Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 3
1,187
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Direct conversion of CO2 into aromatics over multifunctional heterogeneous catalysts

, &
Pages 863-922 | Received 21 Mar 2022, Accepted 04 Jul 2022, Published online: 20 Jul 2022

References

  • Daza, Y. A.; Kuhn, J. N. CO2 Conversion by Reverse Water Gas Shift Catalysis: Comparison of Catalysts, Mechanisms and Their Consequences for CO2 Conversion to Liquid Fuels. RSC Adv. 2016, 6, 49675–49691. DOI: 10.1039/C6RA05414E.
  • González-Castaño, M.; Dorneanu, B.; Arellano-García, H. The Reverse Water Gas Shift Reaction: A Process Systems Engineering Perspective. React. Chem. Eng. 2021, 6, 954–976. DOI: 10.1039/D0RE00478B.
  • Bowker, M.;. Methanol Synthesis from CO2 Hydrogenation. ChemCatChem. 2019, 11, 4238. DOI: 10.1002/cctc.201900401.
  • Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J. L. G.; Navarro, R. Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis. Materials. 2019, 12(3902), 3902. DOI: 10.3390/ma12233902.
  • Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020, 120, 7984–8034. DOI: 10.1021/acs.chemrev.9b00723.
  • Bai, S.; Shao, Q.; Wang, P.; Dai, Q.; Wang, X.; Huang, X. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd–Cu Nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827–6830. DOI: 10.1021/jacs.7b03101.
  • Yang, C.; Mu, R.; Wang, G.; Song, J.; Tian, H.; Zhao, Z.-J.; Gong, J. Hydroxyl-mediated Ethanol Selectivity of CO2 Hydrogenation. Chem. Sci. 2019, 10, 3161–3167. DOI: 10.1039/C8SC05608K.
  • Chen, Y.; Choi, S.; Thompson, L. T. Low Temperature CO2 Hydrogenation to Alcohols and Hydrocarbons over Mo2C Supported Metal Catalysts. J. Catal. 2016, 343, 147–156. DOI: 10.1016/j.jcat.2016.01.016.
  • He, Z.; Qian, Q.; Zhang, Z.; Meng, Q.; Zhou, H.; Jiang, Z.; Han, B. Synthesis of Higher Alcohols from CO2 Hydrogenation over a PtRu/Fe2O3 Catalyst under Supercritical Condition, Philos. Trans. Royal Soc. A. 2015, 373, 20150006. DOI: 10.1098/rsta.2015.0006.
  • Liu, S.; Zhou, H.; Song, Q.; Ma, Z. Synthesis of Higher Alcohols from CO2 Hydrogenation over Mo–Co–K Sulfide-based Catalysts. J. Taiwan Inst. Chem. Eng. 2017, 76, 18–26. DOI: 10.1016/j.jtice.2017.04.007.
  • He, Z.; Qian, Q.; Ma, J.; Meng, Q.; Zhou, H.; Song, J.; Liu, Z.; Han, B. Water‐enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angew. Chem. Int. Ed. 2016, 55, 737–741. DOI: 10.1002/anie.201507585.
  • Cui, X.; Gao, P.; Li, S.; Yang, C.; Liu, Z.; Wang, H.; Zhong, L.; Sun, Y. Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation. ACS Catal. 2019, 9, 3866–3876. DOI: 10.1021/acscatal.9b00640.
  • Khan, M. K.; Butolia, P.; Jo, H.; Irshad, M.; Han, D.; Nam, K.-W.; Kim, J. Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over Fe-Amorphous AlOx Bifunctional Catalysts. ACS Catal. 2020, 10, 10325–10338. DOI: 10.1021/acscatal.0c02611.
  • Landau, M. V.; Vidruk, R.; Herskowitz, M. Sustainable Production of Green Feed from Carbon Dioxide and Hydrogen. ChemSusChem. 2014, 7, 785–794. DOI: 10.1002/cssc.201301181.
  • Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the Greener Production of Formates/formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chem. Rev. 2017, 117, 9804–9838. DOI: 10.1021/acs.chemrev.6b00816.
  • Liu, G.; Poths, P.; Zhang, X.; Zhu, Z.; Marshall, M.; Blankenhorn, M.; Alexandrova, A. N.; Bowen, K. H. CO2 Hydrogenation to Formate and Formic Acid by Bimetallic Palladium–Copper Hydride Clusters. J. Am. Chem. Soc. 2020, 142, 7930–7936. DOI: 10.1021/jacs.0c01855.
  • Kuwahara, Y.; Fujie, Y.; Mihogi, T.; Yamashita, H. Hollow Mesoporous Organosilica Spheres Encapsulating PdAg Nanoparticles and Poly(Ethyleneimine) as Reusable Catalysts for Co 2 Hydrogenation to Formate. ACS Catal. 2020, 10, 6356–6366. DOI: 10.1021/acscatal.0c01505.
  • Mori, K.; Taga, T.; Yamashita, H. Isolated Single-atomic Ru Catalyst Bound on a Layered Double Hydroxide for Hydrogenation of CO2 to Formic Acid. ACS Catal. 2017, 7, 3147–3151. DOI: 10.1021/acscatal.7b00312.
  • Sibi, M. G.; Verma, D.; Setiyadi, H. C.; Khan, M. K.; Karanwal, N.; Kwak, S. K.; Chung, K. Y.; Park, J.-H.; Han, D.; Nam, K.-W. Synthesis of Monocarboxylic Acids via Direct CO2 Conversion over Ni–Zn Intermetallic Catalysts. ACS Catal. 2021, 11, 8382–8398. DOI: 10.1021/acscatal.1c00747.
  • Ronda‐Lloret, M.; Rothenberg, G.; Shiju, N. R. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem. 2019, 12, 3896–3914. DOI: 10.1002/cssc.201900915.
  • Guo, L.; Sun, J.; Ji, X.; Wei, J.; Wen, Z.; Yao, R.; Xu, H.; Ge, Q. Directly Converting Carbon Dioxide to Linear α-olefins on Bio-promoted Catalysts, Commun. Chem. 2018, 1, 1–8. DOI: 10.1038/s42004-018-0012-4.
  • Guo, L.; Cui, Y.; Li, H.; Fang, Y.; Prasert, R.; Wu, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Selective Formation of Linear-alpha Olefins (Laos) by CO2 Hydrogenation over Bimetallic Fe/Co-Y Catalyst, Catal. Commun. 2019, 130, 105759. DOI: 10.1016/j.catcom.2019.105759.
  • Wei, J.; Yao, R.; Han, Y.; Ge, Q.; Sun, J. Towards the Development of the Emerging Process of CO2 Heterogenous Hydrogenation into High-value Unsaturated Heavy Hydrocarbons. Chem. Soc. Rev. 2021, 50, 10764–10805. DOI: 10.1039/D1CS00260K.
  • He, Z.; Cui, M.; Qian, Q.; Zhang, J.; Liu, H.; Han, B. Synthesis of Liquid Fuel via Direct Hydrogenation of CO2. PNAS. 2019, 116, 12654–12659. DOI: 10.1073/pnas.1821231116.
  • Jo, H.; Khan, M. K.; Irshad, M.; Arshad, M. W.; Kim, S. K.; Kim, J. Unraveling the Role of Cobalt in the Direct Conversion of CO2 to High-yield Liquid Fuels and Lube Base Oil, Appl. Catal. B: Environ. 2021, 121041. DOI: 10.1016/j.apcatb.2021.121041.
  • Wang, Y.; Gao, W.; Kazumi, S.; Li, H.; Yang, G.; Tsubaki, N. Direct and Oriented Conversion of CO2 into Value‐Added Aromatics, Chem.- A Eur. J. 2019, 25, 5149–5153. DOI: 10.1002/chem.201806165.
  • Wang, Y.; Kazumi, S.; Gao, W.; Gao, X.; Li, H.; Guo, X.; Yoneyama, Y.; Yang, G.; Tsubaki, N. Direct Conversion of CO2 to Aromatics with High Yield via a Modified Fischer-Tropsch Synthesis Pathway, Appl. Catal. B: Environ. 2020, 269, 118792. DOI: 10.1016/j.apcatb.2020.118792.
  • Wei, J.; Ge, Q.; Yao, R.; Wen, Z.; Fang, C.; Guo, L.; Xu, H.; Sun, J. Directly Converting CO2 into a Gasoline Fuel. Nat. Commun. 2017, 8, 1–9. DOI: 10.1038/ncomms15174.
  • Ramirez, A.; Dutta Chowdhury, A.; Dokania, A.; Cnudde, P.; Caglayan, M.; Yarulina, I.; Abou-Hamad, E.; Gevers, L.; Ould-Chikh, S.; De Wispelaere, K. Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catal. 2019, 9, 6320–6334. DOI: 10.1021/acscatal.9b01466.
  • Xu, Y.; Wang, T.; Shi, C.; Liu, B.; Jiang, F.; Liu, X. Experimental Investigation on the Two-Sided Effect of Acidic HZSM-5 on the Catalytic Performance of Composite Fe-Based Fischer–Tropsch Catalysts and HZSM-5 Zeolite in the Production of Aromatics from CO2/H2. Ind. Eng. Chem. Res. 2020, 59, 8581–8591. DOI: 10.1021/acs.iecr.0c00992.
  • Wang, S.; Wu, T.; Lin, J.; Tian, J.; Ji, Y.; Pei, Y.; Yan, S.; Qiao, M.; Xu, H.; Zong, B. FeK on 3D Graphene–Zeolite Tandem Catalyst with High Efficiency and Versatility in Direct CO2 Conversion to Aromatics. ACS Sus. Chem. Eng. 2019, 7, 17825–17833. DOI: 10.1021/acssuschemeng.9b04328.
  • Song, G.; Li, M.; Yan, P.; Nawaz, M. A.; Liu, D. High Conversion to Aromatics via CO2-FT over a CO-Reduced Cu-Fe2O3 Catalyst Integrated with HZSM-5. ACS Catal. 2020, 10, 11268–11279. DOI: 10.1021/acscatal.0c02722.
  • Zhou, C.; Shi, J.; Zhou, W.; Cheng, K.; Zhang, Q.; Kang, J.; Wang, Y. Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catal. 2019, 10, 302–310. DOI: 10.1021/acscatal.9b04309.
  • Li, Z.; Qu, Y.; Wang, J.; Liu, H.; Li, M.; Miao, S.; Li, C. Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts. Joule. 2019, 3, 570–583. DOI: 10.1016/j.joule.2018.10.027.
  • Dai, C.; Zhao, X.; Hu, B.; Zhang, J.; Hao, Q.; Chen, H.; Guo, X.; Ma, X. Hydrogenation of CO2 to Aromatics over Fe–K/Alkaline Al2O3 and P/ZSM-5 Tandem Catalysts, Ind. Eng. Chem. Res. 2020, 59, 19194–19202. DOI: 10.1021/acs.iecr.0c03598.
  • Zhang, J.; Zhang, M.; Chen, S.; Wang, X.; Zhou, Z.; Wu, Y.; Zhang, T.; Yang, G.; Han, Y.; Tan, Y. Hydrogenation of CO2 into Aromatics over a ZnCrOx–zeolite Composite Catalyst. Chem. Commun. 2019, 55, 973–976. DOI: 10.1039/C8CC09019J.
  • Wang, Y.; Tan, L.; Tan, M.; Zhang, P.; Fang, Y.; Yoneyama, Y.; Yang, G.; Tsubaki, N. Rationally Designing Bifunctional Catalysts as an Efficient Strategy to Boost CO2 Hydrogenation Producing Value-added Aromatics. ACS Catal. 2018, 9, 895–901. DOI: 10.1021/acscatal.8b01344.
  • Ni, Y.; Chen, Z.; Fu, Y.; Liu, Y.; Zhu, W.; Liu, Z. Selective Conversion of CO2 and H2 into Aromatics. Nat. Commun. 2018, 9, 1–7. DOI: 10.1038/s41467-018-05880-4.
  • Xu, Y.; Shi, C.; Liu, B.; Wang, T.; Zheng, J.; Li, W.; Liu, D.; Liu, X. Selective Production of Aromatics from CO2. Catal. Sci. Technol. 2019, 9, 593–610. DOI: 10.1039/C8CY02024H.
  • Wen, C.; Jiang, J.; Chiliu, C.; Tian, Z.; Xu, X.; Wu, J.; Wang, C.; Ma, L. Single-step Selective Conversion of Carbon Dioxide to Aromatics over Na-Fe3O4/hierarchical HZSM-5 Zeolite Catalyst. Energy Fuels. 2020, 34, 11282–11289. DOI: 10.1021/acs.energyfuels.0c02120.
  • Zhang, X.; Zhang, A.; Jiang, X.; Zhu, J.; Liu, J.; Li, J.; Zhang, G.; Song, C.; Guo, X. Utilization of CO2 for Aromatics Production over ZnO/ZrO2-ZSM-5 Tandem Catalyst. J. CO2 Util. 2019, 29, 140–145. DOI: 10.1016/j.jcou.2018.12.002.
  • Wang, T.; Yang, C.; Gao, P.; Zhou, S.; Li, S.; Wang, H.; Sun, Y. ZnZrOx Integrated with Chain-like Nanocrystal HZSM-5 as Efficient Catalysts for Aromatics Synthesis from CO2 Hydrogenation. Appl. Catal. B. 2021, 286, 119929. DOI: 10.1016/j.apcatb.2021.119929.
  • Sibi, M. G.; Khan, M. K.; Verma, D.; Yoon, W.; Kim, J. High-yield Synthesis of BTEX over Na–FeAlOx/Zn–HZSM-5@SiO2 by Direct CO2 Conversion and Identification of Surface Intermediates, Appl. Catal. B: Environ. 2021, 120813. DOI: 10.1016/j.apcatb.2021.120813.
  • Roy, S.; Cherevotan, A.; Peter, S. C. Thermochemical CO2 Hydrogenation to Single Carbon Products: Scientific and Technological Challenges. ACS Energy Lett. 2018, 3, 1938–1966. DOI: 10.1021/acsenergylett.8b00740.
  • Varga, G.; Sápi, A.; Varga, T.; Baán, K.; Szenti, I.; Halasi, G.; Mucsi, R.; Óvári, L.; Kiss, J.; Fogarassy, Z. Ambient Pressure CO2 Hydrogenation over A Cobalt/manganese-oxide Nanostructured Interface: A Combined in Situ and Ex Situ Study. J. Catal. 2020, 386, 70–80. DOI: 10.1016/j.jcat.2020.03.028.
  • Yan, Y.; Dai, Y.; He, H.; Yu, Y.; Yang, Y. A Novel W-doped Ni-Mg Mixed Oxide Catalyst for CO2 Methanation, Appl. Catal. B: Environ. 2016, 196, 108–116. DOI: 10.1016/j.apcatb.2016.05.016.
  • Li, T.; Shoinkhorova, T.; Gascon, J.; Ruiz-Martínez, J. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catal. 2021, 11, 7780–7819. DOI: 10.1021/acscatal.1c01422.
  • Mota, F. M.; Kim, D. H. From CO2 Methanation to Ambitious Long-chain Hydrocarbons: Alternative Fuels Paving the Path to Sustainability. Chem. Soc. Rev. 2019, 48, 205–259. DOI: 10.1039/C8CS00527C.
  • Stangeland, K.; Li, H.; Yu, Z. Thermodynamic Analysis of Chemical and Phase Equilibria in CO2 Hydrogenation to Methanol, Dimethyl Ether, and Higher Alcohols, Ind. Eng. Chem. Res. 2018, 57, 4081–4094. DOI: 10.1021/acs.iecr.7b04866.
  • Mathew, T. George Andrew Olah. Nature. 1927–2017, 2017(544), 162-162. doi:10.1038/544162a.
  • Lim, X.;. How to Make the Most of Carbon Dioxide. Nature News. 2015, 526, 628. DOI: 10.1038/529141a.
  • Wei, J.; Sun, J.; Wen, Z.; Fang, C.; Ge, Q.; Xu, H. New Insights into the Effect of Sodium on Fe3O4-based Nanocatalysts for CO2 Hydrogenation to Light Olefins, Catal. Sci. Tech. 2016, 6, 4786–4793. DOI: 10.1039/C6CY00160B.
  • Torres Galvis, H. M.; de Jong, K. P. Catalysts for Production of Lower Olefins from Synthesis Gas: A Review. ACS Catal. 2013, 3, 2130–2149. DOI: 10.1021/cs4003436.
  • Wang, G.; Zeng, L.; Cao, J.; Liu, F.; Lin, Q.; Yi, Y.; Pan, H. Highly Selective Conversion of CO2 to Hydrocarbons over Composite Catalysts of ZnO-ZrO2 and SAPO-34. Microporous Mesoporous Mater. 2019, 284, 133–140. DOI: 10.1016/j.micromeso.2019.04.023.
  • Li, Z.; Wang, J.; Qu, Y.; Liu, H.; Tang, C.; Miao, S.; Feng, Z.; An, H.; Li, C. Highly Selective Conversion of Carbon Dioxide to Lower Olefins. ACS Catal. 2017, 7, 8544–8548. DOI: 10.1021/acscatal.7b03251.
  • Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J. Direct Conversion of CO2 into Liquid Fuels with High Selectivity over a Bifunctional Catalyst. Nat. Chem. 2017, 9, 1019–1024. DOI: 10.1038/nchem.2794.
  • Gao, P.; Dang, S.; Li, S.; Bu, X.; Liu, Z.; Qiu, M.; Yang, C.; Wang, H.; Zhong, L.; Han, Y. Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catal. 2018, 8, 571–578. DOI: 10.1021/acscatal.7b02649.
  • Liu, X.; Wang, M.; Zhou, C.; Zhou, W.; Cheng, K.; Kang, J.; Zhang, Q.; Deng, W.; Wang, Y. Selective Transformation of Carbon Dioxide into Lower Olefins with a Bifunctional Catalyst Composed of ZnGa2O4 and SAPO-34. Chem. Commun. 2018, 54, 140–143. DOI: 10.1039/C7CC08642C.
  • Wei, J.; Yao, R.; Ge, Q.; Wen, Z.; Ji, X.; Fang, C.; Zhang, J.; Xu, H.; Sun, J. Catalytic Hydrogenation of CO2 to Isoparaffins over Fe-based Multifunctional Catalysts. ACS Catal. 2018, 8, 9958–9967. DOI: 10.1021/acscatal.8b02267.
  • Wang, L.; He, S.; Wang, L.; Lei, Y.; Meng, X.; Xiao, F.-S. Cobalt–Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catal. 2019, 9, 11335–11340. DOI: 10.1021/acscatal.9b04187.
  • Xu, D.; Ding, M.; Hong, X.; Liu, G.; Tsang, S. C. E. Selective C2+ Alcohol Synthesis from Direct CO2 Hydrogenation over a Cs-Promoted Cu-Fe-Zn Catalyst. ACS Catal. 2020, 10, 5250–5260. DOI: 10.1021/acscatal.0c01184.
  • https://www.marketresearch.com/TechSci-Research-v3895/Global-Aromatics-Type-Benzene-Toluene-13346160/, 2020,
  • Rahimpour, M. R.; Jafari, M.; Iranshahi, D. Progress in Catalytic Naphtha Reforming Process: A Review, Appl. Energy. 2013, 109, 79–93. DOI: 10.1016/j.apenergy.2013.03.080.
  • Farooq, A.; Lam, S. S.; Rhee, G. H.; Lee, J.; Khan, M. A.; Jeon, B.-H.; Park, Y.-K. Technical Benefits of Using Methane as a Pyrolysis Medium for Catalytic Pyrolysis of Kraft Lignin. Bioresour. Technol. 2022, 353, 127131. DOI: 10.1016/j.biortech.2022.127131.
  • Seo, M. W.; Lee, S. H.; Nam, H.; Lee, D.; Tokmurzin, D.; Wang, S.; Park, Y.-K. Recent Advances of Thermochemical Conversion Processes for Biorefinery, Bioresour. Technol. 2022, 343, 126109. DOI: 10.1016/j.biortech.2021.126109.
  • Lee, J.; Kwon, E. E.; Park, Y.-K. Recent Advances in the Catalytic Pyrolysis of Microalgae, Catal. Today. 2020, 355, 263–271. DOI: 10.1016/j.cattod.2019.03.010.
  • Kim, Y.-M.; Jae, J.; Kim, B.-S.; Hong, Y.; Jung, S.-C.; Park, Y.-K. Catalytic Co-pyrolysis of Torrefied Yellow Poplar and High-density Polyethylene Using Microporous HZSM-5 and Mesoporous Al-MCM-41 Catalysts. Energy Convers. Manag. 2017, 149, 966–973. DOI: 10.1016/j.enconman.2017.04.033.
  • Dry, M. E.;. High Quality Diesel via the Fischer–Tropsch Process–a Review. J. Chem. Technol. Biotech. 2002, 77, 43–50. DOI: 10.1002/jctb.527.
  • Makeeva, D.; Kulikov, L.; Afokin, M.; Knyazeva, M.; Karakhanov, E.; Maksimov, A. Production of Aromatic Hydrocarbons from Syngas: Principles, Problems, and Prospects, Russ. J. Appl. Chem. 2020, 93, 933–953. DOI: 10.1134/S1070427220070010.
  • Yang, X.; Su, X.; Chen, D.; Zhang, T.; Huang, Y. Direct Conversion of Syngas to Aromatics: A Review of Recent Studies. Chin. J. Catal. 2020, 41, 561–573. DOI: 10.1016/S1872-2067(19)63346-2.
  • Chang, C. D.; Lang, W. H.; Silvestri, A. J. Synthesis Gas Conversion to Aromatic Hydrocarbons. J. Catal. 1979, 56, 268–273. DOI: 10.1016/0021-9517(79)90113-1.
  • Nimz, M.; Lietz, G.; Völter, J.; Lázár, K.; Guczi, L. Direct Conversion of Syngas to Aromatics on FePd/SiO2 Catalyst. Catal. Lett. 1988, 1, 93–98. DOI: 10.1007/BF00772771.
  • Fujimoto, K.; Kudo, Y.; Tominaga, H.-O. Synthesis Gas Conversion Utilizing Mixed Catalyst Composed of CO Reducing Catalyst and Solid Acid: II. Direct Synthesis of Aromatic Hydrocarbons from Synthesis Gas. J. Catal. 1984, 87, 136–143. DOI: 10.1016/0021-9517(84)90176-3.
  • Yang, J.; Pan, X.; Jiao, F.; Li, J.; Bao, X. Direct Conversion of Syngas to Aromatics. Chem. Commun. 2017, 53, 11146–11149. DOI: 10.1039/C7CC04768A.
  • Cheng, K.; Zhou, W.; Kang, J.; He, S.; Shi, S.; Zhang, Q.; Pan, Y.; Wen, W.; Wang, Y. Bifunctional Catalysts for One-step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. Chem. 2017, 3, 334–347. DOI: 10.1016/j.chempr.2017.05.007.
  • Arslan, M. T.; Tian, G.; Ali, B.; Zhang, C.; Xiong, H.; Li, Z.; Luo, L.; Chen, X.; Wei, F. Highly Selective Conversion of CO2 or CO into Precursors for Kerosene-Based Aviation Fuel via an Aldol–Aromatic Mechanism. ACS Catal. 2022, 12, 2023–2033. DOI: 10.1021/acscatal.1c04961.
  • Liu, Y.; Müller, S.; Berger, D.; Jelic, J.; Reuter, K.; Tonigold, M.; Sanchez‐Sanchez, M.; Lercher, J. A. Formation Mechanism of the First Carbon–carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons. Angew. Chem. Int. Ed. 2016, 128, 5817–5820. DOI: 10.1002/ange.201511678.
  • Liang, T.; Chen, J.; Qin, Z.; Li, J.; Wang, P.; Wang, S.; Wang, G.; Dong, M.; Fan, W.; Wang, J. Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catal. 2016, 6, 7311–7325. DOI: 10.1021/acscatal.6b01771.
  • Weber, J. L.; Dugulan, I.; de Jongh, P. E.; De Jong, K. P. Bifunctional Catalysis for the Conversion of Synthesis Gas to Olefins and Aromatics. ChemCatChem. 2018, 10, 1107–1112. DOI: 10.1002/cctc.201701667.
  • Xu, Y.; Liu, J.; Ma, G.; Wang, J.; Wang, Q.; Lin, J.; Wang, H.; Zhang, C.; Ding, M. Synthesis of Aromatics from Syngas over FeMnK/SiO2 and HZSM-5 Tandem Catalysts, Mol. Catal. 2018, 454, 104–113. DOI: 10.1016/j.mcat.2018.05.019.
  • Xu, Y.; Liu, J.; Wang, J.; Ma, G.; Lin, J.; Yang, Y.; Li, Y.; Zhang, C.; Ding, M. Selective Conversion of Syngas to Aromatics over Fe3O4@ MnO2 and Hollow HZSM-5 Bifunctional Catalysts. ACS Catal. 2019, 9, 5147–5156. DOI: 10.1021/acscatal.9b01045.
  • Cheng, L.; Meng, C.; Yang, T.; Li, N.; Liu, D. One-step Synthesis of Aromatics from Syngas over K-Modified FeMnO/MoNi-ZSM-5. Energy Fuels. 2018, 32, 9756–9762. DOI: 10.1021/acs.energyfuels.8b01965.
  • Guan, N.; Liu, Y.; Zhang, M. Development of Catalysts for the Production of Aromatics from Syngas, Catal. Today. 1996, 30, 207–213. DOI: 10.1016/0920-5861(96)00014-4.
  • Wang, T.; Xu, Y.; Shi, C.; Jiang, F.; Liu, B.; Liu, X. Direct Production of Aromatics from Syngas over a Hybrid FeMn Fischer–Tropsch Catalyst and HZSM-5 Zeolite: Local Environment Effect and Mechanism-directed Tuning of the Aromatic Selectivity, Catal. Sci. Tech. 2019, 9, 3933–3946. DOI: 10.1039/C9CY00750D.
  • Xu, Y.; Wang, J.; Ma, G.; Bai, J.; Du, Y.; Ding, M. Direct Synthesis of Aromatics from Syngas over Mo-modified Fe/HZSM-5 Bifunctional Catalyst. Appl. Catal. A. 2020, 598, 117589. DOI: 10.1016/j.apcata.2020.117589.
  • Ali, M.; Koo, H.-M.; Kasipandi, S.; Han, G. Y.; Bae, J. W. Direct Synthesis of Liquid Fuels and Aromatics from Syngas over Mesoporous FeZrOx Catalyst Mixed with Mo/ferrierite. Fuel. 2020, 264, 116851. DOI: 10.1016/j.fuel.2019.116851.
  • Xu, H.; Li, M.; Nawaz, M. A.; Liu, D. Doping of K and Zn Elements in FeZr-Ni/ZSM-5: Highly Selective Catalyst for Syngas to Aromatics, Catal. Commun. 2019, 121, 95–99. DOI: 10.1016/j.catcom.2019.01.001.
  • Xu, Y.; Liu, J.; Ma, G.; Wang, J.; Lin, J.; Wang, H.; Zhang, C.; Ding, M. Effect of Iron Loading on Acidity and Performance of Fe/HZSM-5 Catalyst for Direct Synthesis of Aromatics from Syngas. Fuel. 2018, 228, 1–9. DOI: 10.1016/j.fuel.2018.04.151.
  • Yang, T.; Cheng, L.; Li, N.; Liu, D. Effect of Metal Active Sites on the Product Distribution over Composite Catalysts in the Direct Synthesis of Aromatics from Syngas, Ind. Eng. Chem. Res. 2017, 56, 11763–11772. DOI: 10.1021/acs.iecr.7b03450.
  • Yang, S.; Li, M.; Nawaz, M. A.; Song, G.; Xiao, W.; Wang, Z.; Liu, D. High Selectivity to Aromatics by a Mg and Na Co-modified Catalyst in Direct Conversion of Syngas. ACS omega. 2020, 5, 11701–11709. DOI: 10.1021/acsomega.0c01007.
  • Xu, Y.; Wang, J.; Ma, G.; Zhang, J.; Ding, M. Hollow Zeolite Nanoparticles Combined with Fe3O4@ MnO2 Tandem Catalyst for Converting Syngas to Aromatics-rich Gasoline. ACS Appl. Nano Mater. 2020, 3, 2857–2866. DOI: 10.1021/acsanm.0c00123.
  • Fu, Y.; Ni, Y.; Chen, Z.; Zhu, W.; Liu, Z. Achieving High Conversion of Syngas to Aromatics. J. Energy Chem. 2022, 66, 597–602. DOI: 10.1016/j.jechem.2021.03.044.
  • Li, M.; Zhang, Z.; Song, G.; Nawaz, M. A.; Wang, Z.; Chen, Z.; Liu, D., Surface Si Decoration of Ultrafine NaFeMn-Si Catalyst Enabling High Fe-phase Electron Density for Effectively Converting Syngas to Aromatics, Chem. Eng. J., 2022, 134599, doi:10.1016/j.cej.2022.134599
  • Weber, J.; Del Monte, D. M.; Beerthuis, R.; Dufour, J.; Martos, C.; de Jong, K.; de Jongh, P. Conversion of Synthesis Gas to Aromatics at Medium Temperature with a Fischer Tropsch and ZSM-5 Dual Catalyst Bed, Catal. Today. 2021, 369, 175–183. DOI: 10.1016/j.cattod.2020.05.016.
  • Nawaz, M. A.; Li, M.; Saif, M.; Song, G.; Wang, Z.; Liu, D. Harnessing the Synergistic Interplay of Fischer‐Tropsch Synthesis (Fe‐co) Bimetallic Oxides in Na‐FeMnCo/HZSM‐5 Composite Catalyst for Syngas Conversion to Aromatic Hydrocarbons. ChemCatChem. 2021, 13, 1966–1980. DOI: 10.1002/cctc.202100024.
  • Wang, J.; Huang, Z.; Fang, Y.; Shen, W.; Xu, H. La‐Based Perovskites Combined with HZSM‐5 for Selective Conversion of Syngas into Aromatics. ChemistrySelect. 2021, 6, 9776–9779. DOI: 10.1002/slct.202102689.
  • Wang, T.; Xu, Y.; Li, Y.; Xin, L.; Liu, B.; Jiang, F.; Liu, X. Sodium-Mediated Bimetallic Fe–Ni Catalyst Boosts Stable and Selective Production of Light Aromatics over HZSM-5 Zeolite. ACS Catal. 2021, 11, 3553–3574. DOI: 10.1021/acscatal.1c00169.
  • Nawaz, M. A.; Saif, M.; Li, M.; Song, G.; Zihao, W.; Liu, D. Tailoring the Synergistic Dual-decoration of (Cu–co) Transition Metal Auxiliaries in Fe-oxide/zeolite Composite Catalyst for the Direct Conversion of Syngas to Aromatics, Catal. Sci. Tech. 2021, 11, 7992–8006. DOI: 10.1039/D1CY01717A.
  • Xu, Y.; Ma, G.; Bai, J.; Du, Y.; Qin, C.; Ding, M. Yolk@ Shell FeMn@ Hollow HZSM-5 Nanoreactor for Directly Converting Syngas to Aromatics. ACS Catal. 2021, 11, 4476–4485. DOI: 10.1021/acscatal.0c05658.
  • Weitkamp, J. Zeolites and Catalysis, Solid State Inoics. 2000, 131, 175–188 DOI: 10.1016/S0167-2738(00)00632-9.
  • Earl, D. J.; Deem, M. W. Toward a Database of Hypothetical Zeolite Structures, Ind. Eng. Chem. Res. 2006, 45, 5449–5454. DOI: 10.1021/ie0510728.
  • Yokoi, T.; Mochizuki, H.; Namba, S.; Kondo, J. N.; Tatsumi, T. Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-state NMR Technique and Catalytic Properties. J. Phys. Chem. C. 2015, 119, 15303–15315. DOI: 10.1021/acs.jpcc.5b03289.
  • Song, W.; Fu, H.; Haw, J. F. Supramolecular Origins of Product Selectivity for Methanol-to-olefin Catalysis on HSAPO-34. J. Am. Chem. Soc. 2001, 123, 4749–4754. DOI: 10.1021/ja0041167.
  • Choudhary, T.; Kinage, A.; Banerjee, S.; Choudhary, V. Influence of Si/Ga and Si/Al Ratios on Propane Aromatization over Highly Active H-GaAlMFI, Catal. Commun. 2006, 7, 166–169. DOI: 10.1016/j.catcom.2005.10.006.
  • Yashima, T.; Fujita, S.; Komatsu, T. Reaction Scheme of Aromatization of Butane over Ga Loaded HZSM-5 Catalyst. J. Japan Pet. Inst. 1998, 41, 37–44. DOI: 10.1627/jpi1958.41.37.
  • Xu, C.; Jiang, B.; Liao, Z.; Wang, J.; Huang, Z.; Yang, Y. Effect of Metal on the Methanol to Aromatics Conversion over Modified ZSM-5 in the Presence of Carbon Dioxide. RSC Adv. 2017, 7, 10729–10736. DOI: 10.1039/C6RA27104A.
  • Inoue, Y.; Nakashiro, K.; Ono, Y. Selective Conversion of Methanol into Aromatic Hydrocarbons over Silver-exchanged ZSM-5 Zeolites. Microporous Mater. 1995, 4, 379–383. DOI: 10.1016/0927-6513(95)00020-A.
  • Barthos, R.; Bánsági, T.; Zakar, T. S.; Solymosi, F. Aromatization of Methanol and Methylation of Benzene over Mo2C/ZSM-5 Catalysts. J. Catal. 2007, 247, 368–378. DOI: 10.1016/j.jcat.2007.02.017.
  • Nagamatsu, S.; Inomata, M.; Imura, K. Conversion of Light Naphtha into Aromatic Hydrocarbons (Part 1) Kinetic Studies on Hexane Conversion on Zn/H-ZSM-5. J. Japan Pet. Inst. 1992, 35, 41–49. DOI: 10.1627/jpi1958.35.41.
  • Adebajo, M. O.; Long, M. A. The Contribution of the Methanol-to-aromatics Reaction to Benzene Methylation over ZSM-5 Catalysts, Catal. Commun. 2003, 4, 71–76. DOI: 10.1016/S1566-7367(02)00259-5.
  • Biscardi, J. A.; Meitzner, G. D.; Iglesia, E. Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts. J. Catal. 1998, 179, 192–202. DOI: 10.1006/jcat.1998.2177.
  • Su, X.; Zan, W.; Bai, X.; Wang, G.; Wu, W. Synthesis of Microscale and Nanoscale ZSM-5 Zeolites: Effect of Particle Size and Acidity of Zn Modified ZSM-5 Zeolites on Aromatization Performance, Catal. Sci. Tech. 2017, 7, 1943–1952. DOI: 10.1039/C7CY00435D.
  • Du, Y.-J.; Hu, W.-D.; Wang, C.-M.; Zhou, J.; Yang, G.; Wang, Y.-D.; Yang, W.-M. First-principles Microkinetic Analysis of Lewis Acid Sites in Zn-ZSM-5 for Alkane Dehydrogenation and Its Implication to Methanol-to-aromatics Conversion, Catal. Sci. Tech. 2021, 11, 2031–2046. DOI: 10.1039/D0CY02318C.
  • Penzien, J.; Abraham, A.; van Bokhoven, J. A.; Jentys, A.; Müller, T. E.; Sievers, C.; Lercher, J. A. Generation and Characterization of Well-defined Zn2+ Lewis Acid Sites in Ion Exchanged Zeolite BEA. J. Phys. Chem. B. 2004, 108, 4116–4126. DOI: 10.1021/jp0373043.
  • Tshabalala, T. E.; Scurrell, M. S. Aromatization of N-hexane over Ga, Mo and Zn Modified H-ZSM-5 Zeolite Catalysts, Catal. Commun. 2015, 72, 49–52. DOI: 10.1016/j.catcom.2015.06.022.
  • Yu, L.; Huang, S.; Zhang, S.; Liu, Z.; Xin, W.; Xie, S.; Xu, L. Transformation of Isobutyl Alcohol to Aromatics over Zeolite-based Catalysts. ACS Catal. 2012, 2, 1203–1210. DOI: 10.1021/cs300048u.
  • Triwahyono, S.; Jalil, A. A.; Mukti, R. R.; Musthofa, M.; Razali, N. A. M.; Aziz, M. A. A. Hydrogen Spillover Behavior of Zn/HZSM-5 Showing Catalytically Active Protonic Acid Sites in the Isomerization of N-pentane, Appl. Catal. A: Gen. 2011, 407, 91–99. DOI: 10.1016/j.apcata.2011.08.027.
  • Liu, J.; He, N.; Zhang, Z.; Yang, J.; Jiang, X.; Zhang, Z.; Su, J.; Shu, M.; Si, R.; Xiong, G. Highly-Dispersed Zinc Species on Zeolites for the Continuous and Selective Dehydrogenation of Ethane with CO2 as a Soft Oxidant. ACS Catal. 2021, 11, 2819–2830. DOI: 10.1021/acscatal.1c00126.
  • Zhou, Y.; Thirumalai, H.; Smith, S. K.; Whitmire, K. H.; Liu, J.; Frenkel, A. I.; Grabow, L. C.; Rimer, J. D. Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation. Angew. Chem. Int. Ed. 2020, 59, 19592–19601. DOI: 10.1002/anie.202007147.
  • Gomez, E.; Nie, X.; Lee, J. H.; Xie, Z.; Chen, J. G. Tandem Reactions of CO2 Reduction and Ethane Aromatization. J. Am. Chem. Soc. 2019, 141, 17771–17782. DOI: 10.1021/jacs.9b08538.
  • Zheng, S.; Heydenrych, H. R.; Jentys, A.; Lercher, J. A. Influence of Surface Modification on the Acid Site Distribution of HZSM-5. J. Phys. Chem. B. 2002, 106, 9552–9558. DOI: 10.1021/jp014091d.
  • Al-Khattaf, S.; Ali, S. A.; Aitani, A. M.; Žilková, N.; Kubička, D.; Čejka, J. Recent Advances in Reactions of Alkylbenzenes over Novel Zeolites: The Effects of Zeolite Structure and Morphology, Catal. Rev. 2014, 56, 333–402. DOI: 10.1080/01614940.2014.946846.
  • Ogino, Y.; Oba, M.; Uchida, H. Catalytic Activity for Methanol Synthesis of Zinc Oxide-Chromium Oxide-Copper Oxide Catalysts and Its Structural Dependency. Bull. Chem. Soc. Jpn. 1960, 33, 358–363. DOI: 10.1246/bcsj.33.358.
  • Bechara, R.; Aboukais, A.; Hubaut, R.; Wrobel, G.; D’Huysser, A.; Bonnelle, J. Hydrogenation on Copper Chromite Catalyst. Role of the Cuprous Ions in the Methanol Synthesis from Syngas. J. Chim. Phys. 1992, 89, 853–866. DOI: 10.1051/jcp/1992890853.
  • Molstad, M. C.; Dodge, B. F. Zinc Oxide–chromium Oxide Catalysts for Methanol Synthesis, Ind. Eng. Chem. 1935, 27, 134–140. DOI: 10.1021/ie50302a005.
  • Song, H.; Laudenschleger, D.; Carey, J. J.; Ruland, H.; Nolan, M.; Muhler, M. Spinel-structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-temperature Methanol Synthesis. ACS Catal. 2017, 7, 7610–7622. DOI: 10.1021/acscatal.7b01822.
  • Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M. Selective Conversion of Syngas to Light Olefins. Science. 2016, 351, 1065–1068. DOI: 10.1126/science.aaf1835.
  • Yang, X.; Zhang, H.; Liu, H.; Ning, W.; Han, W.; Liu, H.; Huo, C. Preparation of Iron Carbides Formed by Iron Oxalate Carburization for Fischer–Tropsch Synthesis. Catalysts. 2019, 9(347), 347. DOI: 10.3390/catal9040347.
  • de Smit, E.; Cinquini, F.; Beale, A. M.; Safonova, O. V.; van Beek, W.; Sautet, P.; Weckhuysen, B. M. Stability and Reactivity of ϵ− χ− θ Iron Carbide Catalyst Phases in Fischer− Tropsch Synthesis: Controlling μC. J. Am. Chem. Soc. 2010, 132, 14928–14941. DOI: 10.1021/ja105853q.
  • Puga, A. V.;. On the Nature of Active Phases and Sites in CO and CO2 Hydrogenation Catalysts, Catal. Sci. Tech. 2018, 8, 5681–5707. DOI: 10.1039/C8CY01216D.
  • Chang, Q.; Zhang, C.; Liu, C.; Wei, Y.; Cheruvathur, A. V.; Dugulan, A. I.; Niemantsverdriet, J.; Liu, X.; He, Y.; Qing, M. Relationship between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer–Tropsch Catalysts. ACS Catal. 2018, 8, 3304–3316. DOI: 10.1021/acscatal.7b04085.
  • Liu, X.; Zhang, C.; Tian, P.; Xu, M.; Cao, C.; Yang, Z.; Zhu, M.; Xu, J. Revealing the Effect of Sodium on Iron-Based Catalysts for CO2 Hydrogenation: Insights from Calculation and Experiment. J. Phys. Chem. C. 2021, 125, 7637–7646. DOI: 10.1021/acs.jpcc.0c11123.
  • Liang, B.; Duan, H.; Sun, T.; Ma, J.; Liu, X.; Xu, J.; Su, X.; Huang, Y.; Zhang, T. Effect of Na Promoter on Fe-based Catalyst for CO2 Hydrogenation to Alkenes. ACS Sus. Chem. Eng. 2018, 7, 925–932. DOI: 10.1021/acssuschemeng.8b04538.
  • Hwang, S.-M.; Han, S. J.; Min, J. E.; Park, H.-G.; Jun, K.-W.; Kim, S. K. Mechanistic Insights into Cu and K Promoted Fe-catalyzed Production of Liquid Hydrocarbons via CO2 Hydrogenation. J. CO2 Util. 2019, 34, 522–532. DOI: 10.1016/j.jcou.2019.08.004.
  • Inui, T.; Kuroda, T.; Takeguchi, T.; Miyamoto, A. Selective Conversion of Syngas to Alkenes and Aromatic-rich Gasoline on Iron—manganese—ruthenium Containing Composite Catalysts. Appl. Catal. 1990, 61, 219–233. DOI: 10.1016/S0166-9834(00)82146-6.
  • Botes, F. G.;. The Effect of a Higher Operating Temperature on the Fischer–Tropsch/HZSM-5 Bifunctional Process, Appl. Catal. A: Gen. 2005, 284, 21–29. DOI: 10.1016/j.apcata.2005.01.012.
  • Schulz, H.; Niederberger, H. L.; Kneip, M.; Weil, F. Synthesis Gas Conversion on Fischer-Tropsch Iron/HZSM5 Composite Catalysts, Stud. Surf. Sci. Catal. 1991, 61, 313–323. DOI: 10.1016/S0167-2991(08)60096-8.
  • Kuei, C. K.; Lee, M. D. Hydrogenation of Carbon Dioxide by Hybrid Catalysts, Direct Synthesis of Aromatics from Carbon Dioxide and Hydrogen, Can. J. Chem. Eng. 1991, 69, 347–354. DOI: 10.1002/cjce.5450690142.
  • Su, J.; Zhou, H.; Liu, S.; Wang, C.; Jiao, W.; Wang, Y.; Liu, C.; Ye, Y.; Zhang, L.; Zhao, Y. Syngas to Light Olefins Conversion with High Olefin/paraffin Ratio Using ZnCrOx/AlPO-18 Bifunctional Catalysts. Nat. Commun. 2019, 10, 1–8. DOI: 10.1038/s41467-019-09336-1.
  • Zhang, Z.; Liu, Y.; Jia, L.; Sun, C.; Chen, B.; Liu, R.; Tan, Y.; Tu, W. Effects of the Reducing Gas Atmosphere on Performance of FeCeNa Catalyst for the Hydrogenation of CO2 to Olefins. Chem. Eng. J. 2022, 428, 131388. DOI: 10.1016/j.cej.2021.131388.
  • Cheng, D.; Negreiros, F. R.; Aprà, E.; Fortunelli, A. Computational Approaches to the Chemical Conversion of Carbon Dioxide. ChemSusChem. 2013, 6, 944–965. DOI: 10.1002/cssc.201200872.
  • Grabow, L.; Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catal. 2011, 1, 365–384. DOI: 10.1021/cs200055d.
  • Podrojková, N.; Sans, V.; Oriňak, A.; Oriňaková, R. Recent Developments in the Modelling of Heterogeneous Catalysts for CO2 Conversion to Chemicals. ChemCatChem. 2020, 12, 1802–1825. DOI: 10.1002/cctc.201901879.
  • Wang, W.; Hunger, M. Reactivity of Surface Alkoxy Species on Acidic Zeolite Catalysts. Acc. Chem. Res. 2008, 41, 895–904. DOI: 10.1021/ar700210f.
  • Wu, X.; Xu, S.; Wei, Y.; Zhang, W.; Huang, J.; Xu, S.; He, Y.; Lin, S.; Sun, T.; Liu, Z. Evolution of C–C Bond Formation in the Methanol-to-olefins Process: From Direct Coupling to Autocatalysis. ACS Catal. 2018, 8, 7356–7361. DOI: 10.1021/acscatal.8b02385.
  • Chowdhury, A. D.; Houben, K.; Whiting, G. T.; Mokhtar, M.; Asiri, A. M.; Al‐Thabaiti, S. A.; Basahel, S. N.; Baldus, M.; Weckhuysen, B. M. Initial Carbon–carbon Bond Formation during the Early Stages of the Methanol‐to‐olefin Process Proven by Zeolite‐trapped Acetate and Methyl Acetate. Angew. Chem. Int. Ed. 2016, 55, 15840–15845. DOI: 10.1002/anie.201608643.
  • Yarulina, I.; Chowdhury, A. D.; Meirer, F.; Weckhuysen, B. M.; Gascon, J. Recent Trends and Fundamental Insights in the Methanol-to-hydrocarbons Process. Nat. Catal. 2018, 1, 398–411. DOI: 10.1038/s41929-018-0078-5.
  • Saeidi, S.; Amin, N. A. S.; Rahimpour, M. R. Hydrogenation of CO2 to Value-added products—A Review and Potential Future Developments. J. CO2 Util. 2014, 5, 66–81. DOI: 10.1016/j.jcou.2013.12.005.
  • de Smit, E.; Weckhuysen, B. M. The Renaissance of Iron-based Fischer–Tropsch Synthesis: On the Multifaceted Catalyst Deactivation Behaviour. Chem. Soc. Rev. 2008, 37, 2758–2781. DOI: 10.1039/B805427D.
  • Wang, C.-M.; Wang, Y.-D.; Xie, Z.-K. Insights into the Reaction Mechanism of Methanol-to-olefins Conversion in HSAPO-34 from First Principles: Are Olefins Themselves the Dominating Hydrocarbon Pool Species? J. Catal. 2013, 301, 8–19. DOI: 10.1016/j.jcat.2013.01.024.
  • Wei, C.; Li, J.; Yang, K.; Yu, Q.; Zeng, S.; Liu, Z. Aromatization Mechanism of Coupling Reaction of Light Alkanes with CO over Acidic Zeolites: Cyclopentenones as Key Intermediates. Chem Catal. 2021, 1, 1273–1290. DOI: 10.1016/j.checat.2021.09.004.
  • Ramirez, A.; Gong, X.; Caglayan, M.; Nastase, S.-A. F.; Abou-Hamad, E.; Gevers, L.; Cavallo, L.; Dutta Chowdhury, A.; Gascon, J. Selectivity Descriptors for the Direct Hydrogenation of CO2 to Hydrocarbons during Zeolite-mediated Bifunctional Catalysis. Nat. Commun. 2021, 12, 1–13. DOI: 10.1038/s41467-021-26090-5.
  • Müller, S.; Liu, Y.; Vishnuvarthan, M.; Sun, X.; van Veen, A. C.; Haller, G. L.; Sanchez-Sanchez, M.; Lercher, J. A. Coke Formation and Deactivation Pathways on H-ZSM-5 in the Conversion of Methanol to Olefins. J. Catal. 2015, 325, 48–59. DOI: 10.1016/j.jcat.2015.02.013.
  • Guisnet, M.; Magnoux, P. Organic Chemistry of Coke Formation, Appl. Catal. A: Gen. 2001, 212, 83–96. DOI: 10.1016/S0926-860X(00)00845-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.