Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 1
1,269
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Organocatalysis: A recent development on stereoselective synthesis of o-glycosides

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1-118 | Received 23 Oct 2021, Accepted 04 Feb 2022, Published online: 21 Mar 2022

References

  • Latxague, L.; Gaubert, A.; Barthélémy, P. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles. Molecules. 2018, 23(1), 89. DOI: 10.3390/molecules23010089.
  • Ghazarian, H.; Idoni, B.; Oppenheimer, S. B. A Glycobiology Review: Carbohydrates, Lectins and Implications in Cancer Therapeutics. Acta Histochem. 2011, 113(3), 236–247. DOI: 10.1016/j.acthis.2010.02.004.
  • Vo, T.-S.; Kim, S.-K. Potential Anti-HIV Agents from Marine Resources: An Overview. Marine Drugs. 2010, 8(12), 2871–2892. DOI: 10.3390/md8122871.
  • Li, C.; Wang, L.-X. Chemoenzymatic Methods for the Synthesis of Glycoproteins. chemical Reviews. 2018, 118(17), 8359–8413. DOI: 10.1021/acs.chemrev.8b00238.
  • Davis, B. G. Synthesis of Glycoproteins. chemical Reviews. 2002, 102(2), 579–602. DOI: 10.1021/cr0004310.
  • Demchenko, A. V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. John Wiley & Sons, 2008.
  • Toshima, K., Tatsuta, K. Recent Progress in O-glycosylation Methods and Its Application to Natural Products Synthesis. Chem. Rev. 1993, 93(4), 1503–1531. DOI: 10.1021/cr00020a006.
  • Crich, D. Mechanism of a Chemical Glycosylation Reaction. Acc. Chem. Res. 2010, 43(8), 1144–1153. DOI: 10.1021/ar100035r.
  • Ranade, S. C.; Demchenko, A. V. Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups. Journal of Carbohydrate Chemistry. 2013, 32(1), 1–43. DOI: 10.1080/07328303.2012.749264.
  • Xu, L.; Qi, T.; Xu, L.; Lu, L.; Xiao, M. Recent Progress in the Enzymatic Glycosylation of Phenolic Compounds. Journal of Carbohydrate Chemistry. 2016, 35(1), 1–23. DOI: 10.1080/07328303.2015.1137580.
  • Palaniappan, K. K.; Bertozzi, C. R. Chemical Glycoproteomics. Chem. Rev. 2016, 116(23), 14277–14306. DOI: 10.1021/acs.chemrev.6b00023.
  • Ling, J.; Bennett, C. S. Recent Developments in Stereoselective Chemical Glycosylation. Asian journal of Organic Chemistry. 2019, 8(6), 802–813. DOI: 10.1002/ajoc.201900102.
  • Das, R.; Mukhopadhyay, B. Chemical O-Glycosylations: An Overview. ChemistryOpen. 2016, 5(5), 401. DOI: 10.1002/open.201600043.
  • Dimakos, V.; Taylor, M. S. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem. Rev. 2018, 118(23), 11457–11517. DOI: 10.1021/acs.chemrev.8b00442.
  • Zhu, X., and Schmidt, R. R. New principles for glycoside‐bond formation. Angew. Chem. Int. Ed. 2009, 48(11), 1900–1934.
  • Jung, K.-H.; Müller, M.; Schmidt, R. R. Intramolecular O -Glycoside Bond Formation. Chem. Rev. 2000, 100(12), 4423–4442. DOI: 10.1021/cr990307k.
  • Demchenko, A. V. Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. John Wiley & Sons, 2008, pp. 1–27.
  • Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P. H. An Empirical Understanding of the Glycosylation Reaction. J. Am. Chem. Soc. 2018, 140(38), 11942–11953. DOI: 10.1021/jacs.8b04525.
  • Liu, H.; Hansen, T.; Zhou, S.-Y.; Wen, G.-E.; Liu, -X.-X.; Zhang, Q.-J.; Codeé, J. D. C.; Schmidt, R. R.; Sun, J.-S. Dual-Participation Protecting Group Solves the Anomeric Stereocontrol Problems in Glycosylation Reactions. Org. Lett. 2019, 21(21), 8713–8717. DOI: 10.1021/acs.orglett.9b03321.
  • Mydock, L. K.; Demchenko, A. V. Mechanism of Chemical O-glycosylation: From Early Studies to Recent Discoveries. Org. Biomol. Chem. 2010, 8(3), 497–510. DOI: 10.1039/B916088D.
  • Manabe, S.; Ito, Y. Optimizing Glycosylation Reaction Selectivities by Protecting Group Manipulation. current Bioactive Compounds. 2008, 4(4), 258–281. DOI: 10.2174/157340708786847861.
  • Jia, X. G.; Demchenko, A. V. Intramolecular Glycosylation. Beilstein J. Org. Chem. 2017, 13, 2028–2048. DOI: 10.3762/bjoc.13.201.
  • Ishiwata, A., Lee, Y. J.; Ito, Y. Recent Advances in Stereoselective Glycosylation through Intramolecular Aglycon Delivery. Org. Biomol. Chem. 2010, 8(16), 3596–3608. DOI: 10.1039/c004281a.
  • MacMillan, D. W. C. The Advent and Development of Organocatalysis. Nature. 2008, 455(7211), 304–308. DOI: 10.1038/nature07367.
  • List, B. Introduction: organocatalysis. Chemical Reviews. Chem. Rev. 2007, 107(12), 5413–5415.
  • Bertelsen, S.; Jørgensen, K. A. Organocatalysis—after the Gold Rush. Chem. Soc. Rev. 2009, 38(8), 2178–2189. DOI: 10.1039/b903816g.
  • Dondoni, A.; Massi, A. Asymmetric Organocatalysis: From Infancy to Adolescence. Angew. Chem. Int. Ed. 2008, 47(25), 4638–4660. DOI: 10.1002/anie.200704684.
  • Taylor, M.S.; Jacobsen,E. N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angew. Chem. Int. Ed. 2006, 45(10), 1520–1543. DOI: 10.1002/anie.200503132.
  • Wong, O. A.; Shi, Y. Organocatalytic Oxidation. Asymmetric Epoxidation of Olefins Catalyzed by Chiral Ketones and Iminium Salts. Chem. Rev. 2008, 108(9), 3958–3987. DOI: 10.1021/cr068367v.
  • Wang, C.; Gao, Y.; Zhang, Y.; Wang, Z., and Ma, J. Organocatalytic Asymmetric Epoxidation of Olefins Catalyzed by Chiral Ketones Derived from Carbohydrates[J]. Progress in Chemistry. 2006, 18(6), 761.
  • Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. Journal of the American Chemical Society.2013, 135(34), 12480–12496.
  • Notz, W.; Tanaka, F.; Barbas, C. F. Enamine-Based Organocatalysis with Proline and Diamines:  The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels−Alder Reactions. Acc. Chem. Res. 2004, 37(8), 580–591. DOI: 10.1021/ar0300468.
  • Wagner, J.; Lerner, R. A.; Barbas, C. F. Efficient Aldolase Catalytic Antibodies that Use the Enamine Mechanism of Natural Enzymes. Science. 1995, 270(5243), 1797–1800. DOI: 10.1126/science.270.5243.1797.
  • List, B. The Ying and Yang of Asymmetric Aminocatalysis. Chem. Commun. 2006, 8(8), 819–824. DOI: 10.1039/b514296m.
  • Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C. The Importance of Iminium Geometry Control in Enamine Catalysis: Identification of a New Catalyst Architecture for Aldehyde-Aldehyde Couplings. Angew. Chem. Int. Ed. 2004, 116(48), 6890–6892. DOI: 10.1002/ange.200461851.
  • Seayad, J.; List, B. Asymmetric Organocatalysis. Org. Biomol. Chem. 2005, 3(5), 719–724. DOI: 10.1039/b415217b.
  • James, T.; Van Gemmeren, M.; List, B. Development and Applications of Disulfonimides in Enantioselective Organocatalysis. Chem. Rev. 2015, 115(17), 9388–9409. DOI: 10.1021/acs.chemrev.5b00128.
  • Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P. S. J.; Bykov, D.; Farès, C.; List, B. Activation of Olefins via Asymmetric Brønsted Acid Catalysis. Science. 2018, 359(6383), 1501–1505. DOI: 10.1126/science.aaq0445.
  • Gérardy, R.; Morodo, R.; Estager, J.; Luis, P.; Debecker, D. P.; Monbaliu, J.-C. M. Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Top. Curr. Chem. 2019, 377(1), 1–84. DOI: 10.1007/s41061-018-0222-3.
  • So, -S.-S., and Karplus, M. A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. Journal of Computer-Aided Molecular Design. 1999, 13(3), 243–258. DOI: 10.1023/A:1008073215919
  • Bokor, É.; Kun, S.; Goyard, D.; Toth, M.; Praly, J.-P.; Vidal, S.; Somsak, L. C -glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem. Rev. 2017, 117(3), 1687–1764. DOI: 10.1021/acs.chemrev.6b00475.
  • JingFu, L., and Wu, Z. Clinical applications of the naturally occurring or synthetic glycosylated low molecular weight drugs. Progress in Molecular Biology and Translational Science, 2019, 163, pp. 487–522.
  • Lennarz, W. J. ;Lane, M. D. Encyclopedia of biological chemistry. Academic Press. 2013.
  • Shiratori, O. Gann Cancer Res.1967,10.20772/cancersci1959.58.6_521.
  • Stenkvist, B.; Bengtsson, E.; Eriksson, O.; Holmquist, J.; Nordin, B.; Westman-Naeser, S.; Eklund, G. Cardiac Glycosides and Breast Cancer. The Lancet. 1979, 313(8115), 563. DOI: 10.1016/S0140-6736(79)90996-6.
  • Goldin, A. G.; Safa, A. R. Digitalis and Cancer. The Lancet. 1984, 323(8386), 1134. DOI: 10.1016/S0140-6736(84)92556-X.
  • Haux, J.; Klepp, O.; Spigset, O.; Tretli, S. Digitoxin Medication and Cancer; Case Control and Internal Dose-response Studies. BMC Cancer. 2001, 1(1), 1–6. DOI: 10.1186/1471-2407-1-11.
  • Newman, R. A.; Yang, P.; Pawlus, A. D.; Block, K. I. Cardiac Glycosides as Novel Cancer Therapeutic Agents. Molecular Interventions. 2008, 8(1), 36. DOI: 10.1124/mi.8.1.8.
  • Schneider, N. F. Z.; Cerella, C.; Simões, C. M. O.; Diederich, M. Anticancer and Immunogenic Properties of Cardiac Glycosides. Molecules. 2017, 22(11), 1932. DOI: 10.3390/molecules22111932.
  • Kytidou, K.; Artola, M.; Overkleeft, H. S.; Aerts, J. M. F. G. Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. Front. Plant Sci. 2020, 11. DOI: 10.3389/fpls.2020.00357.
  • Fu, G.; Pang, H.; Wong, Y. Naturally Occurring Phenylethanoid Glycosides: Potential Leads for New Therapeutics. Curr. Med. Chem. 2008, 15(25), 2592–2613. DOI: 10.2174/092986708785908996.
  • McVann, A.; Havlik, I.; Joubert, P. H.; Monteagudo, F. S. E. South African Med. J. 1992, 81, 139–141.
  • Chiasson, J.-L.; Josse, R. G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M. Acarbose for Prevention of Type 2 Diabetes Mellitus: The STOP-NIDDM Randomised Trial. The Lancet. 2002, 359(9323), 2072–2077. DOI: 10.1016/S0140-6736(02)08905-5.
  • McKelvey, E. M.; Gottlieb, J. A.; Wilson, H. E.; Haut, A.; Talley, R. W.; Stephens, R.; Lane, M.; Gamble, J. F.; Jones, S. E.; Grozea, P. N., et al. Hydroxyldaunomycin (Adriamycin) Combination Chemotherapy in Malignant Lymphoma. Cancer. 1976, 38(4), 1484–1493. DOI: 10.1002/1097-0142(197610)38:4<1484::AID-CNCR2820380407>3.0.CO;2-I.
  • Jefferson, T.; Jones, M. A.; Doshi, P.; Del Mar, C. B.; Hama, R.; Thompson, M. J.; Spencer, E. A.; Onakpoya, I. J.; Mahtani, K. R., and Nunan, D., et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst. Rev. 2014, 4. DOI: 10.1002/14651858.CD008965.pub4.
  • Marty, F. M.; Vidal-Puigserver, J.; Clark, C.; Gupta, S. K.; Merino, E.; Garot, D.; Chapman, M. J.; Jacobs, F.; Rodriguez-Noriega, E.; Husa, P., et al. Intravenous Zanamivir or Oral Oseltamivir for Hospitalised Patients with Influenza: An International, Randomised, Double-blind, Double-dummy, Phase 3 Trial. Lancet Respir. Med. 2017, 5(2), 135–146. DOI: 10.1016/S2213-2600(16)30435-0.
  • Kanji, S.; MacLean, R. D. Cardiac Glycoside Toxicity. Critical Care Clinics. 2012, 28(4), 527–535. DOI: 10.1016/j.ccc.2012.07.005.
  • Karaiskos, I.; Souli, M.; Giamarellou, H. Plazomicin: An Investigational Therapy for the Treatment of Urinary Tract Infections. Expert Opinion on Investigational Drugs. 2015, 24(11), 1501–1511. DOI: 10.1517/13543784.2015.1095180.
  • Govindarajan, M. Amphiphilic Glycoconjugates as Potential Anti-cancer Chemotherapeutics. Eur. J. Med. Chem. 2018, 143, 1208–1253. DOI: 10.1016/j.ejmech.2017.10.015.
  • Kolb, H. C.; Andersson, P. G.; Sharpless, K. B. Toward an Understanding of the High Enantioselectivity in the Osmium-Catalyzed Asymmetric Dihydroxylation (AD). 1. Kinetics. J. Am. Chem. Soc. 1994, 116(4), 1278–1291. DOI: 10.1021/ja00083a014.
  • Yamakawa, M.; Yamada, I.; Noyori, R. CH/π Attraction: The Origin of Enantioselectivity in Transfer Hydrogenation of Aromatic Carbonyl Compounds Catalyzed by Chiralη6-Arene-Ruthenium(II) Complexes. Angew. Chem. Int. Ed. 2001, 40(15), 2818–2821. DOI: 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y.
  • Corey, E. J.; Lee, T. W. The Formyl C–H⋯O Hydrogen Bond as a Critical Factor in Enantioselective Lewis-acid Catalyzed Reactions of Aldehydes. Chem. Commun. 2001, 15(15), 1321–1329. DOI: 10.1039/b104800g.
  • Knowles, R. R.; Jacobsen, E. N. Attractive Noncovalent Interactions in Asymmetric Catalysis: Links between Enzymes and Small Molecule Catalysts. proceedings of the National Academy of Sciences. 2010, 107(48), 20678–20685. DOI: 10.1073/pnas.1006402107.
  • Allen, A. E.; MacMillan, D. W. C. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development. Chem. Sci. 2012, 3(3), 633–658. DOI: 10.1039/c2sc00907b.
  • Williams, R.; Galan, M. C. Recent Advances in Organocatalytic Glycosylations. European J. Org. Chem. 2017, 2017(42), 6247–6264. DOI: 10.1002/ejoc.201700785.
  • Bennett, C. S.; Galan, M. C. Methods for 2-Deoxyglycoside Synthesis. Chem. Rev. 2018, 118(17), 7931–7985. DOI: 10.1021/acs.chemrev.7b00731.
  • Medina, S., and Galan, M. C. Recent developments in the stereoselective synthesis of deoxy glycosides. Carbohydr. Chem., 2016, pp. 59–89.
  • Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. α-Selective Organocatalytic Synthesis of 2-Deoxygalactosides. Angew. Chem. Int. Ed. 2012, 51(36), 9152–9155. DOI: 10.1002/anie.201204505.
  • Bradshaw, G. A.; Colgan, A. C.; Allen, N. P.; Pongener, I.; Boland, M. B.; Ortin, Y.; McGarrigle, E. M. Stereoselective organocatalyzed glycosylations – thiouracil, thioureas and monothiophthalimide act as Brønsted acid catalysts at low loadings. Chem. Sci. 2019, 10, 508–514. DOI: 10.1039/C8SC02788A.
  • Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N. Asymmetric Cooperative Catalysis of Strong Brønsted Acid–Promoted Reactions Using Chiral Ureas. Science. 2010, 327(5968), 986–990. DOI: 10.1126/science.1182826.
  • Madarász, Á.; Dósa, Z.; Varga, S.; Soós, T.; Csámpai, A.; Pápai, I. Thiourea Derivatives as Brønsted Acid Organocatalysts. ACS Catalysis. 2016, 6(7), 4379–4387. DOI: 10.1021/acscatal.6b00618.
  • Geng, Y.; Kumar, A.; Faidallah, H. M.; Albar, H. A.; Mhkalid, I. A.; Schmidt, R. R. Cooperative Catalysis in Glycosidation Reactions with O -glycosyl Trichloroacetimidates as Glycosyl Donors. Angew. Chem. Int. Ed. 2013, 52(38), 10089–10092. DOI: 10.1002/anie.201302158.
  • Geng, Y.; Kumar, A.; Faidallah, H. M.; Albar, H. A.; Mhkalid, I. A.; Schmidt, R. R. Cooperative Catalysis in Glycosidation Reactions with O -glycosyl Trichloroacetimidates as Glycosyl Donors. Angew. Chem. Int. Ed. 2013, 52(38), 10089–10092. DOI: 10.1002/anie.201302158aaa.
  • Palo-Nieto, C.; Sau, A.; Williams, R.; Galan, M. C. Cooperative Brønsted Acid-Type Organocatalysis for the Stereoselective Synthesis of Deoxyglycosides. J. Org. Chem. 2017, 82(1), 407–414. DOI: 10.1021/acs.joc.6b02498.
  • Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Stereocontrolled Photoinduced Glycosylation Using an Aryl Thiourea as an Organo Photoacid. Org. Lett. 2016, 18(13), 3190–3193. DOI: 10.1021/acs.orglett.6b01404.
  • Medina, S.; Harper, M. J.; Balmond, E. I.; Miranda, S.; Crisenza, G. E. M.; Coe, D. M.; McGarrigle, E. M.; Galan, M. C. Stereoselective Glycosylation of 2-Nitrogalactals Catalyzed by a Bifunctional Organocatalyst. Org. Lett. 2016, 18(17), 4222–4225. DOI: 10.1021/acs.orglett.6b01962.
  • Yoshida, K.; Kanoko, Y.; Takao, K. Kinetically Controlled α-Selective O -glycosylation of Phenol Derivatives Using 2-Nitroglycals by a Bifunctional Chiral Thiourea Catalyst. Asian Journal of Organic Chemistry. 2016, 5(10), 1230–1236. DOI: 10.1002/ajoc.201600307.
  • Xu, C.; Loh, C. C. J. An Ultra-low Thiourea Catalyzed Strain-release Glycosylation and a Multicatalytic Diversification Strategy. Nat. Commun. 2018, 9(1), 4057. DOI: 10.1038/s41467-018-06329-4.
  • Dubey, A.; Sangwan, R.; Mandal, P. K. N-benzoylglycine/thiourea Cooperative Catalyzed Stereoselective O-glycosidation: Activation of O-glycosyl Trichloroacetimidate Donors. Catal. Commun. 2019, 125, 123–129. DOI: 10.1016/j.catcom.2019.04.006.
  • Chernyak, A. Y.; Weintraub, A.; Kochetkov, N. K.; Lindberg, A. A. The β-configuration of the Rhamnosidic Linkage in Salmonella Serogroups C2 and C3, Lipopolysaccharide Is Important for the Immunochemistry of the O-antigen 8. Mol. Immunol. 1993, 30(10), 887–893. DOI: 10.1016/0161-5890(93)90012-Z.
  • Feng, L.; Senchenkova, S. N.; Wang, W.; Shashkov, A. S.; Liu, B.; Shevelev, S. D.; Liu, D.; Knirel, Y. A.; Wang, L. Structural and Genetic Characterization of the Shigella Boydii Type 18 O Antigen. Gene. 2005, 355, 79–86. DOI: 10.1016/j.gene.2005.06.001.
  • Chen, Y.; Bystricky, P.; Adeyeye, J.; Panigrahi, P.; Ali, A.; Johnson, J. A.; Bush, C. A.; Morris, J. G.; Stine, O. C. The Capsule Polysaccharide Structure and Biogenesis for non-O1 Vibrio Cholerae NRT36S: Genes are Embedded in the LPS Region. BMC Microbiol. 2007, 7(1), 20. DOI: 10.1186/1471-2180-7-20.
  • Dubey, A.; Tiwari, A.; Mandal, P. K. An Eco-friendly N-benzoylglycine/thiourea Cooperative Catalyzed Stereoselective Synthesis of β-L-rhamnopyranosides. Carbohydr. Res. 2020, 487, 107887. DOI: 10.1016/j.carres.2019.107887.
  • Mayfield, A. B.; Metternich, J. B.; Trotta, A. H.; Jacobsen, E. N. Stereospecific Furanosylations Catalyzed by Bis-thiourea Hydrogen-Bond Donors. J. Am. Chem. Soc. 2020, 142(8), 4061–4069. DOI: 10.1021/jacs.0c00335.
  • Levi, S. M.; Li, Q.; Rötheli, A. R. Jacobsen, E. N. Catalytic Activation of Glycosyl Phosphates for Stereoselective Coupling Reactions. proceedings of the National Academy of Sciences. 2019, 116(1), 35–39. DOI: 10.1073/pnas.1811186116.
  • Sun, L. Wu, X.; Xiong, D.-C.; Ye, X.-S. Stereoselective Koenigs-Knorr Glycosylation Catalyzed by Urea. Angew. Chem. Int. Ed. 2016, 55(28), 8041–8044. DOI: 10.1002/anie.201600142.
  • Liu, S. Xu, Z.; Leng, N.; Zheng, E. N.; Yang, J.; Chen, K.; Feng, J.; Li, Q. RPA Binds Histone H3-H4 and Functions in DNA Replication–coupled Nucleosome Assembly. Science. 2017, 355(6323), 162–166. DOI: 10.1126/science.aah4712.
  • Gouliaras, C. Lee, D.; Chan, L., Taylor, M. S. Regioselective Activation of Glycosyl Acceptors by a Diarylborinic Acid-Derived Catalyst. J. Am. Chem. Soc. 2011, 133(35), 13926–13929. DOI: 10.1021/ja2062715.
  • Taylor, M. S. Catalysis Based on Reversible Covalent Interactions of Organoboron Compounds. Acc. Chem. Res. 2015, 48(2), 295–305. DOI: 10.1021/ar500371z.
  • Shimada, N.; Sugimoto, T.; Noguchi, M.; Ohira, C.; Kuwashima, Y.; Takahashi, N.; Sato, N.; Makino, K. Boronic Acid-Catalyzed Regioselective Koenigs–Knorr-Type Glycosylation. J. Org. Chem. 2021, 86(8), 5973–5982. DOI: 10.1021/acs.joc.1c00130.
  • Beale, T. M.; Moon, P. J.; Taylor, M. S. Organoboron-Catalyzed Regio- and Stereoselective Formation of β-2-Deoxyglycosidic Linkages. Org. Lett. 2014, 16(13), 3604–3607. DOI: 10.1021/ol501711v.
  • Beale, T. M.; Taylor, M. S. Synthesis of Cardiac Glycoside Analogs by Catalyst-Controlled, Regioselective Glycosylation of Digitoxin. Org. Lett. 2013, 15(6), 1358–1361. DOI: 10.1021/ol4003042.
  • Oshima, K.; Yamauchi, T.; Shimomura, M.; Miyauchi, S.; Aoyama, Y. Selective 3-O- And/or 6-O-Glycosidation of Unprotected O - and S -glycosides Promoted by an Intramolecularly Coordinated Arylboronic Compound. Bulletin of the Chemical Society of Japan. 2002, 75(6), 1319–1324. DOI: 10.1246/bcsj.75.1319.
  • Oshima, K.; Aoyama, Y. Regiospecific Glycosidation of Unprotected Sugars via Arylboronic Activation. J. Am. Chem. Soc. 1999, 121(10), 2315–2316. DOI: 10.1021/ja982395g.
  • Kusano, S.; Miyamoto, S.; Matsuoka, A.; Yamada, Y.; Ishikawa, R.; Hayashida, O. Benzoxaborole Catalyst for Site-Selective Modification of Polyols. European J. Org. Chem. 2020, 2020(11), 1598–1602. DOI: 10.1002/ejoc.201901749.
  • Kaji, E.; Nishino, T.; Ishige, K.; Ohya Y, Y. S.; Shirai, Y. Regioselective Glycosylation of Fully Unprotected Methyl Hexopyranosides by Means of Transient Masking of Hydroxy Groups with Arylboronic Acids. Tetrahedron Lett. 2010, 51(12), 1570–1573. DOI: 10.1016/j.tetlet.2010.01.048.
  • Fenger, T. H.; Madsen, R. Regioselective Glycosylation of Unprotected Phenyl 1-Thioglycopyranosides with Phenylboronic Acid as a Transient Masking Group. European J. Org. Chem. 2013, 2013(26), 5923–5933. DOI: 10.1002/ejoc.201300723.
  • Lemieux, R. U.; Morgan, A. R. THE ABNORMAL CONFORMATIONS OF PYRIDINIUM α-GLYCOPYRANOSIDES. Can. J. Chem. 1965, 43(8), 2205–2213. DOI: 10.1139/v65-298.
  • Lemieux, R. U.; Morgan, A. R. The Mechanism for the Formation of 1,2-cis-Pyridine Nucleosides from 1,2-cis-Acetohalogenosugars. A Novel Rearrangement. J. Am. Chem. Soc. 1963, 85(12), 1889–1890. DOI: 10.1021/ja00895a056.
  • Yu, F.; Li, J.; DeMent, P. M.; Tu, Y.-J.; Schlegel, H. B.; Nguyen, H. M. Phenanthroline-Catalyzed Stereoretentive Glycosylations. Angew. Chemie Int. Ed. 2019, 58(21), 6957–6961. DOI: 10.1002/anie.201901346.
  • Kunz, H.; Sager, W. Stereoselective Glycosylation of Alcohols and Silyl Ethers Using Glycosyl Fluorides and Boron Trifluoride Etherate. Helvetica Chimica Acta. 1985, 68(1), 283–287. DOI: 10.1002/hlca.19850680134.
  • Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X.-W. Direct C -glycosylation of Organotrifluoroborates with Glycosyl Fluorides and Its Application to the Total Synthesis of (+)-varitriol. Org. Lett. 2011, 13(1), 42–45. DOI: 10.1021/ol102473k.
  • Pelletier, G.; Zwicker, A.; Allen, C. L.; Schepartz, A.; Miller, S. J. Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. journal of the American Chemical Society. 2016, 138(9), 3175–3182. DOI: 10.1021/jacs.5b13384.
  • Nielsen, M. M.; Stougaard, B. A.; Bols, M.; Glibstrup, E.; Pedersen, C. M. Glycosyl Fluorides as Intermediates in BF 3 ·oet 2 -promoted Glycosylation with Trichloroacetimidates. European J. Org. Chem. 2017, 2017(9), 1281–1284. DOI: 10.1002/ejoc.201601439.
  • Yanagisawa, M., and Mukaiyama, T. Catalytic and stereoselective glycosylation with glycosyl fluoride using active carbocationic species paired with tetrakis (pentafluorophenyl) borate or trifluoromethanesulfonate. Chem. Lett. 2001, 30(3), 224–225.
  • Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X.-W. Direct C -glycosylation of Organotrifluoroborates with Glycosyl Fluorides and Its Application to the Total Synthesis of (+)-varitriol. Org. Lett. 2011, 13(1), 42–45. DOI: 10.1021/ol102473kaaa.
  • Mukaiyama, T.; Jona, H., and Takeuchi, K. Trifluoromethanesulfonic acid (TfOH)-catalyzed stereoselective glycosylation using glycosyl fluoride. Chem. Lett. 2000, 29(6), 696–697.
  • Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X.-W. Direct C -glycosylation of Organotrifluoroborates with Glycosyl Fluorides and Its Application to the Total Synthesis of (+)-varitriol. Org. Lett. 2011, 13(1), 42–45. DOI: 10.1021/ol102473kbbb.
  • Mukaiyama, T.; Murai, Y.; Shoda, S.-I. An Efficient Method for Glucosylation of Hydroxy Compounds Using Glucopyranosyl Fluoride. Chemistry Letters. 1981, 10(3), 431–432. DOI: 10.1246/cl.1981.431.
  • Sati, G. C.; Martin, J. L.; Xu, Y.; Malakar, T.; Zimmerman, P. M.; Montgomery, J. Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation. J. Am. Chem. Soc. 2020, 142(15), 7235–7242. DOI: 10.1021/jacs.0c03165.
  • Long, Q.; Gao, J.; Yan, N.; Wang, P.; Li, M. (C 6 F 5) 3 B·(HF) N -catalyzed Glycosylation of Disarmed Glycosyl Fluorides and Reverse Glycosyl Fluorides. Org. Chem. Front. 2021, 8(13), 3332–3341. DOI: 10.1039/D1QO00211B.
  • Mitsunobu, O.; Yamada, M. Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts. Bulletin of the Chemical Society of Japan. 1967, 40(10), 2380–2382. DOI: 10.1246/bcsj.40.2380.
  • Hain, J.; Rollin, P.; Klaffke, W.; Lindhorst, T. K. Anomeric Modification of Carbohydrates Using the Mitsunobu Reaction. Beilstein J. Org. Chem. 2018, 14, 1619–1636. DOI: 10.3762/bjoc.14.138.
  • Grynkiewicz, G. A Novel Synthesis of Aryl Glycosides. Carbohydr. Res. 1977, 53(1), C11–C12. DOI: 10.1016/S0008-6215(00)85467-1.
  • Takeuchi, H.; Mishiro, K.; Ueda, Y.; Fujimori, Y.; Furuta, T.; Kawabata, T. Total Synthesis of Ellagitannins through Regioselective Sequential Functionalization of Unprotected Glucose. Angew. Chem. Int. Ed. 2015, 54(21), 6177–6180. DOI: 10.1002/anie.201500700.
  • Shibayama, H.; Ueda, Y.; Tanaka, T.; Kawabata, T. Seven-Step Stereodivergent Total Syntheses of Punicafolin and Macaranganin. J. Am. Chem. Soc. 2021, 143(3), 1428–1434. DOI: 10.1021/jacs.0c10714.
  • Takeuchi, H.; Fujimori, Y.; Ueda, Y.; Shibayama, H.; Nagaishi, M.; Yoshimura, T.; Sasamori, T.; Tokitoh, N.; Furuta, T.; Kawabata, T. Solvent-Dependent Mechanism and Stereochemistry of Mitsunobu Glycosylation with Unprotected Pyranoses. Org. Lett. 2020, 22(12), 4754–4759. DOI: 10.1021/acs.orglett.0c01549.
  • Downey, A. M.; Richter, C.; Pohl, R.; Mahrwald, R.; Hocek, M. Direct One-Pot Synthesis of Nucleosides from Unprotected or 5- O -monoprotected D -ribose. Org. Lett. 2015, 17(18), 4604–4607. DOI: 10.1021/acs.orglett.5b02332.
  • Schmalisch, S.; Mahrwald, R. Organocatalyzed Direct Glycosylation of Unprotected and Unactivated Carbohydrates. Org. Lett. 2013, 15(22), 5854–5857. DOI: 10.1021/ol402914v.
  • Pfaffe, M.; Mahrwald, R. Direct Glycosylation of Unprotected and Unactivated Carbohydrates under Mild Conditions. Org. Lett. 2012, 14(3), 792–795. DOI: 10.1021/ol203329u.
  • Matviitsuk, A.; Berndt, F.; Mahrwald, R. Four into One: Organocatalyzed Stereoselective Conjugate Addition of Unprotected and Unactivated Carbohydrates. Org. Lett. 2014, 16(20), 5474–5477. DOI: 10.1021/ol5027443.
  • Johnson, S.; Bagdi, A. K.; Tanaka, F. C-Glycosidation of Unprotected Di- and Trisaccharide Aldopyranoses with Ketones Using Pyrrolidine-Boric Acid Catalysis. J. Org. Chem. 2018, 83(8), 4581–4597. DOI: 10.1021/acs.joc.8b00340.
  • Ghosh, T.; Mukherji, A.; Kancharla, P. K. Open-Close Strategy toward the Organocatalytic Generation of 2-Deoxyribosyl Oxocarbenium Ions: Pyrrolidine-Salt-Catalyzed Synthesis of 2-Deoxyribofuranosides. European J. Org. Chem. 2019, 2019(45), 7488–7498. DOI: 10.1002/ejoc.201901465.
  • Ghosh, T.; Mukherji, A.; Srivastava, H. K.; Kancharla, P. K. Secondary Amine Salt Catalyzed Controlled Activation of 2-deoxy Sugar Lactols Towards Alpha-selective Dehydrative Glycosylation. Org. Biomol. Chem. 2018, 16(16), 2870–2875. DOI: 10.1039/C8OB00423D.
  • Hsu, M.-Y.; Lam, S.; Wu, C.-H.; Lin, M.-H.; Lin, S.-C.; Wang, -C.-C. Direct Dehydrative Glycosylation Catalyzed by Diphenylammonium Triflate. Molecules. 2020, 25(5), 1103. DOI: 10.3390/molecules25051103.
  • Khomutnyk, Y. Y.; Argüelles, A. J.; Winschel, G. A.; Sun, Z.; Zimmerman, P. M.; Nagorny, P. Studies of the Mechanism and Origins of Enantioselectivity for the Chiral Phosphoric Acid-Catalyzed Stereoselective Spiroketalization Reactions. J. Am. Chem. Soc. 2016, 138(1), 444–456. DOI: 10.1021/jacs.5b12528.
  • Sun, Z.; Winschel, G. A.; Borovika, A.; Nagorny, P. Chiral Phosphoric Acid-Catalyzed Enantioselective and Diastereoselective Spiroketalizations. J. Am. Chem. Soc. 2012, 134(19), 8074–8077. DOI: 10.1021/ja302704m.
  • Tay, J.-H.; Argüelles, A. J.; Demars, M. D.; Zimmerman, P. M.; Sherman, D. H.; Nagorny, P. Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. J. Am. Chem. Soc. 2017, 139(25), 8570–8578. DOI: 10.1021/jacs.7b03198.
  • Cox, D. J.; Smith, M. D.; Fairbanks, A. J. Glycosylation Catalyzed by a Chiral Brønsted Acid. Org. Lett. 2010, 12(7), 1452–1455. DOI: 10.1021/ol1001895.
  • Lee, J.; Borovika, A.; Khomutnyk, Y.; Nagorny, P. Chiral Phosphoric Acid-catalyzed Desymmetrizative Glycosylation of 2-deoxystreptamine and Its Application to Aminoglycoside Synthesis. Chem. Commun. 2017, 53(64), 8976–8979. DOI: 10.1039/C7CC05052F.
  • Kimura, T.; Sekine, M.; Takahashi, D.; Toshima, K. Chiral Brønsted Acid Mediated Glycosylation with Recognition of Alcohol Chirality. Angew. Chem. Int. Ed. 2013, 52(46), 12131–12134. DOI: 10.1002/anie.201304830.
  • Liu, D.; Sarrafpour, S.; Guo, W.; Goulart, B.; Bennett, C. S. Matched/Mismatched Interactions in Chiral Brønsted Acid-Catalyzed Glycosylation Reactions with 2-Deoxy-Sugar Trichloroacetimidate Donors. Journal of Carbohydrate Chemistry. 2014, 33(7–8), 423–434. DOI: 10.1080/07328303.2014.927882.
  • Hall, D. G. Lewis and Brønsted Acid Catalyzed Allylboration of Carbonyl Compounds: From Discovery to Mechanism and Applications. Synlett. 2007, 2007(11), 1644–1655. DOI: 10.1055/s-2007-980384.
  • Hall, D. G.; Rybak, T.; Verdelet, T. Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery. Acc. Chem. Res. 2016, 49(11), 2489–2500. DOI: 10.1021/acs.accounts.6b00403.
  • Peng, F.; Hall, D. G. Simple, Stable, and Versatile Double-Allylation Reagents for the Stereoselective Preparation of Skeletally Diverse Compounds. J. Am. Chem. Soc. 2007, 129(11), 3070–3071. DOI: 10.1021/ja068985t.
  • Hall, D. G. Boronic Acid Catalysis. Chem. Soc. Rev. 2019, 48(13), 3475–3496. DOI: 10.1039/C9CS00191C.
  • Yu, S. H.; Ferguson, M. J.; Robert Mcdonald, R.; Hall, D. G. Brønsted Acid-Catalyzed Allylboration:  Short and Stereodivergent Synthesis of All Four Eupomatilone Diastereomers with Crystallographic Assignments. J. Am. Chem. Soc. 2005, 127(37), 12808–12809. DOI: 10.1021/ja054171l.
  • Penner, M.; Rauniyar, V.; Kaspar, L. T.; Hall, D. G. Catalytic Asymmetric Synthesis of Palmerolide A via Organoboron Methodology. J. Am. Chem. Soc. 2009, 131(40), 14216–14217. DOI: 10.1021/ja906429c.
  • Tatina, M. B.; Mengxin, X.; Peilin, R.; Judeh, Z. M. A. Robust Perfluorophenylboronic Acid-catalyzed Stereoselective Synthesis of 2,3-unsaturated O -, C -, N - and S -linked Glycosides. Beilstein J. Org. Chem. 2019, 15, 1275–1280. DOI: 10.3762/bjoc.15.125.
  • Tatina, M. B.; Moussa, Z.; Xia, M.; Judeh, Z. M. A. Perfluorophenylboronic Acid-catalyzed Direct α-stereoselective Synthesis of 2-deoxygalactosides from Deactivated Peracetylated D -galactal. Chem. Commun. 2019, 55(81), 12204–12207. DOI: 10.1039/C9CC06151G.
  • Matsumoto, T.; Hosoya, T.; Suzuki, K. Improvement in O→C-glycoside Rearrangement Approach to C-aryl Glycosides: Use of 1-O-acetyl Sugar as Stable but Efficient Glycosyl Donor. Tetrahedron Lett. 1990, 31(32), 4629–4632. DOI: 10.1016/S0040-4039(00)97693-7.
  • Sau, A.; Palo-Nieto, C.; Galan, M. C. Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C 6 F 5) 3 as Catalyst. J. Org. Chem. 2019, 84(5), 2415–2424. DOI: 10.1021/acs.joc.8b02613.
  • Bihari Mishra, K.; Kandasamy, J. Tris(Pentafluorophenyl)Borane-Driven Stereoselective O -glycosylation with Glycal Donors under Mild Condition. Asian Journal of Organic Chemistry. 2019, 8(4), 549–554. DOI: 10.1002/ajoc.201900055.
  • de Raadt, A.; Ferrier, R. J. Syntheses and Reactions of Saturated and 2,3-unsaturated Vinyl and 1′-substituted-vinyl Glycosides. Carbohydr. Res. 1992, 216, 93–107. DOI: 10.1016/0008-6215(92)84153-J.
  • Mishra, K. B.; Singh, A. K.; Kandasamy, J. Tris(pentafluorophenyl)borane-Promoted Stereoselective Glycosylation with Glycosyl Trichloroacetimidates under Mild Conditions. J. Org. Chem. 2018, 83(7), 4204–4212. DOI: 10.1021/acs.joc.8b00215.
  • Nakagawa, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.; Toshima, K. Regioselective and 1,2- Cis -α-Stereoselective Glycosylation Utilizing Glycosyl-Acceptor-Derived Boronic Ester Catalyst. Angewandte Chemie. 2015, 127(37), 11085–11089. DOI: 10.1002/ange.201504182.
  • Nakagawa, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.; Toshima, K. Regioselective and 1,2- Cis -α-Stereoselective Glycosylation Utilizing Glycosyl-Acceptor-Derived Boronic Ester Catalyst. Angewandte Chemie. 2015, 127(37), 11085–11089. DOI: 10.1002/ange.201504182aaa.
  • Tanaka, M.; Nashida, J.; Takahashi, D.; Toshima, K. Glycosyl-Acceptor-Derived Borinic Ester-Promoted Direct and β-Stereoselective Mannosylation with a 1,2-Anhydromannose Donor. Org. Lett. 2016, 18(9), 2288–2291. DOI: 10.1021/acs.orglett.6b00926.
  • Tanaka, M.; Takahashi, D.; Toshima, K. 1,2- Cis -α-Stereoselective Glycosylation Utilizing a Glycosyl-Acceptor-Derived Borinic Ester and Its Application to the Total Synthesis of Natural Glycosphingolipids. Org. Lett. 2016, 18(19), 5030–5033. DOI: 10.1021/acs.orglett.6b02488.
  • Izumi, S.; Kobayashi, Y.; Takemoto, Y. Stereoselective Synthesis of 1,1′-Disaccharides by Organoboron Catalysis. Angew. Chem. Int. Ed. 2020, 59(33), 14054–14059. DOI: 10.1002/anie.202004476.
  • Tanaka, M.; Sato, K.; Yoshida, R.; Nishi, N.; Oyamada, R.; Inaba, K.; Takahashi, D.; Toshima, K. Diastereoselective Desymmetric 1, 2-cis-glycosylation of Meso-diols via Chirality Transfer from a Glycosyl Donor. Nat. Commun. 2020, 11(1), 1–10. DOI: 10.1038/s41467-020-16365-8.
  • Tanaka, M.; Nakagawa, A.; Nishi, N.; Iijima, K.; Sawa, R.; Takahashi, D.; Toshima, K. Boronic-Acid-Catalyzed Regioselective and 1,2- Cis -stereoselective Glycosylation of Unprotected Sugar Acceptors via S N i-Type Mechanism. J. Am. Chem. Soc. 2018, 140(10), 3644–3651. DOI: 10.1021/jacs.7b12108.
  • Manhas, S.; Taylor, M. S. Dehydrative Glycosidations of 2-deoxysugar Derivatives Catalyzed by an Arylboronic Ester. Carbohydr. Res. 2018, 470, 42–49. DOI: 10.1016/j.carres.2018.10.002.
  • Takemoto, Y.; Izumi, S.; Kobayashi, Y. Arylboronic Acid-Mediated Glycosylation of 1,2-Dihydroxyglucoses. Heterocycles. 2019, 99(1), 350–362. DOI: 10.3987/COM-18-S(F)28.
  • Sui, -J.-J.; Xiong, D.-C.; Ye, X.-S. Copper-mediated O-arylation of Lactols with Aryl Boronic Acids. Chinese Chem. Lett. 2019, 30(8), 1533–1537. DOI: 10.1016/j.cclet.2019.06.014.
  • D’Angelo, K. A.; Taylor, M. S. Borinic Acid-catalyzed Stereo- and Site-selective Synthesis of β-glycosylceramides. Chem. Commun. 2017, 53(44), 5978–5980. DOI: 10.1039/C7CC01673E.
  • Xia, C.; Yao, Q.; Schümann, J.; Rossy, E.; Chen, W.; Zhu, L.; Zhang, W.; De Libero, G.; Wang, P. G. Synthesis and Biological Evaluation of α-galactosylceramide (KRN7000) and Isoglobotrihexosylceramide (Igb3). Bioorg. Med. Chem. Lett. 2006, 16(8), 2195–2199. DOI: 10.1016/j.bmcl.2006.01.040.
  • Das, S.; Pekel, D.; Neudörfl, J.-M.; Berkessel, A. Organocatalytic Glycosylation by Using Electron-Deficient Pyridinium Salts. Angew. Chem. Int. Ed. 2015, 54(42), 12479–12483. DOI: 10.1002/anie.201503156.
  • Shaw, M.; Kumar, Y.; Thakur, R.; Kumar, A. Electron-deficient Pyridinium Salts/thiourea Cooperative Catalyzed O -glycosylation via Activation of O -glycosyl Trichloroacetimidate Donors. Beilstein J. Org. Chem. 2017, 13, 2385–2395. DOI: 10.3762/bjoc.13.236.
  • Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. Journal of the American Chemical Society, 2013 135(34), 12480–12496.
  • Ghosh, T.; Mukherji, A.; Kancharla, P. K. Sterically Hindered 2,4,6-Tri- Tert -butylpyridinium Salts as Single Hydrogen Bond Donors for Highly Stereoselective Glycosylation Reactions of Glycals. Org. Lett. 2019, 21(10), 3490–3495. DOI: 10.1021/acs.orglett.9b00626.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.