroleum Refining & Petrochemicals, November 7-8, 2016, Dhahran, Saudi Arabia, 3–7.
  • Hou, Z.; Software Tools for Molecule-Based Kinetic Modeling of Complex Systems. Ph.D. Dissertation, Rutgers University, New Jersey, USA, 2011.
  • Sotelo-Boyás, R.; Froment, G. F. Fundamental Kinetic Modeling of Catalytic Reforming. Ind. Eng. Chem. Res. 2009, 48, 1107–1119. DOI: 10.1021/ie800607e.
  • Ren, L. H.; Bertmer, M.; Stapf, S.; Demco, D. E.; Blümich, B.; Kern, C.; Jess, A. Deactivation and Regeneration of a Naphtha Reforming Catalyst. Appl. Catal. A. 2002, 228, 39–52.
  • Barbier, J.; Corro, G.; Zhang, Y. R.; Bournonville, J. P.; Franck, J. P. Coke Formation on Platinum-Alumina Catalyst of Wide Varying Dispersion. Appl. Catal. 1985, 13, 245–255. DOI: 10.1016/S0166-9834(00)81143-4.
  • Rahimpour, M. R. Operability of an Industrial Catalytic Naphtha Reformer in the Presence of Catalyst Deactivation. Chem. Eng. Technol. 2006, 29, 1–9. DOI: 10.1002/ceat.200500267.
  • Liu, K.; Fung, S. C.; Ho, T. C.; Rumschitzki, D. S. Heptane Reforming over Pt-Re/ Al2O3: Reaction Network, Kinetics, and Apparent Selective Catalyst Deactivation. J. Catal. 2002, 206, 188–201. DOI: 10.1006/jcat.2001.3485.
  • Figoli, N. S.; Beltramini, J. N.; Martinelli, E. E.; Sad, M. R.; Parera, J. M.; Conditions, O. Coke Formation on Pt-A12O3 Reforming Catalyst. Appl. Catal. 1983, 6, 19–32. DOI: 10.1016/0166-9834(83)80292-9.
  • Figoli, N. S.; Beltramini, J. N.; Martinelli, E. E.; Aloe, P. E.; Parera, J. M. Influence of Feedstock Characteristics on Activity and Stability of Pt/A12O3-Cl Reforming Catalyst. Appl. Catal. 1984, 11, 201–205. DOI: 10.1016/S0166-9834(00)81879-5.
  • Bishara, A.; Stanislaus, A.; Hussain, S. S. Effect of Feed Composition and Operating Conditions on Catalyst Deactivation and on Product Yield and Quality during Naphtha Catalytic Reforming. Appl. Catal. 1984, 13, 113–125. DOI: 10.1016/S0166-9834(00)83332-1.
  • Tailleur, R. G.; Davila, Y. Optimal Hydrogen Production through Revamping a Naphtha-reforming Unit: Catalyst Deactivation. Energy Fuels. 2008, 22, 2892–2901. DOI: 10.1021/ef8001718.
  • Barin, I. Thermochemical Data of Pure Substances, Third ed.; VCH Publishers, Inc.: New York, NY, USA, 1995.
  • de Oliveira, L. P.; Hudebine, D.; Guillaume, D.; Verstraete, J. J. A Review of Kinetic Modeling Methodologies for Complex Processes. Oil Gas Sci. Technol. 2016, 71, 45–104. DOI: 10.2516/ogst/2016011.
  • Zagaruiko, A. N.; Belyi, A. S.; Smolikov, M. D. Thermodynamically Consistent Kinetic Model for the Naphtha Reforming Process, Ind. Eng. Chem. Res. 2021, 60, 6627–6638. DOI: 10.1021/acs.iecr.0c05653.
  • Zagaruiko, A. N.; Belyi, A. S.; Smolikov, M. D.; Noskova, A. S. Unsteady-state Kinetic Simulation of Naphtha Reforming and Coke Combustion Processes in the Fixed and Moving Catalyst Beds. Catal. Today. 2014, 220-222, 168–177. DOI: 10.1016/j.cattod.2013.07.016.
  • Elizalde, I.; Ancheyta, J. Dynamic Modelling And Simulation Of A Naphtha Catalytic Reforming Reactor. Appl. Math. Model. 2015, 39, 764–775. DOI: 10.1016/j.apm.2014.07.013.
  • Joshi, P. V.; Klein, M. T.; Huebner, A. L.; Leyerle, R. W. Automated Kinetic Modeling of Catalytic Reforming at the Reaction Pathways Level. Rev. Process Chem. Eng. 1999, 2, 169–193.
  • Xu, L.; Zhu, F.; New, A. Way to Develop Reaction Network Automatically via DFT-Based Adaptive Kinetic Monte Carlo. Chem. Eng. Sci. 2020, 224, 115746. DOI: 10.1016/j.ces.2020.115746.
  • Pantelides, C.; Matzopoulos, M. gPROMS: Pushing the Barriers of Process Modelling, INGENIA, Issue 34, March 2008, 31–35.
  • Yusuf, A. Z.; Aderemi, B. O.; Patel, R.; Mujtaba, I. M. Study of Industrial Naphtha Catalytic Reforming Reactions via Modelling and Simulation. Processes. 2019, 7(4), 1–26. DOI: 10.3390/pr7040192.
  • John, Y. M.; Mustafa, M. A.; Patel, R.; Mujtaba, I. M. Parameter Estimation of a Six-Lump Kinetic Model of an Industrial Fluid Catalytic Cracking Unit. Fuel. 2019, 235, 1436–1454. DOI: 10.1016/j.fuel.2018.08.033.
  • Wolff, A.; Kramarz, J. Kinetic Models of Catalytic Reforming. Chem. Technol. Fuels Oils. 1979, 15(12), 870–877. DOI: 10.1007/BF00726299.
  • Hajjar, Z.; Tayyebi, S.; Ahmadi, M. H. E. Application of AI in Chemical Engineering. Artificial Intelligence - Emerging Trends and Applications; Aceves-Fernandez, M. A. Ed.; IntechOpen, Chapter 20, 399–415
  • Yu, D. L.; Gomm, J. B. Enhanced Neural Network Modelling for a Real Multivariable Chemical Process. Neural Comput. Applic. 2002, 10(4), 289. DOI: 10.1007/s005210200001.
  • Barwey, S.; Raman, V. A Neural Network Inspired Formulation of Chemical Kinetics [Online]; 2020. Available from: http://arxiv.org/abs/2008.08483 [Accessed 15 Oct 2021].
  • Goodwin, D. G.; Speth, R. L; Moffat, H. K.; Weber, B. W. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. 2015, DOI:10.5281/zenodo.48735.
  • Staszak, M 2020 . Artificial Intelligence in the Modeling of Chemical Reactions Kinetics. DOI:10.1515/psr-2020-0079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.