Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 4
667
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Catalytic tri- and tetramerization of ethylene: a mechanistic overview

Pages 1412-1467 | Received 11 Jun 2021, Accepted 19 Oct 2021, Published online: 03 Jan 2022

References

  • Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry, 3rd ed; Wiley: New York, 2008. Doi:10.1002/9783527619191.
  • Kissin, Y. V. Polyethylene, Linear Low Density. In Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons : New York, 2015, pp 1–33. DOI:10.1002/0471238961.1209140511091919.a01.pub3
  • Breuil, P.-A. R.; Magna, L.; Olivier-Bourbigou, H. Role of Homogeneous Catalysis in Oligomerization of Olefins. Catal. Lett. 2015, 145(1), 173–192. DOI: 10.1007/s10562-014-1451-xff.ffhal-01119632fff.ffhal-01119632f.
  • Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. Advances in Selective Ethylene Trimerisation – A Critical Overview. J. Organomet. Chem. 2004, 689(23), 3641–3668. DOI: 10.1016/j.jorganchem.2004.06.008.
  • McGuinness, D. S. Olefin Oligomerization via Metallacycles: Dimerization, Trimerization, Tetramerization, and Beyond. Chem. Rev. 2011, 111(3), 2321–2341. DOI: 10.1021/cr100217q.
  • Alferov, K. A.; Belov, G. P.; Meng, Y. Chromium Catalysts for Selective Ethylene Oligomerization to 1-Hexene and 1-Octene: Recent Results. Appl. Catal. A. 2017, 542, 71–124. DOI: 10.1016/j.apcata.2017.05.014.
  • Cossee, P. Ziegler-Natta Catalysis I. Mechanism of Polymerization of α-Olefins with Ziegler-Natta Catalysts. J. Catal. 1964, 3, 80–88. DOI: 10.1016/0021-9517(64)90095-8.
  • Keim, W. Oligomerization of Ethylene to α-Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angew. Chem. Int. Ed. 2013, 52(48), 12492–12496. DOI: 10.1002/anie.201305308.
  • Shiraki, Y.; Tamura, T. Production of Linear Alpha-Olefins. U.S. Patent 4,886,933, December 12, 1989.
  • Aliyev, V.; Mosa, F.; Al-Hazmi, M. Catalyst Composition for Oligomerization of Ethylene Oligomerization Process and Method for Its Preparation. U.S. Patent 8,481,444, July 09, 2013.
  • Tembe, G. L.; Pillai, S. M.; Ravindranathan, M. Process for the Preparation of Linear Low Molecular Weight Olefins by the Oligomerization of Ethylene. U.S. Patent 6,930,218, August 16, 2005.
  • Tembe, G. L.; Bandyopadhyay, A. R.; Pillai, S. M.; Satish, S.; Ravindranathan, M. Process for Manufacture of Linear Alpha-Olefins Using a Titanium Component and an Organoaluminum Halide Component. U.S. Patent 6,121,502, September, 19, 2000.
  • Small, B. L.; Brookhart, M. Iron-Based Catalysts with Exceptionally High Activities and Selectivities for Oligomerization of Ethylene to Linear α-Olefins. J. Am. Chem. Soc. 1998, 120(28), 7143–7144. DOI: 10.1021/ja981317q.
  • Small, B. L.; Rios, R.; Fernandez, E. R.; Carney, M. J. Oligomerization of Ethylene Using New Iron Catalysts Bearing Pendant Donor Modified α-Diimine Ligands. Organometallics. 1744-1749, 2007(26). DOI: 10.1021/om0611406.
  • Vogt, D. Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B., Herrmann, W., Beller, M., Paciello, R., Eds; Wiley-VCH: New York, 2017; Vol. 1, pp 240. 9783. 9783527328970.527328970.
  • Hurley, G. F.; Manyik, R. M.; Walker, W. E.; Wilson, T. P. Olefin Polymerization Catalysts. U. S. Patent 3,242,099A, March 22, 1966.
  • Reagen, W. K.; McDaniel, M. P. Chromium Compounds and Uses in Trimerization or Oligomerization. U.S. Patent 5,382,738A. January, 17, 1995.
  • Reagen, W. K.; Conroy, B. K. Chromium Compounds and Uses Thereof. European Patent 0416304A2, March 13, 1991.
  • Urata, H.; Aoshima, T.; Nishimura, S. Process for Producing α-olefin Oligomer. U. S. Patent 6133495A. October 17, 2000.
  • Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.; Wass, D. F. High Activity Ethylene Trimerisation Catalysts Based on Diphosphine Ligands. Chem. Commun. 2002, 8, 858–859. DOI: 10.1039/b201335e.
  • Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Catalytic Trimerization of Ethene with Highly Active Cyclopentadienyl−Arene Titanium Catalysts. Organometallics. 2002, 21(23), 5122–5135. DOI: 10.1021/om020765a.
  • McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Morgan, D.; Dixon, J. T.; Bollmann, A.; Englert, U. First Cr(III)-SNS Complexes and Their Use as Highly Efficient Catalysts for the Trimerization of Ethylene to 1-Hexene. J. Am. Chem. Soc. 2003, 125(18), 5272–5273. DOI: 10.1021/ja034752f.
  • McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Hu, C.; Englert, U.; Dixon, J. T.; Grove, C. Novel Cr-PNP Complexes as Catalysts for the Trimerisation of Ethylene. Chem. Comm. 2003, 3(3), 334–335. DOI: 10.1039/b210878j.
  • Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S., et al. Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities. J. Am. Chem. Soc. 2004, 126(45), 14712–14713. DOI: 10.1021/ja045602n.
  • Overett, M. J.; Blann, K.; Bollmann, A.; Dixon, J. T.; Hess, F.; Killian, E.; Maumela, H.; Morgan, D. H.; Neveling, A.; Otto, S. Ethylene Trimerisation and Tetramerisation Catalysts with Polar-substituted Diphosphinoamine Ligands. Chem. Comm. 2005, 5, 622–624. DOI: 10.1039/b412432d.
  • Blann, K.; Bollmann, A.; Dixon, J. T.; Neveling, A.; Morgan, D. H.; Maumela, H.; Killian, E.; Hess, F. M.; Otto, S.; Pepler, L., et al. Tetramerization of Olefins. U. S. Patent, 7511183 B2, March 31, 2009.
  • Suzuki, Y.; Kinoshita, S.; Shibahara, A.; Ishii, S.; Kawamura, K.; Inoue, Y.; Fujita, T. Trimerization of Ethylene to 1-Hexene with Titanium Complexes Bearing Phenoxy−Imine Ligands with Pendant Donors Combined with MAO. Organometallics. 2010, 29(11), 2394–2396. DOI: 10.1021/om1003368.
  • Gao, X.; Carter, C. A. G.; Fan, L.; Henderson, L. D. Amino Phosphine, U. S. Patent, 7994363 B2, August 9, 2011.
  • Peitz, S.; Peulecke, N.; Müller, B. H.; Spannenberg, A.; Drexler, H.-J.; Rosenthal, U.; Al-Hazmi, M. H.; Al-Eidan, K. E.; Wöhl, A.; Müller, W. Heterobimetallic Al−Cl−Cr Intermediates with Relevance to the Selective Catalytic Ethene Trimerization Systems Consisting of CrCl 3 (THF) 3, the Aminophosphorus Ligands Ph 2 PN(R)P(Ph)N(R)H, and Triethylaluminum. Organometallics. 2011, 30(8), 2364–2370. DOI: 10.1021/om200100g.
  • Höhne, M.; Peulecke, N.; Konieczny, K.; Müller, B. H.; Rosenthal, U. Chromium Catalyzed Highly Selective Oligomerization of Ethene to 1-Hexene with N,N-bis{chloro(aryl)-phosphino}-amine Ligands. Chem. Cat. Chem. 2017, 9(13), 2467–2472. DOI: 10.1002/cctc.201700448.
  • van Leeuwen, P. W. N. M.; Clement, N. D.; Tschan, M. J. L. New Processes for the Selective Production of 1-Octene. Coord. Chem. Rev. 2011, 255(13–14), 1499–1517. DOI: 10.1016/j.ccr.2010.10.009.
  • Manyik, R. A Soluble Chromium-based Catalyst for Ethylene Trimerization and Polymerization. J. Catal. 1977, 47(2), 197–209. DOI: 10.1016/0021-9517(77)90167-1.
  • Briggs, J. R. The Selective Trimerization of Ethylene to Hex-1-ene. J. Chem. Soc., Chem. Commun. 1989, 11, 674–675. DOI: 10.1039/c39890000674.
  • McDermott, J. X.; White, J. F.; Whitesides, G. M. Preparation and Thermal Decomposition of Platinum(II) Metallocycles. J. Am. Chem. Soc. 1973, 95(13), 4451–4452. DOI: 10.1021/ja00794a068.
  • McDermott, J. X.; White, J. F.; Whitesides, G. M. Thermal Decomposition of bis(phosphine)platinum(II) Metallocycles. J. Am. Chem. Soc. 1976, 98(21), 6521–6528. DOI: 10.1021/ja00437a018.
  • Jolly, P. W. From Hein to Hexene: Recent Advances in the Chemistry of Organochromium π-Complexes. Accts. Chem. Res. 1996, 29(11), 544–551. DOI: 10.1021/ar9502588.
  • Emrich, R.; Heinemann, O.; Jolly, P. W.; Krüger, C.; Verhovnik, G. P. J. The Role of Metallacycles in the Chromium-Catalyzed Trimerization of Ethylene. Organometallics. 1997, 16, 1511–1513. DOI: 10.1021/om961044c.
  • Small, B. L.; Carney, M. J.; Holman, D. M.; O’Rourke, C. E.; Halfen, J. A. New Chromium Complexes for Ethylene Oligomerization: Extended Use of Tridentate Ligands in Metal-Catalyzed Olefin Polymerization. Macromolecules. 2004, 37(12), 4375–4386. DOI: 10.1021/ma035554b.
  • (a) De Bruin, T. J. M.; Magna, L.; Raybaud, P.; Toulhoat, H. Hemilabile Ligand Induced Selectivity: A DFT Study on Ethylene Trimerization Catalyzed by Titanium Complexes. Organometallics. 2003, 22(17), 3404–3413. DOI: 10.1021/om030255w. (b) Tobisch, S.; Ziegler, T. Catalytic Oligomerization of Ethylene to Higher Linear α-Olefins Promoted by Cationic Group 4 Cyclopentadienyl-Arene Active Catalysts: A DFT Investigation Exploring the Influence of Electronic Factors on the Catalytic Properties by Modification of the Hemilabile Arene Functionality. Organometallics, 2004, 23(17),4077-4088 and references therein. DOI: 10.1021/om0498100.
  • Jabri, A.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R. Isolation of a Cationic Chromium(II) Species in a Catalytic System for Ethylene Tri- and Tetramerization. Organometallics. 2006, 25, 715–718. DOI: 10.1021/om050886l.
  • Venderbosch, B.; Oudsen, J.-P. H.; Wolzak, L. A.; Martin, D. J.; Korstanje, T. J.; Tromp, M. Spectroscopic Investigation of the Activation of a Chromium-Pyrrolyl Ethene Trimerization Catalyst. ACS Catal. 2019, 9, 1197. DOI: 10.1021/acscatal.8b03414.
  • Meijboom, N.; Schaverien, C. J.; Orpen, A. G. Organometallic Chemistry of Chromium(VI): Synthesis of Chromium(VI) Alkyls and Their Precursors. X-ray Crystal Structure of the Metallacycle Cr(NBu-tert)2{o-(CHSiMe3)2C6H4}. Organometallics. 1990, 9(3), 774–782. DOI: 10.1021/om00117a037.
  • Fang, Y.; Liu, Y.; Ke, Y.; Guo, C.; Zhu, N.; Mi, X.; Ma, Z.; Hu, Y. A New Chromium-based Catalyst Coated with Paraffin for Ethylene Oligomerization and the Effect of Chromium State on Oligomerization Selectivity. Appl. Catal. A: General. 2002, 235(1–2), 33–38. DOI: 10.1016/s0926-860x(02)00239-9.
  • Köhn, R. D.; Haufe, M.; Mihan, S.; Lilge, D. Triazacyclohexane Complexes of Chromium as Highly Active Homogeneous Model Systems for the Phillips Catalyst. Chem. Comm. 2000, 1927–1928. DOI: 10.1039/b005842o.
  • Agapie, T.; Schofer, S. J.; Labinger, J. A.; Bercaw, J. E. Mechanistic Studies of the Ethylene Trimerization Reaction with Chromium-diphosphine Catalysts: Experimental Evidence for a Mechanism Involving Metallacyclic Intermediates. J. Am. Chem. Soc. 2004, 126(5), 1304–1305. DOI: 10.1021/ja038968t.
  • Sydora, O. L. Selective Ethylene Oligomerization. Organometallics. 2019, 38(5), 997–1010. DOI: 10.1021/acs.organomet.8b00799.
  • Jiang, T.; Ning, Y.; Zhang, B.; Li, J.; Wang, G.; Yi, J.; Huang, Q. Preparation of 1-Octene by the Selective Tetramerization of Ethylene. J. Mol. Catal. A: Chemical. 2006, 259(1–2), 161–165. DOI: 10.1016/j.molcata.2006.06.026.
  • Dulai, A.; de Bod, H.; Hanton, M. J.; Smith, D. M.; Downing, S.; Mansell, S. M.; Wass, D. F. C-Substituted Bis(diphenylphosphino)methane-Type Ligands for Chromium-Catalyzed Selective Ethylene Oligomerization Reactions. Organometallics. 2009, 28(15), 4613–4616. DOI: 10.1021/om900285e.
  • Shaikh, Y.; Gurnham, J.; Albahily, K.; Gambarotta, S.; Korobkov, I. Aminophosphine-Based Chromium Catalysts for Selective Ethylene Tetramerization. Organometallics. 2012, 31(21), 7427–7433. DOI: 10.1021/om3007135.
  • Yang, Y.; Gurnham, J.; Liu, B.; Duchateau, R.; Gambarotta, S.; Korobkov, I. Selective Ethylene Oligomerization with Chromium Complexes Bearing Pyridine–Phosphine Ligands: Influence of Ligand Structure on Catalytic Behavior. Organometallics. 2014, 33(20), 5749–5757. DOI: 10.1021/om5003683.
  • Radcliffe, J. E.; Batsanov, A. S.; Smith, D. M.; Scott, J. A.; Dyer, P. W.; Hanton, M. J. Phosphanyl Methanimine (PCN) Ligands for the Selective Trimerization/Tetramerization of Ethylene with Chromium. ACS Catal. 2015, 5(12), 7095–7098. DOI: 10.1021/acscatal.5b02106.
  • (a) Marvel, C. S.; Stille, J. K. Intermolecular-Intramolecular Polymerization of α-Diolefins by Metal Alkyl Coordination Catalysts. J. Am. Chem. Soc. 1958, 80(7), 1740–1744. DOI: 10.1021/ja01540a059. (b) Resconi, L.; Waymouth, R. M. Diastereoselectivity in the Homogeneous Cyclopolymerization of 1,5-Hexadiene. J. Am. Chem. Soc. 1990, 112(12),4953-4954. DOI: 10.1021/ja00168a048.
  • Wang, M.; Shen, Y.; Qian, M.; Li, R.; He, R. Oligomerization and Simultaneous Cyclization of Ethylene to Methylenecyclopentane Catalyzed by Zirconocene Complexes. J. Organomet. Chem. 2000, 599(2), 143–146. DOI: 10.1016/s0022-328x(99)00749-4.
  • (a) Sheldon, R. A.; Kochi, J. K. Pair Production and Cage Reactions of Alkyl Radicals in Solution. J. Am. Chem. Soc. 1970, 92(14), 4395–4404. DOI: 10.1021/ja00717a042. (b) Foster, D. F.; Glidewell, C.; Cole-Hamilton, D. J.; Povey, I. M.; Hoare, R. D.; Pemble, M. E. Do Gasphase Adducts form During Metalorganic Vapour Phase Epitaxial Growth of Gallium Arsenide? J. Cryst. Growth. 1994, 145(1-4), 104-12. DOI:10.1016/0022-0248(94)91036-7.
  • Do, L. H.; Labinger, J. A.; Bercaw, J. E. Mechanistic Studies of Ethylene and α-Olefin Co-Oligomerization Catalyzed by Chromium–PNP Complexes. Organometallics. 2012, 31(14), 5143–5149. DOI: 10.1021/om300492r.
  • Zilbershtein, T. M.; Kardash, V. A.; Suvorova, V. V.; Golovko, A. K. Decene Formation in Ethylene Trimerization Reaction Catalyzed by Cr–Pyrrole System. Appl. Catal. A. Gen. 2014, 475, 371–378. DOI: 10.1016/j.apcata.2014.01.051.
  • Coxon, A. G. N.; Köhn, R. D. Efficient 1-Hexene Trimerization with Triazacyclohexane Chromium Catalysts and Detailed Product Analysis by 13C NMR. ACS Catal. 2016, 6(5), 3008–3016. DOI: 10.1021/acscatal.6b00542.
  • Overett, M. J.; Blann, K.; Bollmann, A.; Dixon, J. T.; Haasbroek, D.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H. Mechanistic Investigations of the Ethylene Tetramerization Reaction. J. Am. Chem. Soc. 2005, 127(30), 10723–10730. DOI: 10.1021/ja052327b.
  • Bryliakov, K. P.; Talsi, E. P. Frontiers of Mechanistic Studies of Coordination Polymerization and Oligomerization of α-olefins. Coord. Chem. Rev. 2012, 256(23–24), 2994–3007. DOI: 10.1016/j.ccr.2012.06.023.
  • Yu, Z.-X.; Houk, K. N. Why Trimerization? Computational Elucidation of the Origin of Selective Trimerization of Ethene Catalyzed by [Tacl3(ch3)2] and an Agostic‐Assisted Hydride Transfer Mechanism. Angew. Chem. 2003, 115(7), 832–835. DOI: 10.1002/ange.200390184.
  • Blok, A. N. J.; Budzelaar, P. H. M.; Gal, A. W. Mechanism of Ethene Trimerization at an ansa-(Arene)(cyclopentadienyl) Titanium Fragment. Organometallics. 2003, 22(13), 2564–2570. DOI: 10.1021/om030049o.
  • Peitz, S.; Aluri, B. R.; Peulecke, N.; Müller, B. H.; Wöhl, A.; Müller, W.; Al-Hazmi, M. H.; Mosa, F. M.; Rosenthal, U. An Alternative Mechanistic Concept for Homogeneous Selective Ethylene Oligomerization of Chromium-Based Catalysts: Binuclear Metallacycles as a Reason for 1-Octene Selectivity? Chemistry A Eur. J. 2010, 16(26), 7670–7676. DOI: 10.1002/chem.201000750.
  • Rebenstorf, B.; Larsson, R. Why Do Homogeneous Analogs of Phillips (Cro3/sio2) and Union Carbide (Chromocene/sio2) Polyethylene Catalysts Fail? Some Answers from IR Investigations. J. Mol. Catal. 1981, 11(2–3), 247–256. DOI: 10.1016/0304-5102(81)87012-5.
  • Espelid, Ø.; Børve, K. J. Molecular-Level Insight into Cr/Silica Phillips -type Catalysts: Polymerization-Active Dinuclear Chromium Sites. J. Catal. 2002, 206(2), 331–338. DOI: 10.1006/jcat.2001.3499.
  • Monillas, W. H.; Young, J. F.; Yap, G. P. A.; Theopold, K. H. A Well-defined Model System for the Chromium-Catalyzed Selective Oligomerization of Ethylene. Dalton Trans. 2013, 42(25), 9198–9210. DOI: 10.1039/c3dt00109a.
  • (a) Britovsek, G. J. P.; McGuinness, D. S.; Wierenga, T. S.; Young, C. T. Single- and Double-Coordination Mechanism in Ethylene Tri- and Tetramerization with Cr/PNP Catalysts. ACS Catal. 2015, 5(7), 4152–4166. DOI: 10.1021/acscatal.5b00989. (a) Britovsek, G. J. P.; McGuinness, D. S. A DFT Mechanistic Study on Ethylene Tri- and Tetramerization with Cr/PNP Catalysts: Single versus Double Insertion Pathways. Chem.- A Eur. J. 2016, 22(47),16891-16896. DOI: 10.1002/chem.201603909. (b) McGuinness, D. S.; Chan, B.; Britovsek, G. J. P.; Yates, B. F. Ethylene Trimerization with Cr-PNP Catalysts: A Theoretical Benchmarking Study and Assessment of Catalyst Oxidation State. Aust. J. Chem. 2014, 67(10),1481. DOI: 10.1071/ch14436.
  • Britovsek, G. J. P.; McGuinness, D. S.; Tomov, A. K. Mechanistic Study of Ethylene Tri- and Tetramerization with Cr/PNP Catalysts: Effects of Additional Donors. Catal. Sci. Techn. 2016, 6(23), 8234–8241. DOI: 10.1039/c6cy02112c.
  • Agapie, T.; Labinger, J. A.; Bercaw, J. E. Mechanistic Studies of Olefin and Alkyne Trimerization with Chromium Catalysts: Deuterium Labeling and Studies of Regiochemistry Using a Model Chromacyclopentane Complex. J. Am. Chem. Soc. 2007, 129(46), 14281–14295. DOI: 10.1021/ja073493h.
  • Tomov, A. K.; Chirinos, J. J.; Jones, D. J.; Long, R. J.; Gibson, V. C. Experimental Evidence for Large Ring Metallacycle Intermediates in Polyethylene Chain Growth Using Homogeneous Chromium Catalysts. J. Am. Chem. Soc. 2005, 127(29), 10166–10167. DOI: 10.1021/ja051523f.
  • Tomov, A. K.; Chirinos, J. J.; Long, R. J.; Gibson, V. C.; Elsegood, M. R. J. An Unprecedented α-Olefin Distribution Arising from a Homogeneous Ethylene Oligomerization Catalyst. J. Am. Chem. Soc. 2006, 128(24), 7704–7705. DOI: 10.1021/ja0615369.
  • Tomov, A. K.; Gibson, V. C.; Britovsek, G. J. P.; Long, R. J.; van Meurs, M.; Jones, D. J.; Tellmann, K. P.; Chirinos, J. J. Distinguishing Chain Growth Mechanisms in Metal-catalyzed Olefin Oligomerization and Polymerization Systems: C2H4/C2D4 Co-oligomerization/Polymerization Experiments Using Chromium, Iron, and Cobalt Catalysts. Organometallics. 2009, 28(24), 7033–7040. DOI: 10.1021/om900792x.
  • Hirscher, N. A.; Labinger, J. A.; Agapie, T. Isotopic Labelling in Ethylene Oligomerization: Addressing the Issue of 1-octene Vs. 1-hexene Selectivity. Dalton Trans. 2019, 48(1), 40–44. DOI: 10.1039/c8dt04509g.
  • Kuhlmann, S.; Dixon, J. T.; Haumann, M.; Morgan, D. H.; Ofili, J.; Spuhl, O.; Taccardi, N.; Wasserscheid, P. Influence of Elevated Temperature and Pressure on the Chromium-Catalyzed Tetramerization of Ethylene. Adv. Synth. Catal. 2006, 348(10–11), 1200–1206. DOI: 10.1002/adsc.200606062.
  • McGuinness, D. S.; Brown, D. B.; Tooze, R. P.; Hess, F. M.; Dixon, J. T.; Slawin, A. M. Z. Ethylene Trimerization with Cr−PNP and Cr−SNS Complexes: Effect of Ligand Structure, Metal Oxidation State, and Role of Activator on Catalysis. Organometallics. 2006, 25(15), 3605–3610. DOI: 10.1021/om0601091. and references therein.
  • Agapie, T.; Day, M. W.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E. A Chromium-Diphosphine System for Catalytic Ethylene Trimerization: Synthetic and Structural Studies of Chromium Complexes with A Nitrogen-Bridged Diphosphine Ligand with ortho-Methoxyaryl Substituents. Organometallics. 2006, 25, 2733–2742. DOI: 10.1021/om050605.
  • Jabri, A.; Temple, C.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R. Role of the Metal Oxidation State in the SNS−Cr Catalyst for Ethylene Trimerization: Isolation of Di- and Trivalent Cationic Intermediates. J. Am. Chem. Soc. 2006, 128(28), 9238–9247. DOI: 10.1021/ja0623717.
  • Köhn, R. D.; Smith, D.; Mahon, M. F.; Prinz, M.; Mihan, S.; Kociok-Köhn, G. Coordination Chemistry of the Activation of [(triazacyclohexane)crcl3] with [Phnme2h][b(c6f5)4] and AlR3. J. Organomet. Chem. 2003, 683(1), 200–208. DOI: 10.1016/s0022-328x(03)00634-x.
  • Morgan, D. H.; Schwikkard, S. L.; Dixon, J. T.; Nair, J. J.; Hunter, R. The Effect of Aromatic Ethers on the Trimerisation of Ethylene Using a Chromium Catalyst and Aryloxy Ligands. Adv. Synth. Catal. 2003, 345(8), 939–942. DOI: 10.1002/adsc.200303070.
  • Köhn, R. D. Reactivity of Chromium Complexes under Spin Control. Angew. Chem. Inter. Edn. 2008, 47(2), 245–247. DOI: 10.1002/anie.200703827.
  • Janse van Rensburg, W.; Grové, C.; Steynberg, J. P.; Stark, K. B.; Huyser, J. J.; Steynberg, P. J. A DFT Study toward the Mechanism of Chromium-Catalyzed Ethylene Trimerization. Organometallics. 2004, 23(6), 1207–1222. DOI: 10.1021/om0306269.
  • Blom, B.; Klatt, G.; Fletcher, J. C. Q.; Moss, J. R. Computational Investigation of Ethene Trimerization Catalyzed by Cyclopentadienyl Chromium Complexes. Inorg. Chim. Acta. 2007, 360(9), 2890–2896. DOI: 10.1016/j.ica.2007.02.042.
  • Bhaduri, S.; Mukhopadhyay, S.; Kulkarni, S. A. Density Functional Studies on Chromium Catalyzed Ethylene Trimerization. J. Organomet. Chem. 2009, 694(9–10), 1297–1307. DOI: 10.1016/j.jorganchem.2008.12.012.
  • Budzelaar, P. H. M. Ethene Trimerization at CrI/CrIII — A Density Functional Theory (DFT) Study. Can. J. Chem. 2009, 87(7), 832–837. DOI: 10.1139/v09-022.
  • Jabri, A.; Mason, C. B.; Sim, Y.; Gambarotta, S.; Burchell, T. J.; Duchateau, R. Isolation of Single-Component Trimerization and Polymerization Chromium Catalysts: The Role of the Metal Oxidation State. Angew. Chem. Inter. Edn. 2008, 47(50), 9717–9721. DOI: 10.1002/anie.200803434.
  • Yang, Y.; Liu, Z.; Zhong, L.; Qiu, P.; Dong, Q.; Cheng, R.; Vanderbilt, J.; Liu, B. Spin Surface Crossing between Chromium(I)/Sextet and Chromium(III)/Quartet without Deprotonation in SNS-Cr Mediated Ethylene Trimerization. Organometallics. 2011, 30(19), 5297–5302. DOI: 10.1021/om200722r.
  • Zhang, L.; Wei, W.; Alam, F.; Chen, Y.; Jiang, T. Efficient Chromium-based Catalysts for Ethylene Tri-/Tetramerization Switched by Silicon-bridged/N,P-based Ancillary Ligands: A Structural, Catalytic and DFT Study. Catal. Sci. Technol. 2017, 7(21), 5011–5018. DOI: 10.1039/c7cy01561e.
  • Kwon, D.-H.; Fuller, J. T.; Kilgore, U. J.; Sydora, O. L.; Bischof, S. M.; Ess, D. H. Computational Transition-State Design Provides Experimentally Verified Cr(P,N) Catalysts for Control of Ethylene Trimerization and Tetramerization. ACS Catal. 2018, 8(2), 1138–1142. DOI: 10.1021/acscatal.7b04026.
  • Kwon, D.-H.; Maley, S. M.; Stanley, J. C.; Sydora, O. L.; Bischof, S. M.; Ess, D. H. Why Less Coordination Provides Higher Reactivity Chromium Phosphinoamidine Ethylene Trimerization Catalysts. ACS Catal. 2020, 10(17), 9674–9683. DOI: 10.1021/acscatal.0c02595.
  • Maley, S.; Kwon, D.-H.; Rollins, N.; Stanely, J. C.; Sydora, O. L.; Bischof, S. M.; Ess, D. H. Quantum-Mechanical Transition-State Model Combined with Machine Learning Provides Catalyst Design Features for Selective Cr Olefin Oligomerization. Chem. Sci. 2020, 11(35), 9665–9674. DOI: 10.1039/d0sc03552a.
  • Tobisch, S.; Ziegler, T. Catalytic Linear Oligomerization of Ethylene to Higher α-Olefins: Insight into the Origin of the Selective Generation of 1-Hexene Promoted by a Cationic Cyclopentadienyl-Arene Titanium Active Catalyst. Organometallics. 2003, 22(26), 5392–5405. DOI: 10.1021/om0341247.
  • Tobisch, S.; Ziegler, T. Catalytic Oligomerization of Ethylene to Higher Linear α-Olefins Promoted by the Cationic Group 4 [(η5-Cp-(CMe2-bridge)-Ph)MII(ethylene)2]+ (M = Ti, Zr, Hf) Active Catalysts: A Density Functional Investigation of the Influence of the Metal on the Catalytic Activity and Selectivity. J. Am. Chem. Soc. 2004, 126(29), 9059–9071. DOI: 10.1021/ja048861l.
  • Vidyaratne, I.; Nikiforov, G. B.; Gorelsky, S. I.; Gambarotta, S.; Duchateau, R.; Korobkov, I. Isolation of a Self-Activating Ethylene Trimerization Catalyst. Angew. Chem. 2009, 121(35), 6674–6678. DOI: 10.1002/ange.200900957.
  • Rucklidge, A. J.; McGuinness, D. S.; Tooze, R. P.; Slawin, A. M. Z.; Pelletier, J. D. A.; Martin, J.; Hanton, M. J.; Webb, P. B. Ethylene Tetramerization with Cationic Chromium(I) Complexes. Organometallics. 2007, 26(10), 2782–2787. DOI: 10.1021/om0701975.
  • Seyferth, D. Bis(benzene)chromium. 2. Its Discovery by E. O. Fischer and W. Hafner and Subsequent Work by the Research Groups of E. O. Fischer, H. H. Zeiss, F. Hein, C. Elschenbroich, and Others. Organometallics. 2002, 21(14), 2800–2820. DOI: 10.1021/om020362a.
  • La Macchia, G.; Gagliardi, L.; Power, P. P.; Brynda, M. Large Differences in Secondary Metal−Arene Interactions in the Transition-Metal Dimers ArMMAr (Ar = Terphenyl; M = Cr, Fe, or Co): Implications for Cr−Cr Quintuple Bonding. J. Am. Chem. Soc. 2008, 130(15), 5104–5114. DOI: 10.1021/ja0771890.
  • Kreisel, K. A.; Yap, G. P. A.; Dmitrenko, O.; Landis, C. R.; Theopold, K. H. The Shortest Metal−Metal Bond Yet: Molecular and Electronic Structure of a Dinuclear Chromium Diazadiene Complex. J. Am. Chem. Soc. 2007, 129(46), 14162–14163. DOI: 10.1021/ja076356t.
  • Skobelev, I. Y.; Panchenko, V. N.; Lyakin, O. Y.; Bryliakov, K. P.; Zakharov, V. A.; Talsi, E. P. In Situ EPR Monitoring of Chromium Species Formed during Cr−Pyrrolyl Ethylene Trimerization Catalyst Formation. Organometallics. 2010, 29(13), 2943–2950. DOI: 10.1021/om100215t.
  • McGarvey, B. R. Spin Hamiltonian for Cr III Complexes. Calculation from Crystal Field and Molecular Orbital Models and ESR Determination for Some Ethylenediammine Complexes. J. Chem. Phy. 1964, 41(12), 3743–3758. DOI: 10.1063/1.1725808.
  • Shaham, N.; Cohen, H.; Meyerstein, D.; Bill, E. EPR Measurements Corroborate Information Concerning the Nature of (H2o)5criii–alkyl Complexes. J. Chem. Soc. Dalton Trans. 2000, 18, 3082–3085. DOI: 10.1039/b004755o.
  • Pedersen, E.; Toftlund, H. Electron Spin Resonance Spectra of Tetragonal Chromium(III) Complexes. I. trans-[Cr(NH3)4XY]n+ and trans-Cr(py)4XY]n+ in Frozen Solutions and Powders. Correlation between Zero-field Splittings and Ligand Field Parameters via Complete D-electron Calculations. Inorg. Chem. 1974, 13(7), 1603–1612. DOI: 10.1021/ic50137a013.
  • Do, L. H.; Labinger, J. A.; Bercaw, J. E. Spectral Studies of a Cr(PNP)–MAO System for Selective Ethylene Trimerization Catalysis: Searching for the Active Species. ACS Catal. 2013, 11, 2582–2585. DOI: 10.1021/cs400778a.
  • Brückner, A.; Jabor, K. J.; McConnell, A. E. C.; Webb, P. B. Monitoring Structure and Valence State of Chromium Sites during Catalyst Formation and Ethylene Oligomerization by in Situ EPR Spectroscopy. Organometallics. 2008, 27(15), 3849–3856. DOI: 10.1021/om800316m.
  • Hirscher, N. A.; Agapie, T. Stoichiometrically Activated Catalysts for Ethylene Tetramerization Using Diphosphinoamine-Ligated Cr Tris(hydrocarbyl) Complexes. Organometallics. 2017, 36(21), 4107–4110. DOI: 10.1021/acs.organomet.7b00706.
  • Hirscher, N. A.; Arnett, C. H.; Oyala, P. H.; Agapie, T. Characterization of Cr-Hydrocarbyl Species via Pulse EPR in the Study of Ethylene Tetramerization Catalysis. Organometallics. 2020, 39(24), 4420–4429. DOI: 10.1021/acs.organomet.0c00521.
  • Bartlett, S. A.; Moulin, J.; Tromp, M.; Reid, G.; Dent, A. J.; Cibin, G.; McGuinness, D. S.; Evans, J. Activation of [Crcl3{pph2n(ipr)pph2}] for the Selective Oligomerization of Ethene: A Cr K-edge XAFS Study. Catal. Sci. Techn. 2016, 6(16), 6237–6246. DOI: 10.1039/c6cy00902f.
  • Rabeah, J.; Bauer, M.; Baumann, W.; McConnell, A. E. C.; Gabrielli, W. F.; Webb, P. B.; Selent, D.; Brückner, A. Formation, Operation and Deactivation of Cr Catalysts in Ethylene Tetramerization Directly Assessed by Operando EPR and XAS. ACS Catal. 2012, 3(1), 95–102. DOI: 10.1021/cs300686m.
  • Gunasekara, T.; Kim, J.; Preston, A.; Steelman, D. K.; Medvedev, G. A.; Delgass, W. N.; Sydora, O. L.; Caruthers, J. M.; Abu-Omar, M. M. Mechanistic Insights into Chromium-Catalyzed Ethylene Trimerization. ACS Catal. 2018, 8(8), 6810–6819. DOI: 10.1021/acscatal.8b00468.
  • Shaikh, Y.; Albahily, K.; Sutcliffe, M.; Fomitcheva, V.; Gambarotta, S.; Korobkov, I.; Duchateau, R.; Highly Selective, A. Ethylene Tetramerization Catalyst. Angew. Chem. Intern. Edn. 2012, 51(6), 1366–1369. DOI: 10.1002/anie.201106517.
  • Licciulli, S.; Albahily, K.; Fomitcheva, V.; Korobkov, I.; Gambarotta, S.; Duchateau, R. A Chromium Ethylidene Complex as A Potent Catalyst for Selective Ethylene Trimerization. Angew. Chem. 2011, 123(10), 2394–2397. DOI: 10.1002/ange.201006953.
  • Janse van Rensburg, W.; van Den Berg, J.-A.; Steynberg, P. J. 1s. Organometallics. 2007, 26(4), 1000–1013. DOI: 10.1021/om060890c.
  • Qi, Y.; Dong, Q.; Zhong, L.; Liu, Z.; Qiu, P.; Cheng, R.; He, X.; Vanderbilt, J.; Liu, B. Role of 1,2-Dimethoxyethane in the Transformation from Ethylene Polymerization to Trimerization Using Chromium Tris(2-ethylhexanoate)-Based Catalyst System: A DFT Study. Organometallics. 2010, 29(7), 1588–1602. DOI: 10.1021/om900917k.
  • Albahily, K.; Shaikh, Y.; Sebastiao, E.; Gambarotta, S.; Korobkov, I.; Gorelsky, S. I. Vinyl Oxidative Coupling as a Synthetic Route to Catalytically Active Monovalent Chromium. J. Am. Chem. Soc. 2011, 133(16), 6388–6395. DOI: 10.1021/ja201003j.
  • Thapa, I.; Gambarotta, S.; Korobkov, I.; Murugesu, M.; Budzelaar, P. Isolation and Characterization of a Class II Mixed-Valence Chromium(I)/(II) Self-Activating Ethylene Trimerization Catalyst. Organometallics. 2011, 31(1), 486–494. DOI: 10.1021/om201181n.
  • Albahily, K.; Gambarotta, S.; Duchateau, R. Ethylene Oligomerization Promoted by a Silylated-SNS Chromium System. Organometallics. 2011, 30(17), 4655–4664. DOI: 10.1021/om200505a.
  • Albahily, K.; Ahmed, Z.; Gambarotta, S.; Koç, E.; Duchateau, R.; Korobkov, I. New Iminophosphonamide Chromium(II) Complexes as Highly Active Polymer-Free Ethylene Oligomerization Catalysts. Organometallics. 2011, 30(21), 6022–6027. DOI: 10.1021/om2008474.
  • Dulai, A.; McMullin, C. L.; Tenza, K.; Wass, D. F. N,N′-Bis(diphenylphosphino) Diaminophenylphosphine Ligands for Chromium-Catalyzed Selective Ethylene Oligomerization Reactions. Organometallics. 2011, 30(5), 935–941. DOI: 10.1021/om100912y.
  • Chabbra, S.; Smith, D. M.; Bell, N. L.; Watson, A. J. B.; Bühl, M.; Cole-Hamilton, D. J.; Bode, B. E. First Experimental Evidence for a Bis-ethenechromium(I) Complex Forming from an Activated Ethene Oligomerization Catalyst. Sci. Adv. 2020, 6(51), eabd7057. DOI: 10.1126/sciadv.abd7057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.