66
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Challenges of heterogeneous catalytic wet air oxidation processes and potential applications on emerging contaminants loaded wastewater treatment

ORCID Icon, ORCID Icon & ORCID Icon
Received 23 Dec 2023, Accepted 17 Apr 2024, Published online: 11 May 2024

References

  • Parida, V. K.; Saidulu, D.; Majumder, A.; Srivastava, A.; Gupta, B.; Gupta, A. K. Emerging Contaminants in Wastewater: A Critical Review on Occurrence, Existing Legislations, Risk Assessment, and Sustainable Treatment Alternatives. J. Environ. Chem. Eng. 2021, 9(5), 105966. DOI: 10.1016/j.jece.2021.105966.
  • Tran, N. H.; Reinhard, M.; Gin, K. Y.-H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-A Review. Water Res. 2018, 133, 182–207. DOI: 10.1016/j.watres.2017.12.029.
  • Wang, R.; Luo, J.; Li, C.; Chen, J.; Zhu, N. Antiviral Drugs in Wastewater Are on the Rise As Emerging Contaminants: A Comprehensive Review of Spatiotemporal Characteristics, Removal Technologies and Environmental Risks. J. Hazard. Mater. 2023, 457, 131694. DOI: 10.1016/j.jhazmat.2023.131694.
  • Wang, W.; Zhang, J.; Hu, M.; Liu, X.; Sun, T.; Zhang, H. Antidepressants in Wastewater Treatment Plants: Occurrence, Transformation and Acute Toxicity Evaluation. Sci. Total Environ. 2023, 903, 166120. DOI: 10.1016/j.scitotenv.2023.166120.
  • Zbair, M.; Anfar, Z.; Ait Ahsaine, H.; El Alem, N.; Ezahri, M. Acridine Orange Adsorption by Zinc Oxide/Almond Shell Activated Carbon Composite: Operational Factors, Mechanism and Performance Optimization Using Central Composite Design and Surface Modeling. J. Environ. Manage. 2018, 206, 383–397. DOI: 10.1016/j.jenvman.2017.10.058.
  • Ouasfi, N.; Zbair, M.; Bouzikri, S.; Anfar, Z.; Bensitel, M.; Ait Ahsaine, H.; Sabbar, E.; Khamliche, L. Selected Pharmaceuticals Removal Using Algae Derived Porous Carbon: Experimental, Modeling and DFT Theoretical Insights. Rsc. Adv. 2019, 9(17), 9792–9808. DOI: 10.1039/C9RA01086F.
  • Bourassi, M.; Karaszova, M.; Pasichnyk, M.; Zazpe, R.; Hercikova, J.; Fila, V.; Macak, J. M.; Gaalova, J. Removal of Ibuprofen from Water by Different Types Membranes. Polymers. 2021, 13(23), 13. DOI: 10.3390/polym13234082.
  • Bourassi, M.; Pasichnyk, M.; Oesch, O.; Sundararajan, S.; Travnickova, T.; Soukup, K.; Kasher, R.; Gaalova, J. Glycidyl and Methyl Methacrylate UV-Grafted PDMS Membrane Modification Toward Tramadol Membrane Selectivity. Membranes. 2021, 11(10), 11. DOI: 10.3390/membranes11100752.
  • Kárászová, M.; Bourassi, M.; Gaálová, J. Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use? Membranes (Basel). Membranes. 2020, 10(11), 305. DOI: 10.3390/membranes10110305.
  • Gaálová, J.; Bourassi, M.; Soukup, K.; Trávníčková, T.; Bouša, D.; Sundararajan, S.; Losada, O.; Kasher, R.; Friess, K.; Sofer, Z. Modified Single-Walled Carbon Nanotube Membranes for the Elimination of Antibiotics from Water. Membranes. 2021, 11(9), 11. DOI: 10.3390/membranes11090720.
  • Gaálová, J.; Michel, M.; Bourassi, M.; Ladewig, B. P.; Kasal, P.; Jindřich, J.; Izák, P. Nafion Membranes Modified by Cationic Cyclodextrin Derivatives for Enantioselective Separation. Sep. Purif. Techn. 2021, 266, 118538. DOI: 10.1016/j.seppur.2021.118538.
  • García-Mora, A. M.; Portilla-Delgado, C. S.; Torres-Palma, R. A.; Hidalgo-Troya, A.; Galeano, L.-A. Catalytic Wet Peroxide Oxidation to Remove Natural Organic Matter from Real Surface Waters at Urban and Rural Drinking Water Treatment Plants. J. Water Process Eng. 2021, 42, 102136. DOI: 10.1016/j.jwpe.2021.102136.
  • Portilla-Delgado, C. S.; García-Mora, A. M.; Dappozze, F.; Guillard, C.; Galeano, L. A. Visible-Light Enhanced Catalytic Wet Peroxide Oxidation of Natural Organic Matter in the Presence of Al/fe-Pillared Clay. Catalysts. Online early access. DOI: 10.3390/catal110506372021.
  • Yu, S.-Y.; Xie, Z.-H.; Yu Wu, X.; Zheng, Y.-Z.; Shi, Y.; Xiong, Z.-K.; Zhou, P.; Liu, Y.; He, C.-S.; Pan, Z.-C., et al. Review of Advanced Oxidation Processes for Treating Hospital Sewage to Achieve Decontamination and Disinfection. Chin. Chem. Lett. 2024, 2023(1), 108714. DOI: 10.1016/j.cclet.2023.108714.
  • Ike, I. A.; Karanfil, T.; Cho, J.; Hur, J. Oxidation Byproducts from the Degradation of Dissolved Organic Matter by Advanced Oxidation Processes – a Critical Review. Water Res. 2019, 164, 114929. DOI: 10.1016/j.watres.2019.114929.
  • Segura, Y.; Cruz Del Álamo, A.; Munoz, M.; Álvarez-Torrellas, S.; García, J.; Casas, J. A.; De Pedro, Z. M.; Martínez, F. A Comparative Study Among Catalytic Wet Air Oxidation, Fenton, and Photo-Fenton Technologies for the On-Site Treatment of Hospital Wastewater. J. Environ. Manage. 2021, 290, 112624. DOI: 10.1016/j.jenvman.2021.112624.
  • Barge, A. S.; Vaidya, P. D. Ruthenium-Decorated Carbon Nanotubes As Catalyst for Wet Air Oxidation. J. Environ. Chem. Eng. 2019, 7(1), 102914. DOI: 10.1016/j.jece.2019.102914.
  • Masende, Z. P. G.; Kuster, B. F. M.; Ptasinski, K. J.; Janssen, F. J. J. G.; Katima, J. H. Y.; Schouten, J. C. Platinum Catalysed Wet Oxidation of Phenol in a Stirred Slurry Reactor: The Role of Oxygen and Phenol Loads on Reaction Pathways. Catal. Today. 2003, 79-80, 357–370. DOI: 10.1016/S0920-5861(03)00064-6.
  • Monteros, A. E. D. L.; Lafaye, G.; Cervantes, A.; Del Angel, G.; Barbier, J., Jr; Torres, G. Catalytic Wet Air Oxidation of Phenol Over Metal Catalyst (Ru,pt) Supported on TiO2–CeO2 Oxides. Catal. Today. 2015, 258, 564–569. DOI: 10.1016/j.cattod.2015.01.009.
  • Shan, H.; Oh, R.; Fan, J.; Zhang, X.; Zhang, N.; Huang, X.; Park, G.-S.; Zheng, Q.; Lu, H.; Chen, B. Developing Pt-M/C Catalyst (M=pb, Cu) for Efficient Catalytic Wet Air Oxidation of Phenol Wastewater Under Mild Conditions. J. Environ. Chem. Eng. 2023, 11(3), 109854. DOI: 10.1016/j.jece.2023.109854.
  • Arena, F.; Di Chio, R.; Gumina, B.; Spadaro, L.; Trunfio, G. Recent Advances on Wet Air Oxidation Catalysts for Treatment of Industrial Wastewaters. Inorganica. Chimica. Acta. 2015, 431, 101–109. DOI: 10.1016/j.ica.2014.12.017.
  • Levec, J.; Pintar, A. Catalytic Wet-Air Oxidation Processes: A Review. Catal. Today. 2007, 124(3–4), 172–184. DOI: 10.1016/j.cattod.2007.03.035.
  • Kim, K.-H.; Ihm, S.-K. Heterogeneous Catalytic Wet Air Oxidation of Refractory Organic Pollutants in Industrial Wastewaters: A Review. J. Hazard. Mater. 2011, 186(1), 16–34. DOI: 10.1016/j.jhazmat.2010.11.011.
  • Jing, G.; Luan, M.; Chen, T. Progress of Catalytic Wet Air Oxidation Technology. Arabian J. Chem. 2016, 9, S1208–S1213. DOI: 10.1016/j.arabjc.2012.01.001.
  • Rocha, R. P.; Pereira, M. F. R.; Figueiredo, J. L. Metal-Free Carbon Materials As Catalysts for Wet Air Oxidation. Catal. Today. 2020, 356, 189–196. DOI: 10.1016/j.cattod.2019.04.047.
  • Sushma, K.; Saroha, M.; K, A. Performance of Various Catalysts on Treatment of Refractory Pollutants in Industrial Wastewater by Catalytic Wet Air Oxidation: A Review. J. Environ. Manage. 2018, 228, 169–188. DOI: 10.1016/j.jenvman.2018.09.003.
  • Duprez, D.; Delanoë, F.; Barbier, J.; Isnard, P.; Blanchard, G. Catalytic Oxidation of Organic Compounds in Aqueous Media. Catal. Today. 1996, 29(1–4), 317–322. DOI: 10.1016/0920-5861(95)00298-7.
  • Nousir, S.; Keav, S.; Barbier, J.; Bensitel, M.; Brahmi, R.; Duprez, D. Deactivation Phenomena During Catalytic Wet Air Oxidation (CWAO) of Phenol Over Platinum Catalysts Supported on Ceria and Ceria–Zirconia Mixed Oxides. Appl. Catal. B Environ. 2008, 84(3–4), 723–731. DOI: 10.1016/j.apcatb.2008.06.010.
  • Hamoudi, S.; Larachi, F.; Sayari, A. Wet Oxidation of Phenolic Solutions Over Heterogeneous Catalysts: Degradation Profile and Catalyst Behavior. J. Catal. 1998, 177(2), 247–258. DOI: 10.1006/jcat.1998.2125.
  • Arena, F.; Italiano, C.; Spadaro, L. Efficiency and Reactivity Pattern of Ceria-Based Noble Metal and Transition Metal-Oxide Catalysts in the Wet Air Oxidation of Phenol. Appl. Catal. B Environ. 2012, 115–116, 336–345. DOI: 10.1016/j.apcatb.2011.12.035.
  • Pleşa Chicinaş, R.; Gál, E.; Bedelean, H.; Darabantu, M.; Măicăneanu, A. Novel Metal Modified Diatomite, Zeolite and Carbon Xerogel Catalysts for Mild Conditions Wet Air Oxidation of Phenol: Characterization, Efficiency and Reaction Pathway. Sep. Purif. Techn. 2018, 197, 36–46. DOI: 10.1016/j.seppur.2017.12.050.
  • Sassi, H.; Lafaye, G.; Ben Amor, H.; Gannouni, A.; Jeday, M. R.; Barbier, J. Wastewater Treatment by Catalytic Wet Air Oxidation Process Over Al-Fe Pillared Clays Synthesized Using Microwave Irradiation. Front. Environ. Sci. Eng. 2017, 12(1), 2. DOI: 10.1007/s11783-017-0971-1.
  • Bouabdellah, M. A.; Belkadhi, I.; Ben Hammouda, L.; Lafaye, G.; Medina Cabello, F.; Ksibi, Z. Synthesis, Characterization and Activity of W–La/CexZr1−xO2 Catalysts in the Catalytic Wet Air Oxidation of Phenol. J. Sol-Gel Sci. Technol. 2021, 98(1), 138–148. DOI: 10.1007/s10971-021-05503-3.
  • Zhang, W.; Ye, B.; Zhong, Z.; Jiang, Y.; Zhou, R.; Liu, Z.; Hou, Z. Catalytic Wet Air Oxidation of Toxic Containments Over Highly Dispersed Cu(ii)/cu(i)-N Species in the Framework of G-C3N4. J. Hazard. Mater. 2022, 424, 127679. DOI: 10.1016/j.jhazmat.2021.127679.
  • Pintar, A.; Levec, J. Catalytic Oxidation of Organics in Aqueous Solutions: I. Kinetics of Phenol Oxidation. J. Catal. 1992, 135(2), 345–357. DOI: 10.1016/0021-9517(92)90038-J.
  • Gupta, P.; Verma, N. Evaluation of Degradation and Mineralization of Glyphosate Pollutant in Wastewater Using Catalytic Wet Air Oxidation Over Fe-Dispersed Carbon Nanofibrous Beads. Chem. Eng. J. 2021, 417, 128029. DOI: 10.1016/j.cej.2020.128029.
  • Quintanilla, A.; Casas, J. A.; Zazo, J. A.; Mohedano, A. F.; Rodríguez, J. J. Wet Air Oxidation of Phenol at Mild Conditions with a Fe/Activated Carbon Catalyst. Appl. Catal. B Environ. 2006, 62(1–2), 115–120. DOI: 10.1016/j.apcatb.2005.07.001.
  • Santos, A.; Yustos, P.; Quintanilla, A.; Ruiz, G.; Garcia-Ochoa, F. Study of the Copper Leaching in the Wet Oxidation of Phenol with CuO-Based Catalysts: Causes and Effects. Appl. Catal. B Environ. 2005, 61(3–4), 323–333. DOI: 10.1016/j.apcatb.2005.06.006.
  • Barbier, J.; Oliviero, L.; Renard, B.; Duprez, D. Catalytic Wet Air Oxidation of Ammonia Over M/CeO2 Catalysts in the Treatment of Nitrogen-Containing Pollutants. Catal. Today. 2002, 75(1–4), 29–34. DOI: 10.1016/S0920-5861(02)00040-8.
  • Gai, H.; Liu, X.; Feng, B.; Gai, C.; Huang, T.; Xiao, M.; Song, H. An Alternative Scheme of Biological Removal of Ammonia Nitrogen from Wastewater–Highly Dispersed Ru Cluster @mesoporous TiO2 for the Catalytic Wet Air Oxidation of Low-Concentration Ammonia. Chem. Eng. J. 2021, 407, 127082. DOI: 10.1016/j.cej.2020.127082.
  • García-Hernández, L. E.; FríFríAs-Márquez, D. M.; Pacheco-Sosa, J. G.; Cervantes-Uribe, A.; Arévalo-Pérez, J. C.; Pérez-Vidal, H.; Silahua-Pavón, A. A.; Lunagómez-Rocha, M. A.; Torres-Torres, J. G. 2-Chlorophenol degradation by catalytic wet air oxidation using copper supported on TiO2-CeO2-ZrO2. Water Sci. Technol. 2019, 80(5), 911–919. DOI: 10.2166/wst.2019.330.
  • Forzatti, P.; Lietti, L. Catalyst Deactivation. Catal. Today. 1999, 52(2–3), 165–181. DOI: 10.1016/S0920-5861(99)00074-7.
  • Gracia, F. J.; Miller, J. T.; Kropf, A. J.; Wolf, E. E. K. FTIR, and Controlled Atmosphere EXAFS Study of the Effect of Chlorine on Pt-Supported Catalysts During Oxidation Reactions. J. Catal. 2002, 209(2), 341–354. DOI: 10.1006/jcat.2002.3601.
  • Guerra-Que, Z.; Torres-Torres, G.; Pérez-Vidal, H.; Cuauhtémoc-López, I.; Espinosa de Los Monteros, A.; Beltramini, J. N.; Frífrías-Márquez, D. M. Silver Nanoparticles Supported on Zirconia–Ceria for the Catalytic Wet Air Oxidation of Methyl Tert-Butyl Ether. Rsc. Adv. 2017, 7(6), 3599–3610. DOI: 10.1039/C6RA25684H.
  • Cervantes, A.; Del Angel, G.; Torres, G.; Lafaye, G.; Barbier, J.; Beltramini, J. N.; CabañCabañAs-Moreno, J. G.; Espinosa de Los Monteros, A. Degradation of Methyl Tert-Butyl Ether by Catalytic Wet Air Oxidation Over Rh/tio2–CeO2 Catalysts. Catal. Today. 2013, 212, 2–9. DOI: 10.1016/j.cattod.2012.11.021.
  • Kaissouni, F.; Brahmi, R.; Zbair, M.; Lafaye, G.; El Assal, Z.; Pirault-Roy, L.; Junior, J. B.; Elaissi, A.; Bensitel, M.; Baalala, M. Catalytic Wet Air Oxidation of High BPA Concentration Over Iron-Based Catalyst Supported on Orthophosphate. Environ. Sci. Pollut. Res. 2020, 27(26), 32533–32543. DOI: 10.1007/s11356-020-09176-3.
  • Bensouilah, R.; Hammedi, T.; Ouakouak, A.; Ghorbel, A.; Ksibi, Z. Comparative Study of the Efficiency of Different Noble Metals Supported on Zirconium Oxide in the Catalytic Wet Air Oxidation of Bisphenol-A Solution. Chem. Phys. Lett. 2020, 761, 138022. DOI: 10.1016/j.cplett.2020.138022.
  • Palas, B.; Ersöz, G.; Atalay, S. Catalytic Wet Air Oxidation of Reactive Black 5 in the Presence of LaNio3 Perovskite Catalyst As a Green Process for Azo Dye Removal. Chemosphere. 2018, 209, 823–830. DOI: 10.1016/j.chemosphere.2018.06.151.
  • Wang, P.; Liang, Y. N.; Zhong, Z.; Hu, X. Nano-Hybrid Bimetallic Au-Pd Catalysts for Ambient Condition-Catalytic Wet Air Oxidation (AC-CWAO) of Organic Dyes. Sep. Purif. Techn. 2020, 233, 115960. DOI: 10.1016/j.seppur.2019.115960.
  • Isgoren, M.; Gengec, E.; Veli, S.; Hassandoost, R.; Khataee, A. The Used Automobile Catalytic Converter as an Efficient Catalyst for Removal of Malathion Through Wet Air Oxidation Process. Int. J. Hydrogen Energy. 2023, 48(17), 6499–6509. DOI: 10.1016/j.ijhydene.2021.08.020.
  • Benitez, F. J.; García, J.; Acero, J. L.; Real, F. J.; Roldan, G. Non-Catalytic and Catalytic Wet Air Oxidation of Pharmaceuticals in Ultra-Pure and Natural Waters. Process Saf. Environ. Prot. 2011, 89(5), 334–341. DOI: 10.1016/j.psep.2011.06.007.
  • Palas, B.; Ersöz, G.; Atalay, S. Bioinspired Metal Oxide Particles As Efficient Wet Air Oxidation and Photocatalytic Oxidation Catalysts for the Degradation of Acetaminophen in Aqueous Phase. Ecotoxicol. Environ. Saf. 2019, 182, 109367. DOI: 10.1016/j.ecoenv.2019.109367.
  • Bourassi, M.; Lafaye, G.; Gombert, B.; Klusoň, P.; Barbier, J. Catalytic Wet Air Oxidation of Sulfamethoxazole and Tetracycline Using Platinum-Based Catalysts at Eco-Operating Conditions. J. Cleaner Prod. 2023, 429, 139453. DOI: 10.1016/j.jclepro.2023.139453.
  • Yang, S.; Besson, M.; Descorme, C. Catalytic Wet Air Oxidation of Formic Acid Over Pt/CexZr1−xo2 Catalysts at Low Temperature and Atmospheric Pressure. Appl. Catal. B Environ. 2010, 100(1–2), 282–288. DOI: 10.1016/j.apcatb.2010.08.004.
  • Mikulová, J.; Rossignol, S.; Barbier Jr, J.; Mesnard, D.; Kappenstein, C.; Duprez, D. Ruthenium and Platinum Catalysts Supported on Ce, Zr, Pr-O Mixed Oxides Prepared by Soft Chemistry for Acetic Acid Wet Air Oxidation. Appl. Catal. B Environ. 2007, 72(1–2), 1–10. DOI: 10.1016/j.apcatb.2006.10.002.
  • Mikulová, J.; Barbier, J.; Rossignol, S.; Mesnard, D.; Duprez, D.; Kappenstein, C. Wet Air Oxidation of Acetic Acid Over Platinum Catalysts Supported on Cerium-Based Materials: Influence of Metal and Oxide Crystallite Size. J. Catal. 2007, 251(1), 172–181. DOI: 10.1016/j.jcat.2007.07.008.
  • Sun, W.; Wei, H.; Yang an, L.; Jin, C.; Wu, H.; Xiong, Z.-A.; Pu, C.; Sun, C. Oxygen Vacancy Mediated La1-xCexfeo3-δ Perovskite Oxides as Efficient Catalysts for CWAO of Acrylic Acid by A-Site Ce Doping. Appl. Catal. B Environ. 2019, 245, 20–28. DOI: 10.1016/j.apcatb.2018.12.024.
  • Renard, B.; Barbier, J.; Duprez, D.; Durécu, S. Catalytic Wet Air Oxidation of Stearic Acid on Cerium Oxide Supported Noble Metal Catalysts. Appl. Catal. B Environ. 2005, 55(1), 1–10. DOI: 10.1016/j.apcatb.2004.06.017.
  • Ying, Z. Pretreatment of Pharmaceutical Wastewater by Catalytic Wet Air Oxidation (CWAO). In 2011 International Symposium on Water Resource and Environmental Protection, 20–22 May 2011, 2011; pp 1316–1318.
  • Zhan, W.; Wang, X.; Li, D.; Ren, Y.; Liu, D.; Kang, J. Catalytic Wet Air Oxidation of High Concentration Pharmaceutical Wastewater. Water Sci. Technol. 2013, 67(10), 2281–2286. DOI: 10.2166/wst.2013.123.
  • Liu, Y.; Lu, H.; Wang, G. Preparation of CuO/HZSM-5 Catalyst Based on Fly Ash and Its Catalytic Wet Air Oxidation of Phenol, Quinoline and Indole. Mater. Res. Express. 2021, 8(1), 015503. DOI: 10.1088/2053-1591/abd6a4.
  • Sushma, S.; K, A. Treatment of Industrial Organic Raffinate Containing Pyridine and Its Derivatives by Coupling of Catalytic Wet Air Oxidation and Biological Processes. J. Cleaner Prod. 2017, 162, 973–981. DOI: 10.1016/j.jclepro.2017.06.066.
  • Sushma, M.; Saroha, K.; K, A. Treatment of Toxic Industrial Effluent Containing Nitrogenous Organic Compounds by Integration of Catalytic Wet Air Oxidation at Atmospheric Pressure and Biological Processes. J. Environ. Chem. Eng. 2018, 6(5), 6256–6262. DOI: 10.1016/j.jece.2018.09.057.
  • Sushma, S.; K, A. Effectiveness of Fresh and Used Supported Noble and Non-Noble Metal Based Catalysts for Industrial Organic Raffinate Oxidation by Catalytic Wet Air Oxidation at Low Operating Parameters. J. Environ. Chem. Eng. 2019, 7(5), 103382. DOI: 10.1016/j.jece.2019.103382.
  • Zeng, X.; Liu, J.; Zhao, J. Wet Oxidation and Catalytic Wet Oxidation of Pharmaceutical Sludge. Sci. Rep. 2023, 13(1), 2544. DOI: 10.1038/s41598-022-22847-0.
  • Zeng, X.; Liu, J.; Zhao, J. Catalytic Wet Oxidation of Pharmaceutical Sludge by Molecular Sieve Loaded with Cu/Ce. Catalysts. Online early access. 10.3390/catal80200672018.
  • Zeng, X.; Liu, J.; Zhao, J.; Arora, P. K. Highly Efficient Degradation of Pharmaceutical Sludge by Catalytic Wet Oxidation Using CuO-CeO2/γ-Al2O3 As a Catalyst. PLOS ONE. 2018, 13(10), e0199520. DOI: 10.1371/journal.pone.0199520.
  • Abecassis-Wolfovich, M.; Landau, M. V.; Brenner, A.; Herskowitz, M. Catalytic Wet Oxidation of Phenol with Mn−ce-Based Oxide Catalysts: Impact of Reactive Adsorption on TOC Removal. Ind. Eng. Chem. Res. 2004, 43(17), 5089–5097. DOI: 10.1021/ie049756n.
  • Luck, F. A Review of Industrial Catalytic Wet Air Oxidation Processes. Catal. Today. 1996, 27(1–2), 195–202. DOI: 10.1016/0920-5861(95)00187-5.
  • Shende, R. V.; Mahajani, V. V. Kinetics of Wet Air Oxidation of Glyoxalic Acid and Oxalic Acid. Ind. Eng. Chem. Res. 1994, 33(12), 3125–3130. DOI: 10.1021/ie00036a030.
  • Li, L.; Chen, P.; Gloyna, E. F. Generalized Kinetic Model for Wet Oxidation of Organic Compounds. AichE J. 1991, 37(11), 1687–1697. DOI: 10.1002/aic.690371112.
  • Lafaye, G.; Barbier, J.; Duprez, D. Impact of Cerium-Based Support Oxides in Catalytic Wet Air Oxidation: Conflicting Role of Redox and Acid–Base Properties. Catal. Today. 2015, 253, 89–98. DOI: 10.1016/j.cattod.2015.01.037.
  • Alnaizy, R.; Akgerman, A. Advanced Oxidation of Phenolic Compounds. Adv. Environ. Res. 2000, 4(3), 233–244. DOI: 10.1016/S1093-0191(00)00024-1.
  • Davies, D.; Golunski, S.; Johnston, P.; Lalev, G.; Taylor, S. H. Dominant Effect of Support Wettability on the Reaction Pathway for Catalytic Wet Air Oxidation Over Pt and Ru Nanoparticle Catalysts. ACS Catal. 2018, 8(4), 2730–2734. DOI: 10.1021/acscatal.7b04039.
  • Gallezot, P.; Chaumet, S.; Perrard, A.; Isnard, P. Catalytic Wet Air Oxidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts. J. Catal. 1997, 168(1), 104–109. DOI: 10.1006/jcat.1997.1633.
  • Gunduz, G.; Dukkanci, M. Catalytic Wet Air Oxidation of Oxalic Acid at Atmospheric Pressure. Int. J. Chem. Reactor Eng. 2007, 5(1), 5. DOI: 10.2202/1542-6580.1423.
  • Žerjav, G.; Kaplan, R.; Pintar, A. Catalytic Wet Air Oxidation of Bisphenol a Aqueous Solution in Trickle-Bed Reactor Over Single TiO2 Polymorphs and Their Mixtures. J. Environ. Chem. Eng. 2018, 6(2), 2148–2158. DOI: 10.1016/j.jece.2018.03.024.
  • Larsen, G. Principles and Practice of Heterogeneous Catalysis by J. M. Thomas (University of Cambridge) and W. J. Thomas (University of Bath). VCH: Weinheim, 1997. Xxiii + 669 Pp. DM88.00. ISBN 3-527-29239-X. J. Am. Chem. Soc. 1997, 119(47), 11560–11560. DOI: 10.1021/ja975538s.
  • Tukač, V.; Hanika, J. Catalytic Wet Oxidation of Substituted Phenols in the Trickle Bed Reactor. J. Chem. Technol. Biotechnol. 1998, 71(3), 262–266. DOI: 10.1002/(SICI)1097-4660(199803)71:3<262:AID-JCTB855>3.0.CO;2-R.
  • Cramer, S. D. The Solubility of Oxygen in Brines from 0 to 300°C. Ind. Eng. Chem. Process Des. Dev. 1980, 19(2), 300–305. DOI: 10.1021/i260074a018.
  • Barbier, J.; Delanoë, F.; Jabouille, F.; Duprez, D.; Blanchard, G.; Isnard, P. Total Oxidation of Acetic Acid in Aqueous Solutions Over Noble Metal Catalysts. J. Catal. 1998, 177(2), 378–385. DOI: 10.1006/jcat.1998.2113.
  • Solubility of Air in Water. https://www.engineeringtoolbox.com/air-solubility-water-d_639.html (accessed Sep 20, 2023).
  • Massa, P.; Ivorra, F.; Haure, P.; Cabello, F. M.; Fenoglio, R. Catalytic Wet Air Oxidation of Phenol Aqueous Solutions by 1% Ru/ceo2–Al2O3 Catalysts Prepared by Different Methods. Catal. Commun. 2007, 8(3), 424–428. DOI: 10.1016/j.catcom.2006.07.014.
  • Vallejo, C. A.; Galeano, L. A.; Trujillano, R.; Vicente, M. Á.; Gil, A. Preparation of Al/fe-PILC Clay Catalysts from Concentrated Precursors: Enhanced Hydrolysis of Pillaring Metals and Intercalation. Rsc. Adv. 2020, 10(66), 40450–40460. DOI: 10.1039/D0RA08948F.
  • Bedrane, S.; Descorme, C.; Duprez, D. Investigation of the Oxygen Storage Process on Ceria- and Ceria–Zirconia-supported Catalysts. Catal. Today. 2002, 75(1–4), 401–405. DOI: 10.1016/S0920-5861(02)00089-5.
  • Oliviero, L.; Barbier Jr, J.; Labruquère, S.; Duprez, D. Role of the Metal–Support Interface in the Total Oxidation of Carboxylic Acids Over Ru/CeO2 Catalysts. Catal. Lett. 1999, 60(1/2), 15–19. DOI: 10.1023/A:1019026100843.
  • Keav, S.; Barbier, J.; Duprez, D. Deactivation and Regeneration of Wet Air Oxidation Catalysts. Catal. Sci. Technol. 2011, 1(3), 342–353. DOI: 10.1039/c0cy00085j.
  • Keav, S.; Martin, A.; Barbier, J.; Duprez, D. Deactivation and Reactivation of Noble Metal Catalysts Tested in the Catalytic Wet Air Oxidation of Phenol. Catal. Today. 2010, 151(1–2), 143–147. DOI: 10.1016/j.cattod.2010.01.025.
  • Bao, Y.; Lee, W. J.; Wang, P.; Xing, J.; Liang, Y. N.; Lim, T.-T.; Hu, X. A Novel Molybdenum-Based Nanocrystal Decorated Ceramic Membrane for Organics Degradation via Catalytic Wet Air Oxidation (CWAO) at Ambient Conditions. Catal. Today. 2021, 364, 276–284. DOI: 10.1016/j.cattod.2020.02.008.
  • Wei, H.; Yan, X.; Li, X.; He, S.; Sun, C. The Degradation of Isophorone by Catalytic Wet Air Oxidation on Ru/TiZro4. J. Hazard. Mater. 2013, 244–245, 478–488. DOI: 10.1016/j.jhazmat.2012.10.069.
  • Pintar, A.; Besson, M.; Gallezot, P. Catalytic Wet Air Oxidation of Kraft Bleach Plant Effluents in a Trickle-Bed Reactor Over a Ru/TiO2 Catalyst. Appl. Catal. B Environ. 2001, 31(4), 275–290. DOI: 10.1016/S0926-3373(00)00288-5.
  • Yoon, S.-H. Effect of Acidity Consumption/Production on the pH of Aeration Tank During the Biodegradation of Acetic Acid/Epichlorohydrin. Water Res. 2002, 36(11), 2695–2702. DOI: 10.1016/S0043-1354(01)00501-2.
  • Chidambara Raj, C. B.; Ramkumar, N.; Haja Jahabar Siraj, A.; Chidambaram, S. Biodegradation of Acetic, Benzoic, Isophthalic, Toluic and Terephthalic Acids Using a Mixed Culture: Effluents of PTA Production. Process Saf. Environ. Prot. 1997, 75(4), 245–256. DOI: 10.1205/095758297529129.
  • Hua, L.; Ma, H.; Zhang, L. Degradation Process Analysis of the Azo Dyes by Catalytic Wet Air Oxidation with Catalyst CuO/γ-Al2O3. Chemosphere. 2013, 90(2), 143–149. DOI: 10.1016/j.chemosphere.2012.06.018.
  • Neto, S.; Camkin, J.; Fenemor, A.; Tan, P.-L.; Baptista, J. M.; Ribeiro, M.; Schulze, R.; Stuart-Hill, S.; Spray, C.; Elfithri, R. OECD Principles on Water Governance in Practice: An Assessment of Existing Frameworks in Europe, Asia-Pacific, Africa and South America. Water Int. 2018, 43(1), 60–89. DOI: 10.1080/02508060.2018.1402650.
  • Akhmouch, A.; Correia, F. N. The 12 OECD Principles on Water Governance – When Science Meets Policy. Utilities Policy. 2016, 43, 14–20. DOI: 10.1016/j.jup.2016.06.004.
  • Wang, P.; Zeng, G.; Peng, Y.; Liu, F.; Zhang, C.; Huang, B.; Zhong, Y.; He, Y.; Lai, M. 2,4,6-Trichlorophenol-Promoted Catalytic Wet Oxidation of Humic Substances and Stabilized Landfill Leachate. Chem. Eng. J. 2014, 247, 216–222. DOI: 10.1016/j.cej.2014.03.014.
  • Menon, P. G. Diagnosis of Industrial Catalyst Deactivation by Surface Characterization Techniques. Chem. Rev. 1994, 94(4), 1021–1046. DOI: 10.1021/cr00028a007.
  • Luck, F. Wet Air Oxidation: Past, Present and Future. Catal. Today. 1999, 53(1), 81–91. DOI: 10.1016/S0920-5861(99)00112-1.
  • Kolaczkowski, S. T.; Plucinski, P.; Beltran, F. J.; Rivas, F. J.; McLurgh, D. B. Wet Air Oxidation: A Review of Process Technologies and Aspects in Reactor Design. Chem. Eng. J. 1999, 73(2), 143–160. DOI: 10.1016/S1385-8947(99)00022-4.
  • Junior, R. B. S.; Ferretti, A. M.; Carrera, A.; Beretta, A.; Groppi, G. The Effect of Catalyst Formulation and Rh Dispersion on the Performance of a CPO Fuel Processor Investigated by Operando Sampling Technique and Predictive Modelling Analysis. Int. J. Hydrogen Energy. 2022, 47(11), 7150–7167. DOI: 10.1016/j.ijhydene.2021.12.056.
  • Bhargava, S. K.; Tardio, J.; Prasad, J.; Föger, K.; Akolekar, D. B.; Grocott, S. C. Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res. 2006, 45(4), 1221–1258. DOI: 10.1021/ie051059n.
  • Matatov-Meytal, Y. I.; Sheintuch, M. Catalytic Abatement of Water Pollutants. Ind. Eng. Chem. Res. 1998, 37(2), 309–326. DOI: 10.1021/ie9702439.
  • Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A Review of Pressure-Driven Membrane Processes in Wastewater Treatment and Drinking Water Production. Environ. Prog. 2003, 22(1), 46–56. DOI: 10.1002/ep.670220116.
  • Bourassi, A.; Martín, E.; Bourre, M.; Fíla, V.; Gaálová, J. Separation of diethyl phthalate from water by evaporation. WSEAS Trans. Environ. Dev. 2021, 17, 81–88. DOI:10.37394/232015.2021.17.9.
  • Kumar, R.; Qureshi, M.; Vishwakarma, D. K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A Review on Emerging Water Contaminants and the Application of Sustainable Removal Technologies. Case Studies Chem. Environ. Eng. 2022, 6, 100219. DOI: 10.1016/j.cscee.2022.100219.
  • Shao, S.; Hu, Y.; Cheng, J.; Chen, Y. Biodegradation Mechanism of Tetracycline (TEC) by Strain Klebsiella sp. SQY5 As Revealed Through Products Analysis and Genomics. Ecotoxicol. Environ. Saf. 2019, 185, 109676. DOI: 10.1016/j.ecoenv.2019.109676.
  • Cetecioglu, Z.; Ince, B.; Gros, M.; Rodriguez-Mozaz, S.; Barceló, D.; Orhon, D.; Ince, O. Chronic Impact of Tetracycline on the Biodegradation of an Organic Substrate Mixture Under Anaerobic Conditions. Water Res. 2013, 47(9), 2959–2969. DOI: 10.1016/j.watres.2013.02.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.