Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 39, 2017 - Issue 7
462
Views
30
CrossRef citations to date
0
Altmetric
Original Research Paper

Mitochondrial involvement in memory impairment induced by scopolamine in rats

, , ORCID Icon, , , ORCID Icon, , & show all
Pages 649-659 | Received 19 Sep 2016, Accepted 23 Mar 2017, Published online: 11 Apr 2017

References

  • Suh YH, Checler F. Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol Rev. 2002;54(3):469–525.10.1124/pr.54.3.469
  • Cabezas-Opazo FA, Vergara-Pulgar K, Perez MJ, et al. Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev. 2015;2015:509–654.
  • Doraiswamy PM. Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs. 2002;16(12):811–824.10.2165/00023210-200216120-00003
  • Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6(4):487–498.10.1016/0896-6273(91)90052-2
  • Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discovery. 2010;9(5):387–398.10.1038/nrd2896
  • Shineman DW, Basi GS, Bizon JL, et al. Accelerating drug discovery for Alzheimer’s disease: best practices for preclinical animal studies. Alzheimer’s Res Ther. 2011;3(5):1–13.10.1186/alzrt90
  • Wallace TL, Ballard TM, Glavis-Bloom C. Animal paradigms to assess cognition with translation to humans. Handb Exp Pharmacol. 2015;228:27–57.
  • Lee B, Sur B, Shim I, et al. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pharmacol. 2012;16(2):79–89.10.4196/kjpp.2012.16.2.79
  • Jeong EJ, Lee KY, Kim SH, et al. Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice. Eur J Pharmacol. 2008;588(1):78–84.10.1016/j.ejphar.2008.04.015
  • Jahanshahi M, Nickmahzar EG, Babakordi F. The effect of Ginkgo biloba extract on scopolamine-induced apoptosis in the hippocampus of rats. Anat Sci Int. 2013;88(4):217–222.10.1007/s12565-013-0188-8
  • Demirci K, Naziroglu M, Ovey IS, et al. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia. Metab Brain Dis. 2017;32:321–329.
  • Balaban H, Naziroglu M, Demirci K, et al. The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol. 2016. doi: 10.1007/s12035-016-9835-0.
  • Ishola IO, Tota S, Adeyemi OO, et al. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: a behavioral and biochemical study. Pharm Biol. 2013;51(7):825–835.10.3109/13880209.2013.767360
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795.10.1038/nature05292
  • Gorlach A, Bertram K, Hudecova S, et al. Calcium and ROS: a mutual interplay. Redox Biol. 2015;6:260–271.10.1016/j.redox.2015.08.010
  • Bhosale G, Sharpe JA, Sundier SY, et al. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann NY Acad Sci. 2015;1350:107–116.10.1111/nyas.2015.1350.issue-1
  • Jang YJ, Kim J, Shim J, et al. Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behav Brain Res. 2013;245:113–119. Epub 2013/02/19.10.1016/j.bbr.2013.02.003
  • de Bruin NM, Prickaerts J, van Loevezijn A, et al. Two novel 5-HT6 receptor antagonists ameliorate scopolamine-induced memory deficits in the object recognition and object location tasks in Wistar rats. Neurobiol Learn Memory. 2011;96(2):392–402. Epub 2011/07/16.10.1016/j.nlm.2011.06.015
  • Han RW, Zhang RS, Xu HJ, et al. Neuropeptide S enhances memory and mitigates memory impairment induced by MK801, scopolamine or Aβ1–42 in mice novel object and object location recognition tasks. Neuropharmacology. 2013;70:261–267. Epub 2013/03/05.10.1016/j.neuropharm.2013.02.002
  • Willi R, Winter C, Wieske F, et al. Loss of EphA4 impairs short-term spatial recognition memory performance and locomotor habituation. Genes Brain Behav. 2012;11(8):1020–1031.
  • Akwa Y, Ladurelle N, Covey DF, et al. The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proc Natl Acad Sci USA. 2001;98(24):14033–14037.10.1073/pnas.241503698
  • Hidaka N, Suemaru K, Takechi K, et al. Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama. 2011;65(4):269–277.
  • Tucci P, Mhillaj E, Morgese MG, et al. Memantine prevents memory consolidation failure induced by soluble beta amyloid in rats. Front Behav Neurosci. 2014;8:1–11.
  • Milic M, Timic T, Joksimovic S, et al. PWZ-029, an inverse agonist selective for α5 GABAA receptors, improves object recognition, but not water-maze memory in normal and scopolamine-treated rats. Behav Brain Res. 2013;241:206–213.10.1016/j.bbr.2012.12.016
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Ellman GL, Courtney KD, Andres Jr V. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.10.1016/0006-2952(61)90145-9
  • Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186(1):189–195.10.1016/0003-9861(78)90479-4
  • Kumar A, Dogra S, Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: possible behavioral and biochemical alterations in rats. Behav Brain Res. 2009;205(2):384–390.10.1016/j.bbr.2009.07.012
  • Wills ED. Lipid peroxide formation in microsomes. General considerations. Biochem J. 1969;113(2):315–324.
  • Ellman G. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:48670–48677.
  • Mirandola SR, Melo DR, Saito A, et al. 3-Nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions. J Neurosci Res. 2010;88(3):630–639.
  • Nunez-Figueredo Y, Ramirez-Sanchez J, Hansel G, et al. A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo. Neuropharmacology. 2014;85:517–527.10.1016/j.neuropharm.2014.06.009
  • Nuñez-Figueredo Y, Pardo-Andreu GL, Ramírez-Sánchez J, et al. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca2+-induced mitochondrial impairment. Brain Res Bull. 2014;109:68–76.10.1016/j.brainresbull.2014.10.001
  • Zanotti A, Azzone GF. Safranine as membrane potential probe in rat liver mitochondria. Arch Biochem Biophys. 1980;201(1):255–265.10.1016/0003-9861(80)90510-X
  • Votyakova TV, Reynolds IJ. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001;79(2):266–277.
  • Zhou M, Diwu Z, Panchuk-Voloshina N, et al. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem. 1997;253:162–168.10.1006/abio.1997.2391
  • Rajdev S, Reynolds IJ. Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neuroscience Letters. 1993;162(1–2):149–152.10.1016/0304-3940(93)90582-6
  • Rajdev S, Reynolds IJ. Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neurosci Lett. 1993;162(1–2):149–152.10.1016/0304-3940(93)90582-6
  • Paredes RM, Etzler JC, Watts LT, et al. Chemical calcium indicators. Methods. 2008;46(3):143–151.10.1016/j.ymeth.2008.09.025
  • Eberhard M, Erne P. Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem Biophys Res Commun. 1991;180:209–215.10.1016/S0006-291X(05)81278-1
  • Gold PE. Acetylcholine: cognitive and brain functions. Neurobiol Learn Memory. 2003;80(3):177.10.1016/j.nlm.2003.07.002
  • Cuartero M, Ortuno JA, Garcia MS, et al. Assay of acetylcholinesterase activity by potentiometric monitoring of acetylcholine. Anal Biochem. 2012;421(1):208–212.
  • Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, et al. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology. 2015;232(5):931–942.10.1007/s00213-014-3728-6
  • Foyet HS, Abaissou HH, Wado E, et al. Emilia coccinae (SIMS) G Extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in scopolamine-treated rats. BMC Complementary Altern Med. 2015;15:1–12.10.1186/s12906-015-0864-4
  • Ciobica A, Hritcu L, Artenie V, et al. The effects of some cholinergic drugs on cognitive processes and oxidative stress in rat. Rev Med Chir Soc Med Nat Iasi. 2009;113(3):832–837.
  • Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med. 2013;63:1–29.10.1016/j.freeradbiomed.2013.03.018
  • Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int. 2015;88:66–72.10.1016/j.neuint.2014.12.012
  • Simoncini C, Orsucci D, Caldarazzo Ienco E, et al. Alzheimer’s pathogenesis and its link to the mitochondrion. Oxid Med Cell Longev. 2015;2015:1–8.
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, et al. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–115.10.2174/1570159X13666150716165726
  • Carvalho AN, Firuzi O, Gama MJ, et al. Oxidative stress and antioxidants in neurological diseases: is there still hope? Curr Drug Targets. 2016;18:705–718.
  • Chen C, Li XH, Zhang S, et al. 7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Res. 2014;17(3):249–254.10.1089/rej.2013.1519
  • Pachauri SD, Tota S, Khandelwal K, et al. Protective effect of fruits of Morinda citrifolia L. on scopolamine induced memory impairment in mice: a behavioral, biochemical and cerebral blood flow study. J Ethnopharmacol. 2012;139(1):34–41.10.1016/j.jep.2011.09.057
  • Chaudhaery SS, Roy KK, Shakya N, et al. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J Med Chem. 2010;53(17):6490–6505.
  • Gutierres JM, Carvalho FB, Schetinger MR, et al. Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int J Dev Neurosci. 2014;33:88–97.10.1016/j.ijdevneu.2013.12.006
  • Kwon SH, Lee HK, Kim JA, et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol. 2010;649(1–3):210–217.10.1016/j.ejphar.2010.09.001
  • Snyder PJ, Bednar MM, Cromer JR, et al. Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimer’s Dementia. 2005;1(2):126–135.10.1016/j.jalz.2005.09.004
  • Wang X, Wang W, Li L, et al. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842(8):1240–1247.10.1016/j.bbadis.2013.10.015
  • Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34(8):1307–1350.10.1016/j.neubiorev.2010.04.001
  • Marcello E, Epis R, Saraceno C, et al. Synaptic dysfunction in Alzheimer’s disease. Adv Exp Med Biol. 2012;970:573–601.10.1007/978-3-7091-0932-8
  • Sullivan PG, Rabchevsky AG, Waldmeier PC, et al. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res. 2005;79:231–239.10.1002/(ISSN)1097-4547
  • Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241:139–176.10.1016/0304-4157(95)00003-A
  • Venkatesan R, Subedi L, Yeo EJ, et al. Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway. Neurochem Int. 2016;99:133–146 . Epub 2016/06/28.10.1016/j.neuint.2016.06.010
  • Fišar Z, Hroudová J, Hansíková H, et al. Mitochondrial respiration in the platelets of patients with Alzheimer’s disease. Curr Alzheimer Res. 2016;13(8):930–941.
  • Rönnbäck A, Pavlov PF, Mansory M, et al. Mitochondrial dysfunction in a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation. J Neurochem. 2016;136(3):497–502.10.1111/jnc.2016.136.issue-3
  • Bobba A, Amadoro G, Valenti D, et al. Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion. 2013;13(4):298–311.10.1016/j.mito.2013.03.008
  • Sun L, Zang WJ, Wang H, et al. Acetylcholine promotes ROS detoxification against hypoxia/reoxygenation-induced oxidative stress through FoxO3a/PGC-1α dependent superoxide dismutase. Cell Physiol Biochem. 2014;34(5):1614–1625.10.1159/000366364
  • De Sarno P, Shestopal SA, King TD, et al. Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem. 2003;278(13):11086–11093.10.1074/jbc.M212157200
  • Leloup C, Michaelson DM, Fisher A, et al. M1 muscarinic receptors block caspase activation by phosphoinositide 3-kinase- and MAPK/ERK-independent pathways. Cell Death Differ. 2000;7(9):825–833.10.1038/sj.cdd.4400713
  • Urrunaga NH, Jadeja RN, Rachakonda V, et al. M1 muscarinic receptors modify oxidative stress response to acetaminophen-induced acute liver injury. Free Radicals Biol Med. 2015;78:66–81.10.1016/j.freeradbiomed.2014.09.032
  • Nazıroğlu M. Molecular role of catalase on oxidative stress-induced Ca2+ signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res. 2012;32(3):134–141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.