580
Views
4
CrossRef citations to date
0
Altmetric
Review article

Monolithic fiber/foam-structured catalysts: beyond honeycombs and micro-channels

, , , , & ORCID Icon

References

  • Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J.; Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd; Weinheim: Wiley-VCH, 2008. DOI: 10.1002/9783527610044
  • Cybulski, A.; Moulijn, J. A.; Cybulski, A.; Moulijn, J. A. Structured Catalysts and Reactors. Marcel Dekker (Ed.), New York, 2006. DOI: 10.1201/9781420028003
  • Zhao, G.; Liu, Y.; Lu, Y. Foam/fiber-Structured Catalysts: Non-Dip-Coating Fabrication Strategy and Applications in Heterogeneous Catalysis. Sci. Bull. 2016, 61, 745–748. DOI: 10.1007/s11434-016-1074-2.
  • Dautzenberg, F. M.; Mukherjee, M. Process Intensification Using Multifunctional Reactors. Chem. Eng. Sci. 2001, 56, 251–267. DOI: 10.1016/S0009-2509(00)00228-1.
  • European Roadmap for Process Intensification, June 2008 (https:////www.senternovem.nl/energytransition/downloads).
  • Westmoreland, P. R. Chemical Engineering in the Next 25 Years. Chem. Eng. Prog. 2008, 104, 31–41.
  • Science and Technology Roadmap on Catalysis for Europe, July 2016 (https:////www.euchems.eu/roadmap-on-catalysis-for-europe).
  • Renken, A.; Kiwi-Minsker, L. Microstructured Catalytic Reactors. Adv. Catal. 2010, 53, 47–122. DOI: 10.1016/S0360-0564(10)53002-5.
  • Montebelli, A.; Visconti, C. G.; Groppi, G.; Tronconi, E.; Cristiani, C.; Ferreirac, C.; Kohlerd, S. Methods for the Catalytic Activation of Metallic Structured Substrates. Catal. Sci. Technol. 2014, 4(9), 2846–2870. DOI: 10.1039/C4CY00179F.
  • Wang, X.; Wen, M.; Wang, C.; Ding, J.; Sun, Y.; Liu, Y.; Lu, Y. Microstructured Fiber@HZSM-5 Core–Shell Catalysts with Dramatic Selectivity and Stability Improvement for the Methanol-To-Propylene Process. Chem. Commun. 2014, 50(48), 6343–6345. DOI: 10.1039/C3CC49567A.
  • Zhang, Q.; Zhao, G.; Zhang, Z.; Han, L.; Fan, S.; Chai, R.; Li, Y.; Liu, Y.; Huang, J.; Lu, Y. From Nano-To Macro-Engineering of Oxide-Encapsulated-Nanoparticles for Harsh Reactions: One-Step Organization via Cross-Linking Molecules. Chem. Commun. 2016, 52(80), 11927–11930. DOI: 10.1039/C6CC05804C.
  • Berglin, T.; Herrman, W. Cryosurgical Treatment of the Eyelids and Lacrimal Drainage Ducts of the Rhesus Monkey. EP. 1984, 102(6), 934 A2. DOI: 10.1001/archopht.1984.01040030754040.
  • Deshmukh, S. R.; Tonkovich, A. L. Y.; Jarosch, K. T.; Schrader, L.; Fitzgerald, S. P.; Kilanowski, D. R.; Lerou, J. J.; Mazanec, T. J. Scale-Up of Microchannel Reactors for Fischer−tropsch Synthesis. Ind. Eng. Chem. Res. 2010, 49(21), 10883–10888. DOI: 10.1021/ie100518u.
  • Markowz, G.; Schirrmeister, S.; Albrecht, J.; Becker, F.; Schütte, R.; Caspary, K. J.; Klemm, E. Microstructured Reactors for Heterogeneously Catalyzed Gas‐Phase Reactions on an Industrial Scale. Chem. Eng. Technol. 2005, 28(4), 459–464. DOI: 10.1002/ceat.200407146.
  • Farrauto, R. J.; Voss, K. E. Monolithic Diesel Oxidation Catalysts. Appl. Catal. B. 1996, 10, 29–51. DOI: 10.1016/0926-3373(96)00022-7.
  • Heck, R. M.; Farrauto, R. J. Catalytic Air Pollution Control: Commercial Technology, 2nd ed.; Wiley: New York, 2002.
  • Farrauto, R. J.; Heck, R. M. Catalytic Converters: State of the Art and Perspectives. Catal. Today. 1999, 51(3–4), 351–360. DOI: 10.1016/S0920-5861(99)00024-3.
  • König, A.; Herding, G.; Hupfeld, B.; Richter, T.; Weidmann, K. Current Tasks and Challenges for Exhaust Aftertreatment Research. A Viewpoint from the Automotive Industry. Top. Catal. 2001, 16(1/4), 23–31. DOI: 10.1023/A:1016666327542.
  • Kašpar, J.; Fornasiero, P.; Hickey, N. Automotive Catalytic Converters: Current Status and Some Perspectives. Catal. Today. 2003, 77(4), 419–449. DOI: 10.1016/S0920-5861(02)00384-X.
  • Cybulski, A.; Moulijn, J. A. Monoliths in Heterogeneous Catalysis. Catal. Rev. Sci. Eng. 1994, 36, 179–270. DOI: 10.1080/01614949408013925.
  • Nijhuis, T. A.; Kreutzer, M. T.; Romijn, A. C. J.; Kapteijn, F.; Moulijn, J. A. Monolithic Catalysts as Efficient Three-Phase Reactors. Chem. Eng. Sci. 2001, 56, 823–829. DOI: 10.1016/S0009-2509(00)00294-3.
  • Nijhuis, T. A.; Kreutzer, M. T.; Romijn, A. C. J.; Kapteijn, F.; Moulijn, J. A. Monolithic Catalysts as More Efficient Three-Phase Reactors. Catal. Today. 2001, 66(2–4), 157–165. DOI: 10.1016/S0920-5861(00)00621-0.
  • Banhart, J. Manufacture Characterization and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001, 46(6), 559–632. DOI: 10.1016/S0079-6425(00)00002-5.
  • Richardson, J. T.; Remue, D.; Hung, J.-K. Properties of Ceramic Foam Catalyst Supports: Mass and Heat Transfer. Appl. Catal. A. 2003, 250, 319–329. DOI: 10.1016/S0926-860X(03)00287-4.
  • Giani, L.; Groppi, G.; Tronconi, E. Heat Transfer Characterization of Metallic Foams. Ind. Eng. Chem. Res. 2005, 44(24), 9078–9085. DOI: 10.1021/ie050598p.
  • Harris, D. K.; Cahela, D. R.; Tatarchuk, B. J. Wet Layup and Sintering of Metal Containing Microfibrous Composites for Chemical Processing Opportunities. Compos. A. 2001, 32(8), 1117–1126. DOI: 10.1016/S1359-835X(01)00059-8.
  • Lu, Y.; Wang, H.; Liu, Y.; Xue, Q.; Chen, L.; He, M. Novel Microfibrous Composite Bed Reactor: High Efficiency H2 Production from NH3 with Potential for Portable Fuel Cell Power Supplies. Lab. Chip. 2007, 7(1), 133–140. DOI: 10.1039/B608555E.
  • Zhang, H.; Gao, L.; Hu, X. Preparation of Microfibrous Entrapped Activated Carbon Composite. Sep. Purif. Technol. 2009, 67, 149–151. DOI: 10.1016/j.seppur.2009.03.023.
  • Sonstrom, P.; Adam, M.; Wang, X.; Wilhelm, M.; Grathwohl, G.; Baumer, M. Colloidal Nanoparticles Embedded in Ceramers: Toward Structurally Designed Catalysts. J. Phys. Chem. C. 2010, 114(33), 14224–14232. DOI: 10.1021/jp1058897.
  • Tomašić, V.; Jović, F. State-Of-The-Art in the Monolithic Catalysts/Reactors. Appl. Catal. A. 2006, 311, 112–121. DOI: 10.1016/j.apcata.2006.06.013.
  • Wen, M.; Ding, J.; Wang, C.; Li, Y.; Zhao, G.; Liu, Y.; Lu, Y. High-Performance SS-Fiber@ HZSM-5 Core-Shell Catalyst for Methanol-To-Propylene: A Kinetic and Modeling Study. Micropor. Mesopor. Mater. 2016, 221, 187–196. DOI: 10.1016/j.micromeso.2015.09.039.
  • Irandoust, S.; Andersson, B. Monolithic Catalysts for Nonautomobile Applications. Catal. Rev. - Sci. Eng. 1988, 30(3), 341–392. DOI: 10.1080/01614948808080809.
  • Murkin, C.; Brightling, J. Eighty Years of Steam Reforming. Johnson Matthey Technol. Rev. 2016, 60(4), 263–269. DOI: 10.1595/205651316X692923.
  • Albers, R. E.; Nyström, M.; Siverström, M.; Sellin, A.; Dellve, A.-C.; Andersson, U.; Herrmann, W.; Berglin, T. Development of a Monolith-Based Process for H2O2 Production: From Idea to Large-Scale Implementation. Catal. Today. 2001, 69(1–4), 247–252. DOI: 10.1016/S0920-5861(01)00376-5.
  • Ishii, T.; Mitsui, K.; Sano, K.; Shishida, K.; Shiota, Y. Catalyst for Treating Wastewater, Process for Producing It, and Process for Treating Wastewater with the Catalyst, U.S. Patent 5 374 599, 1994.
  • Deng, T.; Li, Y.; Zhao, G.; Zhang, Z.; Liu, Y.; Lu, Y. Catalytic Distillation for Ethyl Acetate Synthesis Using Microfibrous-Structured Nafion–SiO 2 /SS-Fiber Solid Acid Packings. Reaction Chem. Eng. 2016, 1(4), 409–417. DOI: 10.1039/C6RE00088F.
  • Heck, R. M.; Gulati, S.; Farrauto, R. J. The Application of Monoliths for Gas Phase Catalytic Reactions. Chem. Eng. J. 2001, 82, 149–156. DOI: 10.1016/S1385-8947(00)00365-X.
  • Patcas, F. C.; Garrido, G. I.; Kraushaar-Czarnetzki, B. CO Oxidation Over Structured Carriers: A Comparison of Ceramic Foams, Honeycombs and Beads. Chem. Eng. Sci. 2007, 62, 3984–3990. DOI: 10.1016/j.ces.2007.04.039.
  • Reichelt, E.; Jahn, M. Generalized Correlations for Mass Transfer and Pressure Drop in Fiber-Based Catalyst Supports. Chem. Eng. J. 2017, 325, 655–664. DOI: 10.1016/j.cej.2017.05.119.
  • Aghaei, P.; Visconti, C. G.; Groppi, G.; Tronconi, E. Development of a Heat Transport Model for Open-Cell Metal Foams with High Cell Densities. Chem. Eng. J. 2017, 321, 432–446. DOI: 10.1016/j.cej.2017.03.112.
  • Yang, K. S.; Mul, G.; Choi, J. S.; Moulijn, J. A.; Chung, J. S. Development of TiO2/Ti Wire-Mesh Honeycomb for Catalytic Combustion of Ethyl Acetate in Air. Appl. Catal. A. 2006, 313, 86–93. DOI: 10.1016/j.apcata.2006.07.008.
  • Matatov-Meytal, Y.; Sheintuch, M. Catalytic Fibers and Cloths. Appl. Catal. A. 2002, 231, 1–16. DOI: 10.1016/S0926-860X(01)00963-2.
  • Twigg, M. V.; Richardson, J. T. Fundamentals and Applications of Structured Ceramic Foam Catalysts. Ind. Eng. Chem. Res. 2007, 46(12), 4166–4177. DOI: 10.1021/ie061122o.
  • Kryca, J.; Iwaniszyn, M.; Piątek, M.; Jodłowski, P. J.; Jędrzejczyk, R.; Pędrys, R.; Wróbel, A.; Łojewska, J.; Kołodziej, A. Structured Foam Reactor with CuSSZ-13 Catalyst for SCR of NOx with Ammonia. Top. Catal. 2016, 59(10–12), 887–894. DOI: 10.1007/s11244-016-0564-4.
  • Heddrich, M. P.; Reichelt, M.; Jahn, E.; Michaelis, A. Fiber Based Structured Materials for Catalytic Applications. Appl. Catal. A. 2014, 476, 78–90. DOI: 10.1016/j.apcata.2014.02.021.
  • Groppi, G.; Tronconi, E.; Bozzano, G.; Dente, M. Experimental and Theoretical Study of Gas/Solid Mass Transfer in Metallic Filters as Supports for Micro-Structured Catalysts. Chem. Eng. Sci. 2010, 65, 392–397. DOI: 10.1016/j.ces.2009.06.038.
  • Huu, T. T.; Lacroix, M.; Huu, C. P.; Schweich, D.; Edouard, D. Towards a More Realistic Modeling of Solid Foam: Use of the Pentagonal Dodecahedron Geometry. Chem. Eng. Sci. 2009, 64, 5131–5142. DOI: 10.1016/j.ces.2009.08.028.
  • Inayat, A.; Freund, H.; Zeiser, T.; Schwieger, W. Determining the Specific Surface Area of Ceramic Foams: The Tetrakaidecahedra Model Revisited. Chem. Eng. Sci. 2011, 66, 1179–1188. DOI: 10.1016/j.ces.2010.12.031.
  • Lu, T.; Stone, H.; Ashby, M. Heat Transfer in Open-Cell Metal Foams. Acta. Mater. 1998, 46, 3619–3635. DOI: 10.1016/S1359-6454(98)00031-7.
  • Gibson, L. J.; Ashby, M. F. Cellular Solids, Structures and Properties; Pergamon Press: Oxford, 1988; pp. 915–925.
  • Garrido, G. I.; Patcas, F. C.; Lang, S.; Kraushaar-Czarnetzki, B. Mass Transfer and Pressure Drop in Ceramic Foams: A Description for Different Pore Sizes and Porosities. Chem. Eng. Sci. 2008, 63, 5202–5217. DOI: 10.1016/j.ces.2008.06.015.
  • Bracconi, M.; Ambrosetti, M.; Maestri, M.; Groppi, G.; Tronconi, E. A Fundamental Investigation of Gas/Solid Mass Transfer in Open-Cell Foams Using a Combined Experimental and CFD Approach. Chem. Eng. J. 2018, 352, 558–571. DOI: 10.1016/j.cej.2018.07.023.
  • Kölbel, H.; Ralek, M. The Fischer-Tropsch Synthesis in the Liquid Phase. Catal. Rev. - Sci. Eng. 1980, 21(2), 255–274. DOI: 10.1080/03602458008067534.
  • Sie, S. T.; Krishna, R. Fundamentals and Selection of Advanced Fischer–Tropsch Reactors. Appl. Catal. A. 1999, 186(1–2), 55–70. DOI: 10.1016/S0926-860X(99)00164-7.
  • Davis, B. H. Fischer–Tropsch Synthesis: Overview of Reactor Development and Future Potentialities. Top. Catal. 2005, 32(3–4), 143–168. DOI: 10.1007/s11244-005-2886-5.
  • Groppi, G.; Tronconi, E. Design of Novel Monolith Catalyst Supports for Gas/Solid Reactions with Heat Exchange. Chem. Eng. Sci. 2000, 55, 2161–2171. DOI: 10.1016/S0009-2509(99)00440-6.
  • Boger, T.; Heibel, A. K.; Sorensen, C. M. Monolithic Catalysts for the Chemical Industry. Ind. Eng. Chem. Res. 2004, 43(16), 4602–4611. DOI: 10.1021/ie030730q.
  • Sheng, M.; Yang, H.; Cahela, D. R.; Tatarchuk, B. J. Novel Catalyst Structures with Enhanced Heat Transfer Characteristics. J. Catal. 2011, 281, 254–262. DOI: 10.1016/j.jcat.2011.05.006.
  • Chen, W.; Sheng, W.; Cao, F.; Lu, Y. Microfibrous Entrapment of Ni/Al2O3 for Dry Reforming of Methane: Heat/Mass Transfer Enhancement Towards Carbon Resistance and Conversion Promotion. Ind. Eng. Chem. Res. 2012, 37, 18021–18030. DOI: 10.1016/j.ijhydene.2012.09.080.
  • Li, Y.; Zhang, Q.; Chai, R.; Zhao, G.; Liu, Y.; Lu, Y.; Cao, F. Ni-Al 2 O 3 /ni-Foam Catalyst with Enhanced Heat Transfer for Hydrogenation of CO 2 to Methane. AIChE. J. 2015, 61(12), 4323–4331. DOI: 10.1002/aic.14935.
  • Sheng, M.; Cahela, D. R.; Yang, H.; Gonzalez, C. F.; Yantz, W. R., Jr; Harris, D. K.; Tatarchuk, B. J. Effective Thermal Conductivity and Junction Factor for Sintered Microfibrous Materials. Int. J. Heat Mass Tran. 2013, 56(1–2), 10–19. DOI: 10.1016/j.ijheatmasstransfer.2012.08.015.
  • Lee, J.-S.; Yano, T. Fabrication of Short-Fiber-Reinforced SiC Composites by Polycarbosilane Infiltration. J. Eur. Ceram. Soc. 2004, 24, 25–31. DOI: 10.1016/S0955-2219(03)00125-0.
  • Dul’nev, G.; Muratova, B. Thermal Conductivity of Fibrous Systems. J. Eng. Thermophys. 1968, 14(1), 29–35. DOI: 10.1007/BF00826965.
  • Mantle, W. J.; Chang, W. S. Effective Thermal Conductivity of Sintered Metal Fibers. In Proceedings of the 24th Intersociety Energy Conversion Engineering Conference. Washington: IEEE. 1989; pp. 1871–1877. DOI: 10.1109/IECEC.1989.74727.
  • Chung, K.-S.; Jiang, Z.; Gill, B.-S.; Chung, J.-S. Oxidative Decomposition of O Dichlorobenzene Over V2O5/TiO2 Catalyst Washcoated Onto Wire-Mesh Honeycombs. Appl. Catal. A. 2002, 237(1–2), 81–89. DOI: 10.1016/S0926-860X(02)00303-4.
  • Ahlström-Silversand, A.; Odenbrand, C. I. Thermally Sprayed Wire-Mesh Catalysts for the Purification of Flue Gases from Small-Scale Combustion of Bio-Fuel Catalyst Preparation and Activity Studies. Appl. Catal. A. 1997, 153(1–2), 177–201. DOI: 10.1016/S0926-860X(96)00329-8.
  • Ahlström-Silversand, A. F.; Odenbrand, C. U. I. Modelling Catalytic Combustion of Carbon Monoxide and Hydrocarbons Over Catalytically Active Wire Meshes. Chem. Eng. J. 1999, 73, 205–216. DOI: 10.1016/S1385-8947(99)00029-7.
  • Meille, V.; Pallier, S.; Bustamante, G. V. S. C.; Roumanie, M.; Reymond, J.-P. Deposition of γ-Al2O3 Layers on Structured Supports for the Design of New Catalytic Reactors. Appl. Catal. A. 2005, 286(2), 232–238. DOI: 10.1016/j.apcata.2005.03.028.
  • Specchia, S.; Ahumada Irribarra, M. A.; Palmisano, P.; Saracco, G.; Specchia, V. Aging of Premixed Metal Fiber Burners for Natural Gas Combustion Catalyzed with Pd/LaMno 3 ·2zro 2. Ind. Eng. Chem. Res. 2007, 46(21), 6666–6673. DOI: 10.1021/ie061665y.
  • Ugues, D.; Specchia, S.; Saracco, G. Optimal Microstructural Design of a Catalytic Premixed FeCralloy Fiber Burner for Methane Combustion. Ind. Eng. Chem. Res. 2004, 43(9), 1990–1998. DOI: 10.1021/ie034202q.
  • Civera, A.; Negro, G.; Specchia, S.; Saracco, G.; Specchia, V. Optimal Compositional and Structural Design of a LaMnO3/ZrO2/Pd-Based Catalyst for Methane Combustion. Catal. Today. 2005, 100(3–4), 275–281. DOI: 10.1016/j.cattod.2004.09.062.
  • Vorob’eva, M.; Greish, A.; Ivanov, A.; Kustov, L. Preparation of Catalyst Carriers on the Basis of Alumina Supported on Metallic Gauzes. Appl. Catal. A. 2000, 199, 257–261. DOI: 10.1016/S0926-860X(99)00563-3.
  • Sun, H.; Quan, X.; Chen, S.; Zhao, H.; Zhao, Y. Preparation of Well-Adhered γ-Al2O3 Washcoat on Metallic Wire Mesh Monoliths by Electrophoretic Deposition. Appl. Surf. Sci. 2007, 253, 3303–3310. DOI: 10.1016/j.apsusc.2006.07.044.
  • Sun, H.; Shu, Y.; Quan, X.; Chen, S.; Pang, B.; Liu, Z. Experimental and Modeling Study of Selective Catalytic Reduction of NOx with NH3 Over Wire Mesh Honeycomb Catalysts. Chem. Eng. J. 2010, 165, 769–775. DOI: 10.1016/j.cej.2010.09.057.
  • Shu, Y.; Sun, H.; Quan, X.; Chen, S. Improvement of Water-, Sulfur Dioxide-, and Dust-Resistance in Selective Catalytic Reduction of NOx with NH3 Using a Wire-Mesh Honeycomb Catalyst. Ind. Eng. Chem. Res. 2012, 51(23), 7867–7873. DOI: 10.1021/ie300832d.
  • Jiang, Z.; Chung, K.-S.; Kim, G.-R.; Chung, J.-S. Mass Transfer Characteristics of Wire-Mesh Honeycomb Reactors. Chem. Eng. Sci. 2003, 58, 1103–1111. DOI: 10.1016/S0009-2509(02)00546-8.
  • Zhao, G.; Huang, J.; Jiang, Z.; Zhang, S.; Chen, L.; Lu, Y. Microstructured Au/Ni Fiber Catalyst for Low-Temperature Gas-Phase Alcohol Oxidation: Evidence of Ni2O3-Au+ Hybrid Active Sites. Appl. Catal. B. 2013, 140-141, 249–247. DOI: 10.1016/j.apcatb.2013.04.015.
  • Zhao, G.; Hu, H.; Deng, M.; Ling, M.; Lu, Y. Au/cu-Fiber Catalyst with Enhanced Low-Temperature Activity and Heat Transfer for the Gas-Phase Oxidation of Alcohols. Green. Chem. 2011, 13(1), 55–58. DOI: 10.1039/C0GC00679C.
  • Deng, M.; Zhao, G.; Xue, Q.; Chen, L.; Lu, Y. Microfibrous-Structured Silver Catalyst for Low-Temperature Gas-Phase Selective Oxidation of Benzyl Alcohol. Appl. Catal. B. 2010, 99, 222–228. DOI: 10.1016/j.apcatb.2010.06.023.
  • Zhang, Q.; Wu, X.-P.; Zhao, G.; Li, Y.; Wang, C.; Liu, Y.; Gong, X.-Q.; Lu, Y. High Performance PdNi Alloy Structured in situ on Monolithic Metal Foam for Coalbed Methane Deoxygenation via Catalytic Combustion. Chem. Commun. 2015, 51(63), 12613–12616. DOI: 10.1039/C5CC04389A.
  • Li, Y.; Zhang, Q.; Chai, R.; Zhao, G.; Liu, Y.; Lu, Y. Structured Ni-CeO 2 -Al 2 O 3 /ni-Foam Catalyst with Enhanced Heat Transfer for Substitute Natural Gas Production by Syngas Methanation. ChemCatchem. 2015, 7(9), 1427–1431. DOI: 10.1002/cctc.201500086.
  • Chai, R.; Li, Y.; Zhang, Q.; Zhao, G.; Liu, Y.; Lu, Y. Monolithic Ni-MOx/Ni-Foam (M = Al, Zr or Y) Catalysts with Enhanced Heat/Mass Transfer for Energy-Efficient Catalytic Oxy-Methane Reforming. Catal. Commun. 2015, 70, 1–5. DOI: 10.1016/j.catcom.2015.07.007.
  • Ding, J.; Fan, S.; Chen, P.; Deng, T.; Liu, Y.; Lu, Y. Vapor-Phase Transport Synthesis of Microfibrous-Structured SS-Fiber@ ZSM-5 Catalyst with Improved Selectivity and Stability for Methanol-To-Propylene. Catal. Sci. Technol. 2017, 7(10), 2087–2100. DOI: 10.1039/C7CY00283A.
  • Persson, A.; Schoeman, B.; Sterte, J.; Otterstedt, J.-E. The Synthesis of Discrete Colloidal Particles of TPA-Silicalite-1. Zeolites. 1994, 14(7), 557–567. DOI: 10.1016/0144-2449(94)90191-0.
  • Ding, J.; Zhang, Z.; Han, L.; Wang, C.; Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. A Self-Supported SS-Fiber@meso-HZSM-5 Core–Shell Catalyst via Caramel-Assistant Synthesis Toward Prolonged Lifetime for the Methanol-To-Propylene Reaction. R.S.C. Adv. 2016, 6(54), 48387–48395. DOI: 10.1039/C6RA08944E.
  • Ding, J.; Jia, Y.; Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. Thin-Felt Hollow-B-ZSM-5/SS-Fiber Catalyst for Methanol-To-Propylene: Toward Remarkable Stability Improvement from Mesoporosity-Dependent Diffusion Enhancement. Chem. Eng. J. 2019, 361, 588–598. DOI: 10.1016/j.cej.2018.12.108.
  • Wang, C.; Han, L.; Zhang, Q.; Li, Y.; Zhao, G.; Liu, Y.; Lu, Y. Endogenous Growth of 2D AlOoh Nanosheets on a 3D Al-Fiber Network via Steam-Only Oxidation in Application for Forming Structured Catalysts. Green. Chem. 2015, 17(7), 3762–3765. DOI: 10.1039/C5GC00530B.
  • Wang, C.; Han, L.; Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. H.-P. Low Pd Loading Microfibrous-Structured Al-Fiber@ns-AlOoh@pd Catalyst for CO Coupling to Oimethyl Oxalate. J. Catal. 2016, 337, 145–156. DOI: 10.1016/j.jcat.2016.02.008.
  • Evans, D. G.; Duan, X. Preparation of Layered Double Hydroxides and Their Applications as Additives in Polymers, as Precursors to Magnetic Materials and in Biology and Medicine. Chem. Commun. 2006, 6(5), 485–496. DOI: 10.1039/B510313B.
  • He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J. J.; Zhang, T. A Noble-Metal-Free Catalyst Derived from Ni-Al Hydrotalcite for Hydrogen Generation from N2h4⋅h2o Decomposition. Angew. Chem. Int. Ed. 2012, 51(25), 6191–6194. DOI: 10.1002/anie.201201737.
  • Gardner, G. P.; Go, Y. B.; Robinson, D. M.; Smith, P. F.; Hadermann, J.; Abakumov, A.; Greenblatt, M.; Dismukes, G. C. Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water. Angew. Chem. Int. Ed. 2012, 51(7), 1616–1619. DOI: 10.1002/anie.201107625.
  • Sun, J.; Li, Y.; Liu, X.; Yang, Q.; Liu, J.; Sun, X.; Evans, D. G.; Duan, X. Hierarchical Cobalt Iron Oxide Nanoarrays as Structured Catalysts. Chem. Commun. 2012, 48(28), 3379–3381. DOI: 10.1039/C2CC17368A.
  • Chen, H.; Zhang, F.; Chen, T.; Xu, S.; Evans, D. G.; Duan, X. Comparison of the Evolution and Growth Processes of Films of M/al-Layered Double Hydroxides with M= Ni or Zn. Chem. Eng. Sci. 2009, 64, 2617–2622. DOI: 10.1016/j.ces.2009.02.034.
  • Li, C.; Zhou, J.; Gao, W.; Zhao, J.; Liu, J.; Zhao, Y.; Wei, M.; Evans, D. G.; Duan, X. Binary Cu–Co Catalysts Derived from Hydrotalcites with Excellent Activity and Recyclability Towards NH3BH3 Dehydrogenation. J. Mater. Chem. A. 2013, 1(17), 5370–5376. DOI: 10.1039/C3TA10424A.
  • Cai, S.; Zhang, D.; Shi, L.; Xu, J.; Zhang, L.; Huang, L.; Li, H.; Zhang, J. Porous Ni–Mn oxide Nanosheets in situ Formed on Nickel Foam as 3D Hierarchical Monolith de-NO x Catalysts. Nanoscale. 2014, 6(13), 7346–7353. DOI: 10.1039/C4NR00475B.
  • Liang, Z.; Gao, P.; Tang, Z.; Lv, M.; Sun, Y. Three Dimensional Porous Cu-Zn/al Foam Monolithic Catalyst for CO2 Hydrogenation to Methanol in Microreactor. J. CO2 Util. 2017, 21, 191–199. DOI: 10.1016/j.jcou.2017.05.023.
  • Zhang, Z.; Zhao, G.; Chai, R.; Zhu, J.; Liu, Y.; Lu, Y. L.-T. Low-Temperature, Highly Selective, Highly Stable Nb 2 O 5 –NiO/ni-foam Catalyst for the Oxidative Dehydrogenation of Ethane. Catal. Sci. Technol. 2018, 8(17), 4383–4389. DOI: 10.1039/C8CY01041B.
  • Chen, Q.; Lei, S.; Deng, P.; Ou, X.; Chen, L.; Wang, W.; Xiao, Y.; Cheng, B. Direct Growth of Nickel Terephthalate on Ni Foam with Large Mass-Loading for High Performance Supercapacitors. J. Mater. Chem. A. 2017, 5(36), 19323–19332. DOI: 10.1039/C7TA05373H.
  • Huang, M.; Li, F.; Ji, J. Y.; Zhang, Y. X.; Zhao, X. L.; Gao, X. Facile Synthesis of Single-Crystalline NiO Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors. CrystEngcomm. 2014, 16(14), 2878–2884. DOI: 10.1039/C3CE42335B.
  • Schärtl, W. Current Directions in Core–Shell Nanoparticle Design. Nanoscale. 2010, 2(6), 829–843. DOI: 10.1039/C0NR00028K.
  • Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru–Pt Core–Shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen. Nat. Mater. 2008, 7(4), 333–338. DOI: 10.1038/nmat2156.
  • Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G. A. Thermally Stable Pt/Mesoporous Silica Core–Shell Nanocatalysts for High-Temperature Reactions. Nat. Mater. 2009, 8(2), 126–131. DOI: 10.1038/nmat2329.
  • Cargnello, M.; Jaén, J. D.; Garrido, J. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. C.; Gorte, R.; Fornasiero, P. Exceptional Activity for Methane Combustion Over Modular Pd@CeO2 Subunits on Functionalized Al2O3. Science. 2012, 337(6095), 713–717. DOI: 10.1126/science.1222887.
  • Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. One-Step Synthesis of Core-Gold/shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes. J. Am. Chem. Soc. 2015, 137(42), 13452–13455. DOI: 10.1021/jacs.5b07521.
  • Cargnello, M.; Wieder, N. L.; Montini, T.; Gorte, R. J.; Fornasiero, P. Synthesis of Dispersible Pd@CeO2 Core−shell Nanostructures by Self-Assembly. J. Am. Chem. Soc. 2010, 132(4), 1402–1409. DOI: 10.1021/ja909131k.
  • Zhou, H.; Wu, H.; Shen, J.; Yin, A.; Sun, L.; Yan, C. Thermally Stable Pt/CeO2 Hetero-Nanocomposites with High Catalytic Activity. J. Am. Chem. Soc. 2010, 132(14), 4998–4999. DOI: 10.1021/ja101110m.
  • Lu, J.; Fu, B.; Kung, M. C.; Xiao, G.; Elam, J. W.; Kung, H. H.; Stair, P. C. Coking-And Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition. Science. 2012, 335(6073), 1205–1208. DOI: 10.1126/science.1212906.
  • Kim, J.; Lee, D. Synthesis and Properties of Core-Shell Metal-Ceramic Microstructures and Their Application as Heterogeneous Catalysts. ChemCatchem. 2014, 6(9), 2642–2647. DOI: 10.1002/cctc.201402274.
  • Lechevallier, S.; Hammer, P.; Caiut, J. M.; Mazeres, S.; Mauricot, R.; Verelst, M.; Dexpert, H.; Ribeiro, S. J.; Dexpert-Ghys, J. APTES-Modified RE2O3: Eu3+ Luminescent Beads: Structure and Properties. Langmuir. 2012, 28(8), 3962–3971. DOI: 10.1021/la204469f.
  • Tao, F.; Grass, M. E.; Zhang, Y.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles. Science. 2008, 322(5903), 932–934. DOI: 10.1126/science.1164170.
  • Friedrich, M.; Penner, S.; Heggen, M.; Armbrüster, M. High CO2 Selectivity in Methanol Steam Reforming Through ZnPd/ZnO Teamwork. Angew. Chem. Int. Ed. 2013, 52(16), 4389–4392. DOI: 10.1002/anie.201209587.
  • Zhang, S.; Shan, J.; Zhu, Y.; Frenkel, A. I.; Patlolla, A.; Huang, W.; Yoon, S. J.; Wang, L.; Yoshida, H.; Takeda, S. WGS Catalysis and in situ Studies of CoO1–x, PtCon/Co3O4, and PtmCom′/CoO1–x Nanorod Catalysts. J. Am. Chem. Soc. 2013, 135(22), 8283–8393. DOI: 10.1021/ja401967y.
  • Zhao, G.; Fan, S.; Tao, L.; Chai, R.; Zhang, Q.; Liu, Y.; Lu, Y. Titanium‐ Microfiber‐Supported Binary‐Oxide Nanocomposite with a Large Highly Active Interface for the Gas‐Phase Selective Oxidation of Benzyl Alcohol. ChemCatchem. 2016, 8(2), 313–317. DOI: 10.1002/cctc.201500991.
  • Chen, P.; Zhao, G.; Shi, X.-R.; Zhu, J.; Ding, J.; Lu, Y. Nano-Intermetallic InNi3C0.5 Compound Discovered as a Superior Catalyst for CO2 Reutilization. iScience. 2019, 17, 315–324. DOI: 10.1016/j.isci.2019.07.006.
  • Zhang, L.; Han, L.; Zhao, G.; Chai, R.; Zhang, Q.; Liu, Y.; Lu, Y. Structured Pd–Au/cu-fiber Catalyst for Gas-Phase Hydrogenolysis of Dimethyl Oxalate to Ethylene Glycol. Chem. Commun. 2015, 51(52), 10547–10550. DOI: 10.1039/C5CC03009A.
  • Ramadoss, A.; Kang, K.; Ahn, H.; Kim, S.; Ryu, S.; Jang, J. Realization of High Performance Flexible Wire Supercapacitors Based on 3-Dimensional NiCo2O4/Ni Fibers. J. Mater. Chem. A. 2016, 4(13), 4718–4727. DOI: 10.1039/C5TA10781D.
  • Zhu, J.; Zhao, G.; Sun, W.; Nie, Q.; Wang, S.; Xue, Q.; Liu, Y.; Lu, Y. Superior FeNi3-FeOx/Ni-Foam Catalyst for Gas-Phase Hydrogenation of Dimethyl Oxalate to Ethanol. Appl. Catal. B. 2020, 270, 118873. DOI: 10.1016/j.apcatb.2020.118873.
  • Feng, L.; Yu, G.; Wu, Y.; Li, G.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting. J. Am. Chem. Soc. 2015, 137(44), 14023–14026. DOI: 10.1021/jacs.5b08186.
  • Zhu, J.; Cao, L.; Li, C.; Zhao, G.; Zhu, T.; Hu, W.; Sun, W.; Lu, Y. Nanoporous Ni3P Evolutionarily Structured Onto a Ni Foam for Highly Selective Hydrogenation of Dimethyl Oxalate to Methyl Glycolate. ACS Appl. Mater. Interfaces. 2019, 11(41), 37635–37643. DOI: 10.1021/acsami.9b11703.
  • Yamamoto, R.; Sawayama, Y.; Shibahara, H.; Ichihashi, Y.; Nishiyama, S.; Tsuruya, S. Promoted Partial Oxidation Activity of Supported Ag Catalysts in the Gas Phase Catalytic Oxidation of Benzyl Alcohol. J. Catal. 2005, 234(2), 308–317. DOI: 10.1016/j.jcat.2005.06.032.
  • Shen, J.; Shan, W.; Zhang, Y.; Du, J.; Xu, H.; Fan, K.; Shen, W.; Tang, Y. Gas Phase Selective Oxidation of Alcohols: In situ Electrolytic Nano-Silver/zeolite Film/Copper Grid Catalyst. J. Catal. 2006, 237(1), 94–101. DOI: 10.1016/j.jcat.2005.10.027.
  • Magaev, O.; Knyazev, A.; Vodyankina, O.; Dorofeeva, N.; Salanov, A.; Boronin, A. Active Surface Formation and Catalytic Activity of Phosphorous-Promoted Electrolytic Silver in the Selective Oxidation of Ethylene Glycol to Glyoxal. Appl. Catal. A. 2008, 344, 142–149. DOI: 10.1016/j.apcata.2008.04.007.
  • Chen, M.; Goodman, D. The Structure of Catalytically Active Gold on Titania. Science. 2004, 306(5694), 252–255. DOI: 10.1126/science.1102420.
  • Min, B. K.; Friend, C. M. Heterogeneous Gold-Based Catalysis for Green Chemistry: Low-Temperature CO Oxidation and Propene Oxidation. Chem. Rev. 2007, 107(6), 2709–2724. DOI: 10.1021/cr050954d.
  • Pina, D. C.; Falletta, E.; Rossi, M. Highly Selective Oxidation of Benzyl Alcohol to Benzaldehyde Catalyzed by Bimetallic Gold–Copper Catalyst. J. Catal. 2008, 260(2), 384–386. DOI: 10.1016/j.jcat.2008.10.003.
  • Zhao, G.; Hu, H.; Deng, M.; Lu, Y. Microstructured Au/ni-Fiber Catalyst for Low-Temperature Gas-Phase Selective Oxidation of Alcohols. Chem. Commun. 2011, 47(34), 9642–9644. DOI: 10.1039/C1CC12964C.
  • Zhao, G.; Hu, H.; Chen, W.; Jiang, Z.; Zhang, S.; Huang, J.; Lu, Y. Ni 2 O 3 –Au + Hybrid Active Sites on NiO X @au Ensembles for Low-Temperature Gas-Phase Oxidation of Alcohols. Catal. Sci. Technol. 2013, 3(2), 404–408. DOI: 10.1039/C2CY20579C.
  • Zhao, G.; Fan, S.; Pan, X.; Chen, P.; Liu, Y.; Lu, Y. Reaction-Induced Self-Assembly of CoO@cu 2 O Nanocomposites in Situ Onto SiC-Foam for Gas-Phase Oxidation of Bioethanol to Acetaldehyde. ChemSuschem. 2017, 10(7), 1380–1384. DOI: 10.1002/cssc.201601848.
  • Tao, L.; Zhao, G.; Chen, P.; Zhang, Z.; Liu, Y.; Lu, Y. Thin-Felt Microfibrous Structured Au-α-Fe2O3/ns-γ-Al2O3/Al-Fiber Catalyst for High-Throughput CO Oxidation. Appl. Catal. A. 2018, 556, 180–190. DOI: 10.1016/j.apcata.2018.03.003.
  • Sirijaruphan, A.; Goodwin, J. G., Jr; Rice, R. W.; Wei, D.; Butcher, K. R.; Roberts, G. W.; Spivey, J. J. Metal Foam Supported Pt Catalysts for the Selective Oxidation of CO in Hydrogen. Appl. Catal. A. 2005, 281, 1–9. DOI: 10.1016/j.apcata.2004.10.019.
  • Wei, Y.; Gao, Y.; Xu, X.; Si, J.; Sun, W.; Zhao, G.; Liu, Y.; Lu, Y. High Jolt-Resistance Monolithic CuO–CeO2/AlOOH/Al-fiber Catalyst for CO-PROX: Influence of AlOoh/al-Fiber Calcination on Cu–Ce Interaction. Int. J. Hydrogen. Energy. 2022, 47(26), 13030–13043. DOI: 10.1016/j.ijhydene.2022.02.068.
  • Driscoll, D. J.; Martir, W.; Wang, J. X.; Lunsford, J. H. Formation of Gas-Phase Methyl Radicals Over Magnesium Oxide. J. Am. Chem. Soc. 1985, 107(1), 58–63. DOI: 10.1021/ja00287a011.
  • Fang, X.; Li, S.; Lin, J.; Gu, J.; Yang, D. Preparation and Characterization of Catalyst for Oxidative Coupling of Methane. J. Mol. Catal. (China). 1992, 6, 254–262.
  • Wang, P.; Zhao, G.; Wang, Y.; Lu, Y. MnTiO3-Driven Low-Temperature Oxidative Coupling of Methane Over TiO2-Doped Mn2O3-Na2WO4/SiO2 Catalyst. Sci. Adv. 2017, 3(6), e1603180. DOI: 10.1126/sciadv.1603180.
  • Liu, H.; Yang, D.; Gao, R.; Long, C.; Zhang, S.; Wang, X. A Novel Na2WO4–Mn/sic Monolithic Foam Catalyst with Improved Thermal Properties for the Oxidative Coupling of Methane. Catal. Commun. 2008, 9(6), 1302–1306. DOI: 10.1016/j.catcom.2007.11.022.
  • Wang, W.; Zhang, Z.; Ji, S. Particle/metal-Based Monolithic Catalysts Dual Bed Reactor with Beds-Interspace Supplementary Oxygen: Construction and Performance for Oxidative Coupling of Methane. J. Nat. Gas. Chem. 2012, 21(4), 400–406. DOI: 10.1016/S1003-9953(11)60382-4.
  • Liu, J.; Zhao, G.; Si, J.; Sun, W.; Liu, Y.; Lu, Y. Binder-Free Dip-Coating of Mn2O3-Na2WO4-TiO2 Catalyst Onto Monolithic SiC-Foam Towards Efficient Oxidative Coupling of Methane. Fuel. 2021, 305, 121560. DOI: 10.1016/j.fuel.2021.121560.
  • Zhao, G.; Liu, J.; Si, J.; Ni, J.; Sun, W.; Liu, Y.; Lu, Y. Self-Structured Monolithic TiO2-Mn2O3-Na2WO4-Foam Catalyst Towards Efficient Oxidative Coupling of Methane. Fuel. 2022, 327, 125193. DOI: 10.1016/j.fuel.2022.125193.
  • Heynderickx, G.; Schools, E.; Marin, G. Coke Combustion and Gasification Kinetics in Ethane Steam Crackers. AIChE. J. 2005, 51(5), 1415–1428. DOI: 10.1002/aic.10401.
  • Nieto, J. L.; Botella, P.; Vázquez, M.; Dejoz, A. The Selective Oxidative Dehydrogenation of Ethane Over Hydrothermally Synthesised MoVtenb Catalysts. Chem. Commun. 2002. 17, 1906–1907. DOI: 10.1039/B204037A.
  • Zhu, H.; Ould-Chikh, S.; Anjum, D. H.; Sun, M.; Biausque, G.; Basset, J. M.; Caps, V. Nb Effect in the Nickel Oxide-Catalyzed Low-Temperature Oxidative Dehydrogenation of Ethane. J. Catal. 2012, 285, 292–303. DOI: 10.1016/j.jcat.2011.10.005.
  • Shi, X.; Ji, S.; Wang, K.; Li, C. Oxidative Dehydrogenation of Ethane with CO2 Over Novel Cr/SBA-15/Al2O3/FeCrAl Monolithic Catalysts. Energy. Fuels. 2008, 22(6), 3631–3638. DOI: 10.1021/ef800567v.
  • Zhang, Z.; Zhao, G.; Sun, W.; Liu, Y.; Lu, Y. Oxidative Dehydrogenation of Ethane: Superior Nb2O5-NiO/Ni-Foam Catalyst Tailored by Tuning Morphology of NiO-Precursors Grown on a Ni-Foam. iScience. 2019, 20, 90–99. DOI: 10.1016/j.isci.2019.09.021.
  • Olah, G. A.; Geoppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy. Weinheim; Wiley-VCH: Germany, 2006.
  • Zhang, X.; Zhu, X.; Lin, L.; Yao, S.; Zhang, M.; Liu, X.; Wang, X.; Li, Y.; Shi, C.; Ma, D. Highly Dispersed Copper Over β-Mo2C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift (RWGS) Reaction. ACS. Catal. 2017, 7(1), 912–918. DOI: 10.1021/acscatal.6b02991.
  • Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020, 120(15), 7984–8034. DOI: 10.1021/acs.chemrev.9b00723.
  • Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A Highly Selective and Stable ZnO-ZrO2 Solid Solution Catalyst for CO2 Hydrogenation to Methanol. Sci. Adv. 2017, 3(10), e1701290. DOI: 10.1126/sciadv.1701290.
  • Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga Catalyst for Carbon Dioxide Reduction to Methanol. Nat. Chem. 2014, 6(4), 320–324. DOI: 10.1038/nchem.1873.
  • Meng, C.; Zhao, G.; Shi, X.; Chen, P.; Liu, Y.; Lu, Y. Oxygen-Deficient Metal Oxides Supported Nano-Intermetallic InNi3C0.5 Toward Efficient CO2 Hydrogenation to Methanol. Sci. Adv. 2021, 7(32), eabi6012. DOI: 10.1126/sciadv.abi6012.
  • Meng, C.; Zhao, G.; Shi, X.; Nie, Q.; Liu, Y.; Lu, Y. Electronic Modulation of InNi3C0.5/Fe3O4 by Support Precursor Toward Efficient CO2 Hydrogenation to Methanol. Appl. Catal. B. 2022, 316, 121699. DOI: 10.1016/j.apcatb.2022.121699.
  • Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. Monolithic Ni5Ga3/SiO2/Al2O3/Al-Fiber Catalyst for CO2 Hydrogenation to Methanol at Ambient Pressure. Appl. Catal. A. 2018, 562, 234–240. DOI: 10.1016/j.apcata.2018.06.021.
  • Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. Cu/SiO2 Catalysts Prepared by the Ammonia-Evaporation Method: Texture, Structure, and Catalytic Performance in Hydrogenation of Dimethyl Oxalate to Ethylene Glycol. J. Catal. 2008, 257, 172–180. DOI: 10.1016/j.jcat.2008.04.021.
  • Gong, J.; Yue, H.; Zhao, Y.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.; Ma, X. Synthesis of Ethanol via Syngas on Cu/SiO 2 Catalysts with Balanced Cu 0 –Cu + Sites. J. Am. Chem. Soc. 2012, 134(34), 13922–13925. DOI: 10.1021/ja3034153.
  • Zhu, J.; Zhao, G.; Meng, C.; Chen, P.; Shi, X.; Lu, Y. Superb Ni-Foam Structured Nano-Intermetallic InNi3C0.5 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol. Chem. Eng. J. 2021, 426, 130857. DOI: 10.1016/j.cej.2021.130857.
  • Chen, Y.; Han, L.; Zhu, J.; Chen, P.; Fan, S.; Zhao, G.; Liu, Y.; Lu, Y. High Performance Ag-CuOx Nanocomposite Catalyst Galvanically Deposited Onto a Ni Foam for Gas-Phase Dimethyl Oxalate Hydrogenation to Methyl Glycolate. Catal. Commun. 2017, 96, 58–62. DOI: 10.1016/j.catcom.2017.04.001.
  • Wen, C.; Cui, Y.; Chen, X.; Zong, B.; Dai, W. Reaction Temperature Controlled Selective Hydrogenation of Dimethyl Oxalate to Methyl Glycolate and Ethylene Glycol Over Copper-Hydroxyapatite Catalysts. Appl. Catal. B. 2015, 162, 483–493. DOI: 10.1016/j.apcatb.2014.07.023.
  • Yin, A.; Guo, X.; Dai, W.; Fan, K. High Activity and Selectivity of Ag/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate. Chem. Commun. 2010, 46(24), 4348–4350. DOI: 10.1039/C0CC00581A.
  • Zhu, Y.; Kong, X.; Zhu, S.; Dong, F.; Zheng, H.; Zhu, Y.; Li, Y. Construction of Cu/ZrO2/Al2O3 Composites for Ethanol Synthesis: Synergies of Ternary Sites for Cascade Reaction. Appl. Catal. B. 2015, 166-167, 551–559. DOI: 10.1016/j.apcatb.2014.12.015.
  • Zhao, S.; Yue, H.; Zhao, Y.; Wang, B.; Geng, Y.; Lv, J.; Wang, S.; Gong, J.; Ma, X. Chemoselective Synthesis of Ethanol via Hydrogenation of Dimethyl Oxalate on Cu/SiO2: Enhanced Stability with Boron Dopant. J. Catal. 2013, 297, 142–150. DOI: 10.1016/j.jcat.2012.10.004.
  • Yue, H.; Zhao, Y.; Zhao, L.; Lv, J.; Wang, S.; Gong, J.; Ma, X. Hydrogenation of Dimethyl Oxalate to Ethylene Glycol on a Cu/SiO2/Cordierite Monolithic Catalyst: Enhanced Internal Mass Transfer and Stability. AIChE. J. 2012, 58(9), 2798–2809. DOI: 10.1002/aic.12785.
  • Ravanchi, M. T.; Sahebdelfar, S.; Komeili, S. Acetylene Selective Hydrogenation: A Technical Review on Catalytic Aspects. Rev. Chem. Eng. 2018, 34(2), 215–237. DOI: 10.1515/revce-2016-0036.
  • Kruppe, C. M.; Krooswyk, J. D.; Trenary, M. Selective Hydrogenation of Acetylene to Ethylene in the Presence of a Carbonaceous Surface Layer on a Pd/Cu(111) Single-Atom Alloy. ACS. Catal. 2017, 7(12), 8042–8049. DOI: 10.1021/acscatal.7b02862.
  • Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. PdZn Intermetallic Nanostructure with Pd–Zn–Pd Ensembles for Highly Active and Chemoselective Semi-Hydrogenation of Acetylene. ACS. Catal. 2016, 6(2), 1054–1061. DOI: 10.1021/acscatal.5b01933.
  • Wang, S.; Zhu, J.; Si, J.; Zhao, G.; Liu, Y.; Lu, Y. High-Performance Pd/Brass Fiber Catalyst for Selective Hydrogenation of Acetylene: Effect of Calcination-Assisted Endogenous Growth of ZnO-CuOx on Brass-Fiber. J. Catal. 2020, 382, 295–304. DOI: 10.1016/j.jcat.2019.12.027.
  • Wang, S.; Zhao, G.; Liu, Y.; Lu, Y. Microfibrous-Structured Pd/AlOoh/Al Fiber with Hydroxyl-Enriched Surfaces for the Catalytic Semihydrogenation of Acetylene. Ind. Eng. Chem. Res. 2019, 58(36), 16431–16441. DOI: 10.1021/acs.iecr.9b02784.
  • Rostrup-Nielsen, J. R.; Sehested, J.; Nørskov, J. K. Hydrogen and Synthesis Gas by Steam-And CO2 Reforming. Adv. Catal. 2002, 47, 65–139. DOI: 10.1016/S0360-0564(02)47006-X.
  • Koo, K. Y.; Eom, H. J.; Jung, U. H.; Yoon, W. L. Ni Nanosheet-Coated Monolith Catalyst with High Performance for Hydrogen Production via Natural Gas Steam Reforming. Appl. Catal. A. 2016, 525, 103–109. DOI: 10.1016/j.apcata.2016.07.016.
  • Cristiani, C.; Finocchio, E.; Latorrata, S.; Visconti, C. G.; Bianchi, E.; Tronconi, E.; Groppi, G.; Pollesel, P. Activation of Metallic Open-Cell Foams via Washcoat Deposition of Ni/MgAl2O4 Catalysts for Steam Reforming Reaction. Catal. Today. 2012, 197(1), 256–264. DOI: 10.1016/j.cattod.2012.09.003.
  • De Miguel, N.; Manzanedo, J.; Thormann, J.; Pfeifer, P.; Arias, P. L. Ni Catalyst Coating on Fecralloy ® Microchanneled Foils and Testing for Methane Steam Reforming. Chem. Eng. Technol. 2010, 33(1), 155–166. DOI: 10.1002/ceat.200900439.
  • Ryu, J.; Lee, K.; La, H.; Kim, H.; Yang, J.; Jung, H. Ni Catalyst Wash-Coated on Metal Monolith with Enhanced Heat-Transfer Capability for Steam Reforming. J. Power Sources. 2007, 171(2), 499–505. DOI: 10.1016/j.jpowsour.2007.05.107.
  • Schulz, L. A.; Kahle, L. C.; Delgado, K. H.; Schunk, S. A.; Jentys, A.; Deutschmann, O.; Lercher, J. A. On the Coke Deposition in Dry Reforming of Methane at Elevated Pressures. Appl. Catal. A. 2015, 504, 599–607. DOI: 10.1016/j.apcata.2015.03.002.
  • Zhang, J.; Li, F. Coke-Resistant Ni@SiO2 Catalyst for Dry Reforming of Methane. Appl. Catal. B. 2015, 176-177, 513–521. DOI: 10.1016/j.apcatb.2015.04.039.
  • Peng, H.; Zhang, X.; Zhang, L.; Rao, C.; Lian, J.; Liu, W.; Ying, J.; Zhang, G.; Wang, Z.; Zhang, N. One‐Pot Facile Fabrication of Multiple Nickel Nanoparticles Confined in Microporous Silica Giving a Multiple‐Cores@ Shell Structure as a Highly Efficient Catalyst for Methane Dry Reforming. ChemCatchem. 2017, 9(1), 127–136. DOI: 10.1002/cctc.201601263.
  • Chai, R.; Zhao, G.; Zhang, Z.; Chen, P.; Liu, Y.; Lu, Y. High Sintering-/coke-Resistance Ni@sio 2 /Al 2 O 3 /fecral-Fiber Catalyst for Dry Reforming of Methane: One-Step, Macro-To-Nano Organization via Cross-Linking Molecules. Catal. Sci. Technol. 2017, 23(23), 5500–5504. DOI: 10.1039/C7CY01491K.
  • Chai, R.; Fan, S.; Zhang, Z.; Chen, P.; Zhao, G.; Li, Y.; Yong, L. Free-Standing NiO-MgO-Al2O3 Nanosheets Derived from Layered Double Hydroxides Grown Onto FeCral-Fiber as Structured Catalysts for Dry Reforming of Methane. ACS Sustainable Chem. Eng. 2017, 5(6), 4517–4522. DOI: 10.1021/acssuschemeng.7b00717.
  • Choudhary, T. V.; Choudhary, V. R. Energy‐Efficient Syngas Production Through Catalytic Oxy‐Methane Reforming Reactions. Angew. Chem. Int. Ed. 2008, 47(10), 1828–1847. DOI: 10.1002/anie.200701237.
  • York, A. P. E.; Xiao, T.; Green, M. L. H. Brief Overview of the Partial Oxidation of Methane to Synthesis Gas. Top. Catal. 2003, 22(3/4), 345–358. DOI: 10.1023/A:1023552709642.
  • Chai, R.; Li, Y.; Zhang, Q.; Fan, S.; Zhang, Z.; Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. Foam-Structured NiO-MgO-Al 2 O 3 Nanocomposites Derived from NiMgal Layered Double Hydroxides in Situ Grown Onto Nickel Foam: A Promising Catalyst for High-Throughput Catalytic Oxymethane Reforming. ChemCatchem. 2017, 9(2), 268–272. DOI: 10.1002/cctc.201601167.
  • Zhao, G.; Chai, R.; Zhang, Z.; Sun, W.; Liu, Y.; Lu, Y. High-Performance Ni-CeAlO3-Al2O3/FeCrAl-Fiber Catalyst for Catalytic Oxy-Methane Reforming to Syngas. Fuel. 2019, 258, 116102. DOI: 10.1016/j.fuel.2019.116102.
  • Rogozhnikov, V.; Snytnikov, P.; Salanov, A.; Kulikov, A.; Ruban, N.; Potemkin, D.; Sobyanin, V.; Kharton, V. Rh/θ-Al2O3/FeCrAlloy Wire Mesh Composite Catalyst for Partial Oxidation of Natural Gas. Mater. Lett. 2019, 236, 316–319. DOI: 10.1016/j.matlet.2018.10.133.
  • Biodiesel 2020: Global Market Survey, Feedstock Trends and Forecasts. Emerging Markets Online, Multi-Client Study, 2008 (https:////www.healthtech.com/biodiesel2020/).
  • Lin, Y. Catalytic Valorization of Glycerol to Hydrogen and Syngas. Ind. Eng. Chem. Res. 2013, 37, 209–226. DOI: 10.1016/j.ijhydene.2012.12.079.
  • Czernik, S.; French, R.; Feik, C.; Chornet, E. Hydrogen by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes. Ind. Eng. Chem. Res. 2002, 41(17), 4209–4215. DOI: 10.1021/ie020107q.
  • Qi, W.; Xu, Q.; Yan, Y. Preparation of Syngas by Reforming of Biological Glycerol on Charcoal Catalyst. Envir. Prog. Sustain. 2016, 35(6), 1765–1771. DOI: 10.1002/ep.12388.
  • Kim, T.; Park, D. Preparation and Characterization of Ni Nanostructures Coated on the Substrates for Glycerol Steam Reforming. J. Nanosci. Nanotechnol. 2017, 17(4), 2478–2481. DOI: 10.1166/jnn.2017.13353.
  • Rennard, D.; French, R.; Czernik, S.; Josephson, T.; Schmidt, L. Production of Synthesis Gas by Partial Oxidation and Steam Reforming of Biomass Pyrolysis Oils. Ind. Eng. Chem. Res. 2010, 35, 4048–4059. DOI: 10.1016/j.ijhydene.2010.01.143.
  • Li, C.; Hirabayashi, D.; Suzuki, K. Development of New Nickel Based Catalyst for Biomass Tar Steam Reforming Producing H2-Rich Syngas. Fuel Process. Technol. 2009, 90, 790–796. DOI: 10.1016/j.fuproc.2009.02.007.
  • Furusawa, T.; Saito, K.; Kori, Y.; Miura, Y.; Sato, M.; Suzuki, N. Steam Reforming of Naphthalene/Benzene with Various Types of Pt- and Ni-Based Catalysts for Hydrogen Production. Fuel. 2013, 103, 111–121. DOI: 10.1016/j.fuel.2011.09.026.
  • Li, D.; Koike, M.; Chen, J.; Nakagawa, Y.; Tomishige, K. Preparation of Ni–Cu/mg/al Catalysts from Hydrotalcite-Like Compounds for Hydrogen Production by Steam Reforming of Biomass Tar. Ind. Eng. Chem. Res. 2014, 39(21), 10959–10970. DOI: 10.1016/j.ijhydene.2014.05.062.
  • Czernik, S.; French, R. Distributed Production of Hydrogen by Auto-Thermal Reforming of Fast Pyrolysis Bio-Oil. Ind. Eng. Chem. Res. 2014, 39, 744–750. DOI: 10.1016/j.ijhydene.2013.10.134.
  • Czernik, S.; Evans, R.; French, R. Hydrogen from Biomass-Production by Steam Reforming of Biomass Pyrolysis Oil. Catal. Today. 2007, 129(3–4), 265–268. DOI: 10.1016/j.cattod.2006.08.071.
  • Balzarotti, R.; Italiano, C.; Pino, L.; Cristiani, C.; Vita, A. Ni/CeO2-Thin Ceramic Layer Depositions on Ceramic Monoliths for Syngas Production by Oxy Steam Reforming of Biogas. Fuel Process. Technol. 2016, 149, 40–48. DOI: 10.1016/j.fuproc.2016.04.002.
  • Tsodikov, M. V.; Fedotov, A. S.; Antonov, D. O.; Uvarov, V. I.; Bychkov, V. Y.; Luck, F. C. Hydrogen and Syngas Production by Dry Reforming of Fermentation Products on Porous Ceramic Membrane-Catalytic Converters. Ind. Eng. Chem. Res. 2016, 41, 2424–2431. DOI: 10.1016/j.ijhydene.2015.11.113.
  • Gao, N.; Han, Y.; Quan, C.; Wu, C. Promoting Hydrogen-Rich Syngas Production from Catalytic Reforming of Biomass Pyrolysis Oil on Nanosized Nickel Ceramic Catalysts. Appl. Therm. Eng. 2017, 125, 297–305. DOI: 10.1016/j.applthermaleng.2017.07.028.
  • Zinoviev, S.; Müller‐Langer, F.; Das, P.; Bertero, N.; Fornasiero, P.; Kaltschmitt, M.; Centi, G.; Miertus, S. Next‐Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues. ChemSuschem. 2010, 3(10), 1106–11133. DOI: 10.1002/cssc.201000052.
  • Chen, X.; Jin, J.; Sha, G.; Li, C.; Zhang, B.; Su, D.; Williams, C. T.; Liang, C. Silicon–Nickel Intermetallic Compounds Supported on Silica as a Highly Efficient Catalyst for CO Methanation. Catal. Sci. Technol. 2014, 4(1), 53–61. DOI: 10.1039/C3CY00743J.
  • Tucci, E. R.; Thomson, W. J. Monolith Catalyst Favored for Methanation. Hydroc. Proc. 1979, 58, 123–126.
  • Mokrani, T.; Scurrell, M. Gas Conversion to Liquid Fuels and Chemicals: The Methanol Route Catalysis and Processes Development. Catal. Rev. 2009, 51(1), 1–145. DOI: 10.1080/01614940802477524.
  • Milina, M.; Mitchell, S.; Crivelli, P.; Cooke, D.; Pérez-Ramírez, J. Mesopore Quality Determines the Lifetime of Hierarchically Structured Zeolite Catalysts. Nat. Commun. 2014, 5(1), 3922. DOI: 10.1038/ncomms4922.
  • Yang, X.; Chen, L.; Li, Y.; Rooke, J. C.; Sanchez, C.; Su, B. Hierarchically Porous Materials: Synthesis Strategies and Structure Design. Chem. Soc. Rev. 2017, 46(2), 481–558. DOI: 10.1039/C6CS00829A.
  • Dautzenberg, F. M. New Catalyst Synthesis and Multifunctional Reactor Concepts for Emerging Technologies in the Process Industry. Catal. Rev. 2004, 46, 335–368. DOI: 10.1081/CR-200036729.
  • Ivanova, S.; Louis, B.; Madani, B.; Tessonnier, J.; Ledoux, M.; Pham-Huu, C. ZSM-5 Coatings on β-SiC Monoliths: Possible New Structured Catalyst for the Methanol-To-Olefins Process. J. Phys. Chem. C. 2007, 111(11), 4368–4374. DOI: 10.1021/jp067535k.
  • Jiao, Y.; Jiang, C.; Yang, Z.; Zhang, J. Controllable Synthesis of ZSM-5 Coatings on SiC Foam Support for MTP Application. Micropor. Mesopor. Mater. 2012, 162, 152–158. DOI: 10.1016/j.micromeso.2012.05.034.
  • Guo, W.; Wu, W.; Luo, M.; Xiao, W. Modeling of Diffusion and Reaction in Monolithic Catalysts for the Methanol-To-Propylene Process. Fuel Process. Technol. 2013, 108, 133–138. DOI: 10.1016/j.fuproc.2012.06.005.
  • Choi, M.; Cho, H.; Srivastava, R.; Venkatesan, C.; Choi, D. H.; Ryoo, R. Amphiphilic Organosilane-Directed Synthesis of Crystalline Zeolite with Tunable Mesoporosity. Nat. Mater. 2006, 5(9), 718–723. DOI: 10.1038/nmat1705.
  • Zhao, J.; Hua, Z.; Liu, Y.; Guo, L.; Cui, W.; Bu, W.; Cui, X.; Ruan, M.; Chen, H.; Shi, J. Direct Fabrication of Mesoporous Zeolite with a Hollow Capsular Structure. Chem. Commun. 2009. 48, 7578–7580. DOI: 10.1039/B913920F.
  • Milina, M.; Mitchell, D. S.; Cooke, D. D.; Crivelli, D. P.; Pérez-Ramírez, P. J. Impact of Pore Connectivity on the Design of Long-Lived Zeolite Catalysts. Angew. Chem. Int. Ed. 2014, 54(5), 1591–1594. DOI: 10.1002/anie.201410016.
  • Wang, N.; Qian, W.; Shen, K.; Su, C.; Wei, F. Bayberry-Like ZnO/MFI Zeolite as High-Performance Methanol-To-Aromatics Catalyst. Chem. Commun. 2016, 52(10), 2011–2014. DOI: 10.1039/C5CC08471G.
  • Ding, J.; Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. High-Performance Thin-Felt SS-Fiber@HZSM-5 Catalysts Synthesized via Seed-Assisted Vapor Phase Transport for Methanol-To-Propylene Reaction: Effects of Crystal Size, Mesoporosity and Aluminum Uniformity. J. Catal. 2018, 360, 40–50. DOI: 10.1016/j.jcat.2018.01.025.
  • Duvenhage, D. J.; Shingles, T. Synthol Reactor Technology Development. Catal. Today. 2002, 71(3–4), 301–305. DOI: 10.1016/S0920-5861(01)00456-4.
  • Krishna, R.; Sie, S. Design and Scale-Up of the Fischer–Tropsch Bubble Column Slurry Reactor. Fuel Process. Technol. 2000, 64(1–3), 73–105. DOI: 10.1016/S0378-3820(99)00128-9.
  • Deugd, R. M.; Kapteijin, F.; Moulijin, J. A. Using Monolithic Catalysts for Highly Selective Fischer-Tropsch Synthesis. Catal. Today. 2003, 79-80, 495–501. DOI: 10.1016/S0920-5861(03)00073-7.
  • Pangarkar, K.; Schildhauer, T. J.; van Ommen, J. R. V.; Nijenhuis, J.; Kapteijn, F.; Moulijn, J. A. Structured Packings for Multiphase Catalytic Reactors. Ind. Eng. Chem. Res. 2008, 47(10), 3720–3751. DOI: 10.1021/ie800067r.
  • Steynberg, A. P.; Dry, M. E.; Davis, B. H.; Breman, B. B. Fischer-Tropsch Technology; Elsevier: Amsterdam. Netherlands, 2004. DOI: 10.1016/S0167-2991(04)80459-2.
  • Giani, L.; Groppi, G.; Tronconi, E. Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts. Ind. Eng. Chem. Res. 2005, 44(14), 4993–5002. DOI: 10.1021/ie0490886.
  • Scala, C. V.; Wehrli, M.; Gaiser, G. Heat Transfer Measurements and Simulation of KATAPAK-M® Catalyst Supports. Chem. Eng. Sci. 1999, 54(10), 1375–1381. DOI: 10.1016/S0009-2509(99)00077-9.
  • Sheng, M.; Yang, H.; Cahela, D. R.; Yantz, W. R., Jr; Gonzalez, C. F.; Tatarchuk, B. J. High Conductivity Catalyst Structures for Applications in Exothermic Reactions. Appl. Catal. A. 2012, 445-446, 143–152. DOI: 10.1016/j.apcata.2012.08.012.
  • Cheng, X.; Yang, H.; Tatarchuk, B. J. Microfibrous Entrapped Hybrid Iron Based Catalysts for Fischer-Tropsch Synthesis. Catal. Today. 2016, 273, 62–71. DOI: 10.1016/j.cattod.2016.02.048.
  • Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science. 2012, 335(6070), 835–838. DOI: 10.1126/science.1215614.
  • Han, L.; Wang, C.; Zhao, G.; Liu, Y.; Lu, Y. Microstructured Al-Fiber@meso-Al 2 O 3 @fe-Mn-K Fischer-Tropsch Catalyst for Lower Olefins. AIChE. J. 2016, 62(3), 742–752. DOI: 10.1002/aic.15061.
  • Han, L.; Wang, C.; Ding, J.; Zhao, G.; Liu, Y.; Lu, Y. Microfibrous-Structured Al-Fiber@ns-Al 2 O 3 Core–Shell Composite Functionalized by Fe–Mn–K via Surface Impregnation Combustion: As-Burnt Catalysts for Synthesis of Light Olefins from Syngas. R.S.C. Adv. 2016, 6(12), 9743–9753. DOI: 10.1039/C5RA25212A.
  • Ersson, A. G.; Järås, S. G. Catalytic Fuel Combustion in Honeycomb Monolith Reactors. In Structured Catalysts and Reactors; Cybulski, A. Moulijn, J. A., Eds.; Marcel Dekker: New York, 2006; pp. 215–241. DOI:10.1201/9781420028003.ch7.
  • Saracco, G.; Cerri, I.; Specchia, V.; Accornero, R. Catalytic Pre-Mixed Fibre Burners. Chem. Eng. Sci. 1999, 54, 3599–3608. DOI: 10.1016/S0009-2509(98)00463-1.
  • Lyubovsky, M.; Karim, H.; Menacherry, P.; Boorse, S.; LaPierre, R.; Pfefferle, W. C.; Roychoudhury, S. Complete and Partial Catalytic Oxidation of Methane Over Substrates with Enhanced Transport Properties. Catal. Today. 2003, 83(1–4), 183–197. DOI: 10.1016/S0920-5861(03)00231-1.
  • Zhao, G.; Pan, X.; Zhang, Z.; Liu, Y.; Lu, Y. A. Thin-Felt Pd-MgO-Al2O3/Al-Fiber Catalyst for Catalytic Combustion of Methane with Resistance to Water-Vapor Poisoning. J. Catal. 2020, 384, 122–135. DOI: 10.1016/j.jcat.2020.01.013.
  • Gélin, P.; Primet, M. Complete Oxidation of Methane at Low Temperature Over Noble Metal Based Catalysts: A Review. Appl. Catal. B. 2002, 39, 1–37. DOI: 10.1016/S0926-3373(02)00076-0.
  • Tao, L.; Zhao, G.; Chen, P.; Zhang, Z.; Liu, Y.; Lu, Y. High-Performance Co-MnO X Composite Oxide Catalyst Structured Onto Al-Fiber Felt for High-Throughput O 3 Decomposition. ChemCatchem. 2019, 11(3), 1131–1142. DOI: 10.1002/cctc.201801401.
  • Tao, L.; Zhang, Z.; Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. Thin-Felt Al Fiber Structured Pd-Co-MnOx/Al2O3 Catalyst with High Moisture Resistance for High Throughput O3 Decomposition. Appl. Surf. Sci. 2019, 481, 802–810. DOI: 10.1016/j.apsusc.2019.03.134.
  • Beirle, S.; Boersma, K. F.; Platt, U.; Lawrence, M. G.; Wagner, T. Megacity Emissions and Lifetimes of Nitrogen Oxides Probed from Space. Science. 2011, 333(6050), 1737–1739. DOI: 10.1126/science.1207824.
  • Felix, J. D.; Elliott, E. M.; Shaw, S. L. Nitrogen Isotopic Composition of Coal-Fired Power Plant NO x: Influence of Emission Controls and Implications for Global Emission Inventories. Environ. Sci. Technol. 2012, 46(6), 3528–3535. DOI: 10.1021/es203355v.
  • Mou, X.; Zhang, B.; Li, Y.; Yao, L.; Wei, X.; Su, D. S.; Shen, W. Rod-Shaped Fe 2 O 3 as an Efficient Catalyst for the Selective Reduction of Nitrogen Oxide by Ammonia. Angew. Chem. Int. Ed. 2012, 51(12), 2989–2993. DOI: 10.1002/anie.201107113.
  • Wang, W.; McCool, G.; Kapur, N.; Yuan, G.; Shan, B.; Nguyen, M.; Graham, U. M.; Davis, B. H.; Jacobs, G.; Cho, K. Mixed-Phase Oxide Catalyst Based on Mn-Mullite (Sm, Gd)Mn 2 O 5 for NO Oxidation in Diesel Exhaust. Science. 2012, 337(6096), 832–835. DOI: 10.1126/science.1225091.
  • Kompio, P. G.; Brückner, A.; Hipler, F.; Auer, G.; Löffler, E.; Grünert, W. A New View on the Relations Between Tungsten and Vanadium in V2O5WO3/TiO2 Catalysts for the Selective Reduction of NO with NH3. J. Catal. 2012, 286, 237–247. DOI: 10.1016/j.jcat.2011.11.008.
  • Thirupathi, B.; Smirniotis, P. G. Nickel-Doped Mn/TiO2 as an Efficient Catalyst for the Low-Temperature SCR of NO with NH3: Catalytic Evaluation and Characterizations. J. Catal. 2012, 288, 74–83. DOI: 10.1016/j.jcat.2012.01.003.
  • Zhang, L.; Zhang, D.; Zhang, J.; Cai, S.; Fang, C.; Huang, L.; Li, H.; Gao, R.; Shi, L. Design of Meso-TiO2@MnOx–CeOx/CNTs with a Core–Shell Structure as DeNox Catalysts: Promotion of Activity, Stability and SO2-Tolerance. Nanoscale. 2013, 5(20), 9821–9829. DOI: 10.1039/C3NR03150K.
  • Wan, Y.; Zhao, W.; Tang, Y.; Li, L.; Wang, H.; Cui, Y.; Gu, J.; Li, Y.; Shi, J. Ni-Mn Bi-Metal Oxide Catalysts for the Low Temperature SCR Removal of NO with NH3. Appl. Catal. B. 2014, 148-149, 148-149, 114–122. DOI: 10.1016/j.apcatb.2013.10.049.
  • Pereda-Ayo, B.; De La Torre, U.; Romero-Sáez, M.; Aranzabal, A.; Gonzálezmarcos, J. A.; González-Velasco, J. R. Influence of the Washcoat Characteristics on NH3-SCR Behavior of Cu-Zeolite Monoliths. Catal. Today. 2013, 216, 82–89. DOI: 10.1016/j.cattod.2013.06.012.
  • Sun, H.; Zhang, Y.; Quan, X.; Chen, S.; Qu, Z.; Zhou, Y. Wire-Mesh Honeycomb Catalyst for Selective Catalytic Reduction of NOx Under Lean-Burn Conditions. Catal. Today. 2008, 139(1–2), 130–134. DOI: 10.1016/j.cattod.2008.08.021.
  • Han, L.; Gao, M.; Hasegawa, J.-Y.; Li, S.; Shen, Y.; Li, H.; Shi, L.; Zhang, D. SO2-Tolerant Selective Catalytic Reduction of NOx Over Meso-TiO2@Fe2O3@Al2O3 Metal-Based Monolith Catalysts. Environ. Sci. Technol. 2019, 53(11), 6462–6473. DOI: 10.1021/acs.est.9b00435.
  • Yang, K. S.; Jiang, Z.; Chung, J. S. Electrophoretically Al-Coated Wire Mesh and Its Application for Catalytic Oxidation of 1,2-Dichlorobenzene. Surf. Coat. Technol. 2003, 168, 103–110. DOI: 10.1016/S0257-8972(02)00569-8.
  • Li, J.; Yang, J.; Wang, M.; Lu, Y.; He, M. A Microreactor Based on Sinter-Locked Microfibrous Media with Open Porous Structure for Nitration of Benzene. Chin. J. Catal. 2007, 28, 931–933. DOI: 10.1016/S1872-2067(07)60077-1.
  • Yang, J. L.; Li, J. F.; Lu, Y. Nitration of Benzene in a Continuous-Flow Microreactor Integrated with Microfiber-Structured Nafion/SiO2 Solid Acid Catalyst. Acta Phys.-Chim. Sin. 2009, 25, 2045–2049. DOI: 10.3866/PKU.WHXB20090926.
  • Lai, I.; Liu, Y.; Yu, C.; Lee, M.; Huang, H. Production of High-Purity Ethyl Acetate Using Reactive Distillation: Experimental and Start-Up Procedure. Chem. Eng. Process. 2008, 47(9–10), 1831–1843. DOI: 10.1016/j.cep.2007.10.008.
  • Semagina, N.; Grasemann, M.; Xanthopoulos, N.; Renken, A.; Lioubov, K. M. Structured Catalyst of Pd/ZnO on Sintered Metal Fibers for 2-Methyl-3-Butyn-2-Ol Selective Hydrogenation. J. Catal. 2007, 251(1), 213–222. DOI: 10.1016/j.jcat.2007.06.028.
  • Górak, A.; Hoffmann, A. Catalytic Distillation in Structured Packings: Methyl Acetate Synthesis. AIChE. J. 2001, 47(5), 1067–1076. DOI: 10.1002/aic.690470513.
  • Klöker, M.; Kenig, E. Y.; Górak, A.; Markusse, A. P.; Kwant, G.; Moritz, P. Investigation of Different Column Configurations for the Ethyl Acetate Synthesis via Reactive Distillation. Chem. Eng. Process. 2004, 43(6), 791–801. DOI: 10.1016/S0255-2701(03)00084-9.
  • Gao, X.; Wang, F.; Zhang, R.; Li, H.; Li, X. Liquid Flow Behavior of a Seepage Catalytic Packing Internal for Catalytic Distillation Column. Ind. Eng. Chem. Res. 2014, 53(32), 12793–12801. DOI: 10.1021/ie500665q.
  • Deng, T.; Ding, J.; Zhao, G.; Liu, Y.; Lu, Y. Catalytic Distillation for Esterification of Acetic Acid with Ethanol: Promising SS-Fiber@HZSM-5 Catalytic Packings and Experimental Optimization via Response Surface Methodology. J. Chem. Technol. Biotechnol. 2018, 93(3), 827–841. DOI: 10.1002/jctb.5436.
  • Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44(15), 5148–5180. DOI: 10.1039/C4CS00448E.
  • Zhu, C.; Shen, G.; Chen, W.; Dong, X.; Li, G.; Song, Y.; Wei, W.; Sun, Y. Copper Hollow Fiber Electrode for Efficient CO2 Electroreduction. J. Power Sources. 2021, 495, 229814. DOI: 10.1016/j.jpowsour.2021.229814.
  • Li, S.; Chen, W.; Dong, X.; Zhu, C.; Chen, A.; Song, Y.; Li, G.; Wei, W.; Sun, Y. Hierarchical Micro/Nanostructured Silver Hollow Fiber Boosts Electroreduction of Carbon Dioxide. Nat. Commun. 2022, 13(1), 3080. DOI: 10.1038/s41467-022-30733-6.
  • Yu, D.; Qian, Q.; Wei, L.; Jiang, W.; Goh, K.; Wei, J.; Zhang, J.; Chen, Y. Emergence of Fiber Supercapacitors. Chem. Soc. Rev. 2015, 44(3), 647–662. DOI: 10.1039/C4CS00286E.
  • Wang, Q.; Wang, X.; Xu, J.; Ouyang, X.; Hou, X.; Chen, D.; Wang, R.; Shen, G. Flexible Coaxial-Type Fiber Supercapacitor Based on NiCo2O4 Nanosheets Electrodes. Nano. Energy. 2014, 8, 44–51. DOI: 10.1016/j.nanoen.2014.05.014.
  • Liu, B.; Tan, D.; Wang, X.; Chen, D.; Shen, G. F. Planar-Integrated, All-Solid-State Fiber Supercapacitors with an Enhanced Distributed-Capacitance Effect. Small. 2013, 9(11), 1998–2004. DOI: 10.1002/smll.201202586.
  • Jiang, F.; Fang, Y.; Liu, Y.; Chen, L.; Xue, Q.; Lu, Y.; Lu, J.; He, M. Paper-Like 3-Dimensional Carbon Nanotubes (CNTs)–Microfiber Hybrid: A Promising Macroscopic Structure of CNTs. J. Mater. Chem. 2009, 19(22), 3632–3637. DOI: 10.1039/B819083F.
  • Li, Y.; Fang, Y.; Liu, H.; Wu, X.; Lu, Y. Free-Standing 3D Polyaniline–Cnt/ni-fiber Hybrid Electrodes for High-Performance Supercapacitors. Nanoscale. 2012, 4(9), 2867–2869. DOI: 10.1039/C2NR30252G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.