Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 42, 2020 - Issue 10
333
Views
8
CrossRef citations to date
0
Altmetric
Original Research Paper

SLC2A3 rs12842 polymorphism and risk for Alzheimer’s disease

, , , , , , , , , , & show all
Pages 853-861 | Received 23 Feb 2020, Accepted 18 Jun 2020, Published online: 04 Jul 2020

References

  • Dardiotis E, Siokas V, Moza S, et al. Pesticide exposure and cognitive function: results from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD). Environ Res. 2019 Oct;177:108632. PubMed PMID: 31434017; eng.
  • Nousia A, Siokas V, Aretouli E, et al. Beneficial effect of multidomain cognitive training on the neuropsychological performance of patients with early-stage Alzheimer’s disease. Neural Plast. 2018;2018:2845176. PubMed PMID: 30123243; PubMed Central PMCID: PMCPmc6079404. eng.
  • Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochimica Et Biophysica Acta Mol Basis Dis. 2017 May;1863(5):1078–1089. PubMed PMID: 27567931; PubMed Central PMCID: PMCPmc5344773. eng.
  • Nousia A, Martzoukou M, Siokas V, et al. Beneficial effect of computer-based multidomain cognitive training in patients with mild cognitive impairment. Appl Neuropsychol Adult. 2019 Dec 29;1–10. PubMed PMID: 31885287; eng. DOI:10.1080/23279095.2019.1692842
  • Liu F, Shi J, Tanimukai H, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009 Jul;132(Pt 7):1820–1832. PubMed PMID: 19451179; PubMed Central PMCID: PMCPmc2702834. eng.
  • Hersi M, Irvine B, Gupta P, et al. Risk factors associated with the onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicology. 2017 Jul;61:143–187. PubMed PMID: 28363508; eng.
  • Naj AC, Schellenberg GD. Genomic variants, genes, and pathways of Alzheimer’s disease: an overview. Am J Med Genet B Neuropsychiatr Genet. 2017 Jan;174(1):5–26. PubMed PMID: 27943641; PubMed Central PMCID: PMCPmc6179157. eng.
  • Mendez MF. Early-onset Alzheimer disease and its variants. Continuum (Minneap Minn). 2019 Feb;25(1):34–51. PubMed PMID: 30707186; PubMed Central PMCID: PMCPmc6538053. eng.
  • Raghavan N, Tosto G, Cong L, et al. Genetics of Alzheimer’s disease: the importance of polygenic and epistatic components. Curr Neurol Neurosci Rep. 2012 Aug 21;33(2–3):78. PubMed PMID: 28825204; PubMed Central PMCID: PMCPmc5699909. eng.
  • Sumirtanurdin R, Thalib AY, Cantona K, et al. Effect of genetic polymorphisms on Alzheimer’s disease treatment outcomes: an update. Clin Interv Aging. 2019;14:631–642. PubMed PMID: 30992661; PubMed Central PMCID: PMCPmc6445219. eng.
  • Cruchaga C, Del-Aguila JL, Saef B, et al. Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimer’s Dementia. 2018 Feb;14(2):205–214. PubMed PMID: 28943286; PubMed Central PMCID: PMCPmc5803427. eng.
  • Bellenguez C, Charbonnier C, Grenier-Boley B, et al. Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging. 2017 Nov;59:220.e1-220.e9. PubMed PMID: 28789839; eng.
  • Carmona S, Hardy J, Guerreiro R. The genetic landscape of Alzheimer disease. Handb Clin Neurol. 2018;148:395–408. PubMed PMID: 29478590; eng.
  • Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014 Apr 15;88(4):640–651. PubMed PMID: 24398425; PubMed Central PMCID: PMCPmc3992261. eng.
  • Martins RN, Clarnette R, Fisher C, et al. ApoE genotypes in Australia: roles in early and late onset Alzheimer’s disease and Down’s syndrome. Neuroreport. 1995 Jul 31;6(11):1513–1516. PubMed PMID: 7579137; eng
  • Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013 Jan 10;368(2):117–127. PubMed PMID: 23150934; PubMed Central PMCID: PMCPmc3631573. eng.
  • Guerreiro RJ, Lohmann E, Kinsella E, et al. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer’s disease. Neurobiol Aging. 2012 May;33(5):1008.e17-23. PubMed PMID: 22153900; PubMed Central PMCID: PMCPmc3306507. eng.
  • Coppola G, Chinnathambi S, Lee JJ, et al. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet. 2012 Aug 1;21(15):3500–3512. PubMed PMID: 22556362; PubMed Central PMCID: PMCPmc3392107. eng.
  • Jin SC, Pastor P, Cooper B, et al. Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimer’s Res Ther. 2012 Aug 20;4(4):34. PubMed PMID: 22906081; PubMed Central PMCID: PMCPmc3506948. eng.
  • Vannucci SJ, Clark RR, Koehler-Stec E, et al. Glucose transporter expression in brain: relationship to cerebral glucose utilization. Dev Neurosci. 1998;20(4–5):369–379. PubMed PMID: 9778574; eng.
  • Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013 Apr-Jun;34(2–3):183–196. PubMed PMID: 23506865; eng.
  • Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013 Apr-Jun;34(2–3):121–138. PubMed PMID: 23506862; PubMed Central PMCID: PMCPmc4104978. eng.
  • Morea V, Bidollari E, Colotti G, et al. Glucose transportation in the brain and its impairment in Huntington disease: one more shade of the energetic metabolism failure? Amino Acids. 2017 Jul;49(7):1147–1157. PubMed PMID: 28396959; eng.
  • Deng D, Yan N. GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci. 2016 Mar;25(3):546–558. PubMed PMID: 26650681; PubMed Central PMCID: PMCPmc4815417. eng.
  • Jurcovicova J. Glucose transport in brain – effect of inflammation. Endocr Regul. 2014 Jan;48(1):35–48. PubMed PMID: 24524374; eng.
  • Benarroch EE. Brain glucose transporters: implications for neurologic disease. Neurology. 2014 Apr 15;82(15):1374–1379. PubMed PMID: 24647029; eng.
  • Gudala K, Bansal D, Schifano F, et al. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig. 2013 Nov 27;4(6):640–650. PubMed PMID: 24843720; PubMed Central PMCID: PMCPmc4020261. eng.
  • An Y, Varma VR, Varma S, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimer’s Dementia. 2018 Mar;14(3):318–329. PubMed PMID: 29055815; PubMed Central PMCID: PMCPmc5866736. eng.
  • Liu Y, Liu F, Iqbal K, et al. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 2008 Jan 23;582(2):359–364.
  • Simpson IA, Davies P. Reduced glucose transporter concentrations in brains of patients with Alzheimer’s disease. Ann Neurol. 1994 Nov;36(5):800–801. PubMed PMID: 7979229; eng.
  • de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008 Nov;2(6):1101–1113. PubMed PMID: 19885299; PubMed Central PMCID: PMCPmc2769828. eng.
  • Szablewski L. Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis. 2017;55(4):1307–1320. PubMed PMID: 27858715; eng.
  • McIntosh EC, Nation DA. Importance of treatment status in links between type 2 diabetes and Alzheimer’s disease. Diabetes Care. 2019 May;42(5):972–979. PubMed PMID: 30833374; PubMed Central PMCID: PMCPmc6489115. eng.
  • Roeske D, Ludwig KU, Neuhoff N, et al. First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Mol Psychiatry. 2011 Jan;16(1):97–107. PubMed PMID: 19786962; eng.
  • De Silva PN. Does the association with diabetes say more about schizophrenia and its treatment? – the GLUT hypothesis. Med Hypotheses. 2011 Oct;77(4):529–531. PubMed PMID: 21719205; eng.
  • Kuzman MR, Medved V, Terzic J, et al. Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia. J Psychiatr Res. 2009 Sep;43(13):1073–1077. PubMed PMID: 19358997; eng.
  • Zhao Y, Fung C, Shin D, et al. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders. Mol Psychiatry. 2010 Mar;15(3):286–299. PubMed PMID: 19506559; PubMed Central PMCID: PMCPmc4208914. eng.
  • Yang S, Wang K, Gregory B, et al. Genomic landscape of a three-generation pedigree segregating affective disorder. PloS One. 2009;4(2):e4474. PubMed PMID: 19214233; PubMed Central PMCID: PMCPmc2637422. eng.
  • Lesch KP, Selch S, Renner TJ, et al. Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree. Mol Psychiatry. 2011 May;16(5):491–503. PubMed PMID: 20308990; eng.
  • Vittori A, Breda C, Repici M, et al. Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington’s disease. Hum Mol Genet. 2014 Jun 15;23(12):3129–3137. PubMed PMID: 24452335; PubMed Central PMCID: PMCPmc4030768. eng.
  • Merker S, Reif A, Ziegler GC, et al. SLC2A3 single-nucleotide polymorphism and duplication influence cognitive processing and population-specific risk for attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry. 2017 Jul;58(7):798–809. PubMed PMID: 28224622; eng.
  • Killeen PR. Models of attention-deficit hyperactivity disorder. Behav Processes. 2019 May;162:205–214. PubMed PMID: 30677472; eng.
  • Callahan BL, Bierstone D, Stuss DT, et al. Adult ADHD: risk factor for dementia or phenotypic mimic? Front Aging Neurosci. 2017;9:260. PubMed PMID: 28824421; PubMed Central PMCID: PMCPmc5540971. eng.
  • Ivanchak N, Fletcher K, Jicha GA. Attention-deficit/hyperactivity disorder in older adults: prevalence and possible connections to mild cognitive impairment. Curr Psychiatry Rep. 2012 Oct;14(5):552–560. PubMed PMID: 22886581; PubMed Central PMCID: PMCPmc3718885. eng.
  • Steinhausen HC. The heterogeneity of causes and courses of attention-deficit/hyperactivity disorder. Acta Psychiatr Scand. 2009 Nov;120(5):392–399. PubMed PMID: 19807721; eng.
  • Ströhle A, Stoy M, Wrase J, et al. Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage. 2008 Feb 1;39(3):966–972. PubMed PMID: 17996464; eng.
  • Vaidya CJ, Bunge SA, Dudukovic NM, et al. Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2005 Sep;162(9):1605–1613. PubMed PMID: 16135618; PubMed Central PMCID: PMCPmc4535914. eng.
  • Klein M, Onnink M, van Donkelaar M, et al. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev. 2017 Sep;80:115–155. PubMed PMID: 28159610; PubMed Central PMCID: PMCPmc6947924. eng.
  • Henderson TA. The diagnosis and evaluation of dementia and mild cognitive impairment with emphasis on SPECT perfusion neuroimaging. CNS Spectr. 2012 Dec;17(4):176–206. PubMed PMID: 22929226; eng.
  • Henderson TA, van Lierop MJ, McLean M, et al. Functional neuroimaging in psychiatry-aiding in diagnosis and guiding treatment. What the American psychiatric association does not know. Front Psychiatry. 2020;11:276. PubMed PMID: 32351416; PubMed Central PMCID: PMCPmc7176045. eng.
  • McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984 Jul;34(7):939–944. PubMed PMID: 6610841; eng.
  • Li H, Jia J, Yang Z. Mini-Mental State Examination in elderly Chinese: a population-based normative study. J Alzheimers Dis. 2016 May 7;53(2):487–496. PubMed PMID: 27163822; eng.
  • Senda M, Terada S, Takenoshita S, et al. Diagnostic utility of the Addenbrooke’s Cognitive Examination-III (ACE-III), Mini-ACE, Mini-Mental state examination, montreal cognitive assessment, and Hasegawa Dementia Scale-revised for detecting mild cognitive impairment and dementia. Psychogeriatrics. 2019 Aug 26. PubMed PMID: 31448862; eng. DOI:10.1111/psyg.12480
  • Stamati P, Siokas V, Aloizou AM, et al. Does SCFD1 rs10139154 polymorphism decrease Alzheimer’s disease risk? J Mol Neurosci. 2019 Oct;69(2):343–350. PubMed PMID: 31267315; eng.
  • Siokas V, Aslanidou P, Aloizou AM, et al. Does the CD33 rs3865444 polymorphism confer susceptibility to Alzheimer’s disease? J Mol Neurosci. 2020 Feb 22. PubMed PMID: 32088842; eng. DOI:10.1007/s12031-020-01507-w
  • Siokas V, Kardaras D, Aloizou AM, et al. BDNF rs6265 (Val66Met) polymorphism as a risk factor for blepharospasm. Neuromolecular Med. 2019 Mar;21(1):68–74. PubMed PMID: 30519954; eng.
  • Siokas V, Kardaras D, Aloizou AM, et al. Lack of association of the rs11655081 ARSG gene with blepharospasm. J Mol Neurosci. 2019 Mar;67(3):472–476. PubMed PMID: 30656493; eng.
  • Siokas V, Kardaras D, Aloizou AM, et al. CYP1A2 rs762551 and ADORA2A rs5760423 polymorphisms in patients with blepharospasm. J Mol Neurosci. 2020 May 18. PubMed PMID: 32424513; eng. DOI:10.1007/s12031-020-01553-4
  • Dardiotis E, Karampinis E, Siokas V, et al. ERCC6L2 rs591486 polymorphism and risk for amyotrophic lateral sclerosis in Greek population. Neurol Sci. 2019 Jun;40(6):1237–1244. PubMed PMID: 30879219; eng.
  • Skol AD, Scott LJ, Abecasis GR, et al. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006 Feb;38(2):209–213. PubMed PMID: 16415888; eng.
  • Sole X, Guino E, Valls J, et al. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006 Aug 1;22(15):1928–1929. PubMed PMID: 16720584; eng.
  • Connealy BD, Northrup H, Au KS. Genetic variations in the GLUT3 gene associated with myelomeningocele. Am J Obstet Gynecol. 2014 Sep 01;211(3):305.e1-305.e8..
  • Mlynarski EE, Sheridan MB, Xie M, et al. Copy-number variation of the glucose transporter gene SLC2A3 and congenital heart defects in the 22q11.2 deletion syndrome. Am J Hum Genet. 2015 May 7;96(5):753–764. PubMed PMID: 25892112; PubMed Central PMCID: PMCPmc4570279. eng.
  • Shulman JM, Chipendo P, Chibnik LB, et al. Functional screening of Alzheimer pathology genome-wide association signals in Drosophila. Am J Hum Genet. 2011 Feb 11;88(2):232–238. PubMed PMID: 21295279; PubMed Central PMCID: PMCPmc3035702. eng.
  • Wang W, Yu JT, Zhang W, et al. Genetic association of SLC2A14 polymorphism with Alzheimer’s disease in a Han Chinese population. J Mol Neurosci. 2012 Jul;47(3):481–484. PubMed PMID: 22421804; eng.
  • Fluegge K, Fluegge K. Antecedent ADHD, dementia, and metabolic dysregulation: A U.S. based cohort analysis. Neurochem Int. 2018 Jan;112:255–258. PubMed PMID: 28811268; eng.
  • Alemany S, Ribases M, Vilor-Tejedor N, et al. New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2015 Sep;168(6):459–470. PubMed PMID: 26174813; eng.
  • Reitz C, Tosto G, Vardarajan B, et al. Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP). Transl Psychiatry. 2013 May 14;(3):e256. PubMed PMID: 23673467; PubMed Central PMCID: PMCPmc3669917. eng.
  • Golimstok A, Rojas JI, Romano M, et al. Previous adult attention-deficit and hyperactivity disorder symptoms and risk of dementia with Lewy bodies: a case-control study. Eur J Neurol. 2011 Jan;18(1):78–84. PubMed PMID: 20491888; eng.
  • Sistino JJ. Attention deficit/hyperactivity disorder after neonatal surgery: review of the pathophysiology and risk factors. Perfusion. 2013 Nov;28(6):484–494. PubMed PMID: 23959931; eng.
  • Thapar A, Cooper M, Eyre O, et al. What have we learnt about the causes of ADHD? J Child Psychol Psychiatry. 2013 Jan;54(1):3–16. PubMed PMID: 22963644; PubMed Central PMCID: PMCPmc3572580. eng.
  • Whalley LJ, Dick FD, McNeill G. A life-course approach to the aetiology of late-onset dementias. Lancet Neurol. 2006 Jan;5(1):87–96. PubMed PMID: 16361026; eng.
  • Fagan AM, Roe CM, Xiong C, et al. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007 Mar;64(3):343–349. PubMed PMID: 17210801; eng.
  • Zhang Q, Du G, John V, et al. Alzheimer’s model develops early ADHD syndrome. J Neurol Neurophysiol. 2015;6(6):1–6. PubMed PMID: 26753104; PubMed Central PMCID: PMCPmc4704098. eng.
  • Wiseman FK, Al-Janabi T, Hardy J, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015 Sep;16(9):564–574. PubMed PMID: 26243569; PubMed Central PMCID: PMCPmc4678594. eng.
  • Ekstein S, Glick B, Weill M, et al. Down syndrome and attention-deficit/hyperactivity disorder (ADHD). J Child Neurol. 2011 Oct;26(10):1290–1295. PubMed PMID: 21628698; eng.
  • Cai H, Cong WN, Ji S, et al. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr Alzheimer Res. 2012 Jan;9(1):5–17. PubMed PMID: 22329649; PubMed Central PMCID: PMCPmc4097094. eng.
  • Dunn L, Allen GF, Mamais A, et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging. 2014 May;35(5):1111–1115. PubMed PMID: 24300239; PubMed Central PMCID: PMCPmc3969149. eng.
  • Covarrubias-Pinto A, Moll P, Solis-Maldonado M, et al. Beyond the redox imbalance: oxidative stress contributes to an impaired GLUT3 modulation in Huntington’s disease. Free Radic Biol Med. 2015 Dec;89:1085–1096. PubMed PMID: 26456058; PubMed Central PMCID: PMCPmc4840472. eng.
  • Li X, Valencia A, McClory H, et al. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington’s disease mice. Biochem Biophys Res Commun. 2012 May 18;421(4):727–730. PubMed PMID: 22542623; eng.
  • McClory H, Williams D, Sapp E, et al. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice. Acta Neuropathol Commun. 2014 Dec 20;(2):179. PubMed PMID: 25526803; PubMed Central PMCID: PMCPmc4297405. eng.
  • Schmidt C, Wolff M, von Ahsen N, et al. Alzheimer’s disease: genetic polymorphisms and rate of decline. Dement Geriatr Cogn Disord. 2012;33(2–3):84–89. PubMed PMID: 22414550; eng.
  • Cong L, Kong X, Wang J, et al. Association between SORL1 polymorphisms and the risk of Alzheimer’s disease. J Integr Neurosci. 2018;17(2):185–192. PubMed PMID: 29036834; eng.
  • Huang P, Hsieh SW, Chang YH, et al. Differences in the frequency of Alzheimer’s disease-associated genomic variations in populations of different races. Geriatr Gerontol Int. 2017 Nov;17(11):2184–2193. PubMed PMID: 28675603; eng.
  • Roman GC, Mancera-Paez O, Bernal C. Epigenetic factors in late-onset Alzheimer’s disease: MTHFR and CTH gene polymorphisms, metabolic transsulfuration and methylation pathways, and B Vitamins. Int J Mol Sci. 2019 Jan 14;20(2). PubMed PMID: 30646578; PubMed Central PMCID: PMCPmc6359124. eng. DOI:10.3390/ijms20020319

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.