Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 40, 2018 - Issue 1
1,084
Views
28
CrossRef citations to date
0
Altmetric
Original Research Paper

Exercise improves recognition memory and synaptic plasticity in the prefrontal cortex for rats modelling vascular dementia

, , , , , , , & show all
Pages 68-77 | Received 24 Jul 2017, Accepted 23 Oct 2017, Published online: 10 Nov 2017

References

  • O’Brien JT, Thomas A. Vascular dementia. Lancet. 2015;386:1698–1706.10.1016/S0140-6736(15)00463-8
  • Versijpt J. Effectiveness and cost-effectiveness of the pharmacological treatment of Alzheimer’s disease and vascular dementia. J Alzheimers Dis. 2014;42:S19–25.
  • Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: A review. Alzheimers Res Ther. 2013;5(4):35. eCollection. doi:10.1186/alzrt189.
  • Lin Y, Dong J, Yan T, et al. Involuntary, forced and voluntary exercises are equally capable of inducing hippocampal plasticity and the recovery of cognitive function after stroke. Neurol Res. 2015;37:893–901.10.1179/1743132815Y.0000000074
  • Lin Y, Lu X, Dong J, et al. Involuntary, forced and voluntary exercises equally attenuate neurocognitive deficits in vascular dementia by the BDNF-pCREB mediated pathway. Neurochem Res. 2015;40:1839–1848.10.1007/s11064-015-1673-3
  • Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus. 2007;17:1017–1022.10.1002/(ISSN)1098-1063
  • Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol. 2013;305:H620–H633.10.1152/ajpheart.00624.2012
  • Popović DB. Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol. 2014;24:795–802.10.1016/j.jelekin.2014.09.008
  • Yan T, Hui-Chan CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: A randomized placebo-controlled trial. Stroke. 2005;36:80–85.10.1161/01.STR.0000149623.24906.63
  • Tan Z, Liu H, Yan T, et al. The effectiveness of functional electrical stimulation based on a normal gait pattern on subjects with early stroke: A randomized controlled trial. BioMed Res Int. 2014;7:1–9.
  • You G, Liang H, Yan T. Functional electrical stimulation early after stroke improves lower limb motor function and ability in activities of daily living. NeuroRehab. 2014;35:381–389.
  • Ke Z, Yip YP, Li L, et al. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: A rat brain ischemia model. PLoS One. 2011;6(2): e16643. doi: 10.1371/journal.pone.0016643.
  • Xiang Y, Liu H, Yan T, et al. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction. Neural Regen Res. 2014;9:243–251.
  • Liu H, Xiang Y, Yan T, et al. Functional electrical stimulation increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of rats with stroke. Chin Med J (Engl). 2013;126:2361–2367.
  • Yang Y, Kimura-Ohba S, Thompson J, et al. Rodent models of vascular cognitive impairment. Transl Stroke Res. 2016;7:407–414.10.1007/s12975-016-0486-2
  • Murphy MP, Corriveau RA, Wilcock DM. Vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta. 2016;1862:857–859.10.1016/j.bbadis.2016.02.010
  • Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 2007;54:162–180.10.1016/j.brainresrev.2007.01.003
  • Sinclair L, Tayler H, Love S. Synaptic protein levels altered in vascular dementia. Neuropathol Appl Neurobiol. 2015;41:533–543.10.1111/nan.12215
  • Song SH, Augustine GJ. Synapsin isoforms and synaptic vesicle trafficking. Mol Cells. 2015;38:936–940.
  • Wang H, Peng RY. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity. Mil Med Res. doi: 10.1186/s40779-016-0095-0.
  • Yan WH, Cao MD, Liu JR. Effects of EGF and bFGF on expression of microtubule-associated protein tau and MAP-2 mRNA in human umbilical cord mononuclear cells. Cell Biol Int. 2005;29:153–157.10.1016/j.cellbi.2004.10.001
  • Cottrell JR, Dubé GR, Egles C, et al. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol. 2000;84:1573–1587.
  • Isaac JT, Nicoll RA, Malenka RC. Evidence for silent synapses: Implications for the expression of LTP. Neuron. 1995;15:427–434.10.1016/0896-6273(95)90046-2
  • Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci. 2004;5:952–962.10.1038/nrn1556
  • Wang WS, Kang S, Liu WT, et al. Extinction of aversive memories associated with morphine withdrawal requires ERK-mediated epigenetic regulation of brain-derived neurotrophic factor transcription in the rat ventromedial prefrontal cortex. J Neurosci. 2012;32:13763–13775.10.1523/JNEUROSCI.1991-12.2012
  • Hannesson DK, Howland JG, Phillips AG. Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. J Neurosci. 2004;24:4596–4604.10.1523/JNEUROSCI.5517-03.2004
  • Meunier M, Bachevalier J, Mishkin M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia. 1997;35:999–1015.10.1016/S0028-3932(97)00027-4
  • Zhou LY, Wright TE, Clarkson AN. Prefrontal cortex stroke induces delayed impairment in spatial memory. Behav Brain Res. 2016;296:373–378.10.1016/j.bbr.2015.08.022
  • Garnier C, Falempin M, Canu MH. A 3D analysis of foreand hindlimb motion during locomotion: Comparison of overground and ladder walking in rats. Behav Brain Res. 2008;186:57–65.10.1016/j.bbr.2007.07.023
  • Barker GR, Bird F, Alexander V, et al. Recognition memory for objects, place, and temporal order: A disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007;27:2948–2957.10.1523/JNEUROSCI.5289-06.2007
  • Ennaceur A, Neave N, Aggleton JP. Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res. 1997;113:509–519.10.1007/PL00005603
  • Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc. 2006;1:1306–1311.10.1038/nprot.2006.205
  • Bertaina-Anglade V, Enjuanes E, Morillon D, et al. The object recognition task in rats and mice: A simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods. 2006;54:99–105.10.1016/j.vascn.2006.04.001
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 7th ed. Amsterdam: Elsevier; 2014.
  • Zhou LY, Wright TE, Clarkson AN. Prefrontal cortex stroke induces delayed impairment in spatial memory. Behav Brain Res. 2016;296:373–378.10.1016/j.bbr.2015.08.022
  • Bachevalier J, Nemanic S. Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus. 2008;18:64–80.10.1002/(ISSN)1098-1063
  • Leasure JL, Jones M. Forced and voluntary exercise differentially affect brain and behavior. Neuroscience. 2008;156:456–465.10.1016/j.neuroscience.2008.07.041
  • Greenwood BN, Loughridge AB, Sadaoui N, et al. The protective effects of voluntary exercise against the behavioral consequences of uncontrollable stress persist despite an increase in anxiety following forced cessation of exercise. Behav Brain Res. 2012;233:314–321.10.1016/j.bbr.2012.05.017
  • Yuede CM, Zimmerman SD, Dong H, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis. 2009;35:426–432.10.1016/j.nbd.2009.06.002
  • Arida RM, Scorza CA, da Silva AV, et al. Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett. 2004;364:135–138.10.1016/j.neulet.2004.03.086
  • Tiozzo E, Youbi M, Dave K, et al. Aerobic, resistance and cognitive exercise training poststroke. Stroke. 2015;46:2012–2016.10.1161/STROKEAHA.114.006649
  • Hara Y. Brain plasticity and rehabilitation in stroke patients. J Nippon Med Sch. 2015;82:4–13.10.1272/jnms.82.4
  • Caleo M. Rehabilitation and plasticity following stroke: Insights from rodent models. Neuroscience. 2015;311:180–194.10.1016/j.neuroscience.2015.10.029
  • Lohmann C, Kessels HW. The developmental stages of synaptic plasticity. J Physiol. 2014;592:13–31.10.1113/jphysiol.2012.235119
  • Brown CE, Wong C, Murphy TH. Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke. Stroke. 2008;39:1286–1291.10.1161/STROKEAHA.107.498238
  • Berchicci M, Lucci G, Di Russo F. Benefits of physical exercise on the aging brain: The role of the prefrontal cortex. J Gerontol A Biol Sci Med Sci. 2013;68:1337–1341.10.1093/gerona/glt094
  • Basso JC, Shang A, Elman M, et al. Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults. J Int Neuropsychol Soc. 2015;21:791–801.10.1017/S135561771500106X
  • Rosenberg T, Gal-Ben-Ari S, Dieterich DC, et al. The roles of protein expression in synaptic plasticity and memory consolidation. Front Mol Neurosci. 2014;7:86. doi: 10.3389/fnmol.2014.00086.
  • Melloni RH Jr, Hemmendinger LM, Hamos JE, et al. Synapsin I gene expression in the adult rat brain with comparative analysis of mRNA and protein in the hippocampus. J Comp Neurol. 1993;327:507–520.10.1002/(ISSN)1096-9861
  • Pagnussat AS, Simao F, Anastacio JR, et al. Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats. Brain Res. 2012;1486:53–61.10.1016/j.brainres.2012.09.019
  • Greengard P, Valtorta F, Czernik AJ, et al. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993;259:780–785.10.1126/science.8430330
  • Ferreira AF, Real CC, Rodrigues AC, et al. Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain Res. 2010;1361:31–42.10.1016/j.brainres.2010.09.045
  • Cassilhas RC, Lee KS, Fernandes J, et al. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 2012;202:309–317.10.1016/j.neuroscience.2011.11.029
  • Ferreira AF, Real CC, Rodrigues AC, et al. Short-term, moderate exercise is capable of inducing structural, bdnf-independent hippocampal plasticity. Brain Res. 2011;1425:111–122.10.1016/j.brainres.2011.10.004
  • Hescham S, Grace L, Kellaway LA, et al. Effect of exercise on synaptophysin and calcium/calmodulin-dependent protein kinase levels in prefrontal cortex and hippocampus of a rat model of developmental stress. Metab Brain Dis. 2009;24:701–709.10.1007/s11011-009-9165-2
  • Gori M, Luddi A, Belmonte G, et al. Expression of microtubule associated protein 2 and synaptophysin in endometrium: high levels in deep infiltrating endometriosis lesions. Fertil Steril. 2016;105:435–443.10.1016/j.fertnstert.2015.10.024
  • Arendt T, Bullmann T. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a ‘master switch’ regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol. 2013;305:R478–R489.10.1152/ajpregu.00117.2013
  • Brigman JL, Wright T, Talani G, et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci. 2010;30:4590–4600.10.1523/JNEUROSCI.0640-10.2010
  • Wang H, Peng RY. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity. Mil Med Res. 2016;3(1):26. doi: 10.1186/s40779-016-0095-0.
  • Lee HK, Kirkwood A. AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex. Semin Cell Dev Biol. 2011;22:514–520.10.1016/j.semcdb.2011.06.007
  • Shonesy BC, Jalan-Sakrikar N, Cavener VS, et al. CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci. 2014;122:61–87.10.1016/B978-0-12-420170-5.00003-9
  • Yabuki Y, Nakagawasai O, Moriguchi S, et al. Decreased CaMKII and PKC activities in specific brain regions are associated with cognitive impairment in neonatal ventral hippocampus-lesioned rats. Neuroscience. 2013;234:103–115.10.1016/j.neuroscience.2012.12.048
  • Xu B, Yan T, Yang Y, et al. Effect of normal-walking-pattern-based functional electrical stimulation on gait of the lower extremity in subjects with ischemic stroke: A self controlled study. NeuroRehab. 2016;38:163–169.10.3233/NRE-161306

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.