Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 38, 2016 - Issue 12
262
Views
8
CrossRef citations to date
0
Altmetric
Original Research Paper

In vitro antiaggregation and deaggregation potential of Rhizophora mucronata and its bioactive compound (+)- catechin against Alzheimer’s beta amyloid peptide (25–35)

, &

References

  • Kumar S, Okello EJ, Harris JR. Experimerntal inhibition of fibrillogenesis and neurotoxicity by amyloid-beta (Aβ) and other disease related peptides/proteins by plant extracts and herbal compounds. Subcell Biochem. 2012;65:295–326.10.1007/978-94-007-5416-4
  • Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, et al. Clearance mechanisms of Alzheimer’s amyloid-β peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry. 2009;14:469–86.10.1038/mp.2008.96
  • Gilbert BJ. The role of amyloid β; in the pathogenesis of Alzheimer’s disease – a review. J Clin Pathol. 2013;66:362–66.10.1136/jclinpath-2013-201515
  • Gauci AJ, Caruana M, Giese A, Scerri C, Vassallo N. Identification of polyphenolic compounds and black tea extract as potent inhibitors of lipid membrane destabilization by Abeta42 aggregates. J Alzheimers Dis. 2011;27:767–79.
  • Millucci L, Ghezzi L, Bernardini G, Santucci A. Conformations and biological activities of amyloid beta peptide 25–35. Curr Protein Pept Sci. 2010;11:54–67.10.2174/138920310790274626
  • Larini L, Joan-Emma S. Role of b-hairpin formation in aggregation: The self-assembly of the amyloid-b (25–35) peptide. Biophys J. 2012;103:576–86.10.1016/j.bpj.2012.06.027
  • Giordano M. Beta-amyloid protein (25–35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus. 2010;20:78–96.
  • Syad AN, Devi KP. Assessment of anti-amyloidogenic activity of marine red alga G. acerosa against Alzheimer’s beta-amyloid peptide 25–35. Neurol Res. 2015;37:14–22.10.1179/1743132814Y.0000000422
  • Shanmuganathan B, Sheeja Malar D, Sathya S, Pandima Devi Kasi. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer’s Beta-Amyloid Peptide 25–35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds. PLOS One. 2015;10:e0141708.10.1371/journal.pone.0141708
  • Duke JA, Wain KK. Medicinal plants of the world. Computer index with more than 85,000 entries. In: Duke JA, editor. Handbook of medicinal herbs. Boca Raton, FL: CRC press; 1981. p. 96.
  • Bandaranayake WM. Bioactivities, Bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecol Manag. 2002;10:421–52.10.1023/A:1021397624349
  • Liebezeit G, Rau MT. New Guinean mangroves – traditional usage and chemistry of natural products. Senckenbergiana maritime. 2006;36:1–10.10.1007/BF03043698
  • Premanathan M, Arakaki R, Izumi H, Kathiresan K, Nakarno M, Yamamoto N, Nakashima H. Antiviral properties of a mangrove plant, Rhizophora apiculata blume, against human immunodeficiency virus. Antiviral Res. 1999;44:113–22.10.1016/S0166-3542(99)00058-3
  • Suganthy N, Pandian SK, Devi KP. Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suevada monica: Mangroves inhabiting Indian coastal area (Vellar Estuary). J Enz Inhib Med Chem. 2008;24:702–07.
  • Suganthy N, Devi KP. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm Biol. 2016;54:118–29.10.3109/13880209.2015.1017886
  • Suganthy N, Devi KP. Protective effect of catechin rich extract of Rhizophora mucronata against β-amyloid-induced toxicity in PC12 cells. J Appl Biomed. 2016;14:137–46.10.1016/j.jab.2015.10.003
  • Suganthy N, Sheeja Malar D, Devi KP. Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer’s disease animal model. Metabol Brain Dis. 2016;31:937–949.10.1007/s11011-016-9831-0
  • Ramesh BN, Indi SS, Rao KSJ. Anti-amyloidogenic property of leaf aqueous extract of Caesalpinia crista. Neurosci Lett. 2010;475:110–4.10.1016/j.neulet.2010.03.062
  • Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RV, et al. Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol. 2005;151:229–38.10.1016/j.jsb.2005.06.006
  • Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del MonteMillan M, Valenzuela R, et al. Design, synthesis, and biological evaluation of dual binding site acetyl cholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem. 2005;48:7223–33.10.1021/jm0503289
  • Klunk WE, Jacob RF, Mason RP. Quantifying amyloid beta-peptide (Aβ) aggregation using congo red – Aβ spectrophotometric assay.Anal Biochem. 1999;266:66–76.10.1006/abio.1998.2933
  • Zandomeneghi G, Krebs MRH, Mccammon MG, Fandrich M. FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci. 2004;13:3314–21.
  • Bolder SG, Sagis LM, Venema P, van der Linden E. Thioflavin T and birefringence assays to determine the conversion of proteins into fibrils. Langmuir. 2007;23:4144–7.10.1021/la063048k
  • Harper JD, Wong SS, Lieber CM, Lansbury PT. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol. 1997;4:119–25.10.1016/S1074-5521(97)90255-6
  • Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, et al. Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 2010;29:3408–20.10.1038/emboj.2010.211
  • Li H, Rahimi F, Sinha S, Maiti P, Bitan G, Murakami K. Amyloids and protein aggregation-analytical methods. In: Meyers RA, editor. Encyclopedia of analytical chemistry. New York: Wiley; 2009. p. 1–32.
  • Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein Secondary structures. Acta Biochim Biophys Sin. 2007;39:549–59.
  • Goormaghtigh E. FTIR data processing and analysis tools. In: Barth A, Haris P, editors. Advances in biomedical spectroscopy. Amsterdam: IOS Press; 2009. p. 104–28.
  • Naldi M, Fiori J, Pistolozzi M, Drake AF, Bertucci C, Wu R, et al. Amyloid β-peptide 25–35 Self-assembly and its inhibition: a model undecapeptide system to gain atomistic and secondary structure details of the Alzheimer’s disease process and treatment. ACS Chem Neurosci. 2012;3:952–62.10.1021/cn3000982
  • Terzi E, Holzemann G, Seelig J. Reversible random coil β sheet transition of the Alzheimer β-Amyloid fragment. Biochemistry. 1994;33:1345–50.10.1021/bi00172a009
  • Yang SG, Wang WY, Ling TJ, Feng Y, Du XT, Zhang X, et al. α-Tocopherol quinone inhibits β-amyloid aggregation and cytotoxicity, disaggregates preformed fibrils and decreases the production of reactive oxygen species, NO and inflammatory cytokines. Neurochem Int. 2010;57:914–22.10.1016/j.neuint.2010.09.011
  • Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem. 2003;87:172–81.10.1046/j.1471-4159.2003.01976.x
  • Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Biochemistry. 2011;50:10624–36.10.1021/bi2012383

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.