Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 43, 2021 - Issue 7
472
Views
7
CrossRef citations to date
0
Altmetric
Original Research Paper

Early loss of cerebellar Purkinje cells in human and a transgenic mouse model of Alzheimer’s disease

, , , , , , , , ORCID Icon, & show all
Pages 570-581 | Received 08 Oct 2020, Accepted 17 Feb 2021, Published online: 10 Mar 2021

References

  • Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009 Oct;10(10):724–735.
  • Cipres-Flores FJ, Segura-Uribe JJ, Orozco-Suarez S, et al. Beta-blockers and salbutamol limited emotional memory disturbance and damage induced by orchiectomy in the rat hippocampus. Life Sci. 2019 May 1; 224:128–137.
  • Pro JD, Smith CH, Sumi SM. Presenile Alzheimer’s disease: amyloid plaques in the cerebellum. Neurology. 1980 Aug;30(8):820–825.
  • Braak H, Braak E, Bohl J, et al. Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci. 1989 Nov;93(2–3):277–287.
  • Brettschneider J, Del Tredici K, Lee VM, et al. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015 Feb;16(2):109–120.
  • Catafau AM, Bullich S, Seibyl JP, et al. Cerebellar amyloid-beta plaques: how frequent are they, and do they influence 18F-florbetaben SUV ratios? J Nucl Med. 2016 Nov;57(11):1740–1745.
  • Aso E, Lomoio S, Lopez-Gonzalez I, et al. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer’s disease. Brain Pathol. 2012 Sep;22(5):636–653.
  • Lomoio S, Lopez-Gonzalez I, Aso E, et al. Cerebellar amyloid-beta plaques: disturbed cortical circuitry in AbetaPP/PS1 transgenic mice as a model of familial Alzheimer’s disease. J Alzheimers Dis. 2012;31(2):285–300.
  • Xiong H, Callaghan D, Wodzinska J, et al. Biochemical and behavioral characterization of the double transgenic mouse model (APPswe/PS1dE9) of Alzheimer’s disease. Neurosci Bull. 2011 Aug;27(4):221–232.
  • Tabatabaei-Jafari H, Walsh E, Shaw ME, et al. The cerebellum shrinks faster than normal ageing in Alzheimer’s disease but not in mild cognitive impairment. Hum Brain Mapp. 2017 Jun;38(6):3141–3150.
  • Sluimer JD, van der Flier WM, Karas GB, et al. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer’s disease. Eur Radiol. 2009 Dec;19(12):2826–2833.
  • Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014 May 21;82(4):756–771.
  • Albers MW, Gilmore GC, Kaye J, et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement. 2015 Jan;11(1):70–98.
  • Schmahmann JD. Cerebellum in Alzheimer’s disease and frontotemporal dementia: not a silent bystander. Brain. 2016 May;139(Pt 5):1314–1318.
  • Jacobs HIL, Hopkins DA, Mayrhofer HC, et al. The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. Brain. 2018 Jan 1;141(1):37-47.
  • Buchman AS, Bennett DA. Loss of motor function in preclinical Alzheimer’s disease. Expert Rev Neurother. 2011 May;11(5):665–676.
  • Mazoteras Munoz V, Abellan van Kan G, Cantet C, et al. Gait and balance impairments in Alzheimer disease patients. Alzheimer Dis Assoc Disord. 2010 Jan-Mar;24(1):79–84.
  • Muir SW, Speechley M, Wells J, et al. Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture. 2012 Jan;35(1):96–100.
  • Fukutani Y, Cairns NJ, Rossor MN, et al. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett. 1996 Aug 16; 214(1):33–36.
  • Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, et al. Familial Alzheimer’s disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest. 2014 Apr;124(4):1552–1567.
  • Beach TG, Adler CH, Sue LI, et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology. 2015 Aug;35(4):354–389.
  • Li W, Poteet E, Xie L, et al. Regulation of matrix metalloproteinase 2 by oligomeric amyloid beta protein. Brain Res. 2011 Apr 28; 1387:141–148.
  • Chaudhari K, Wong JM, Vann PH, et al. Exercise, but not antioxidants, reversed ApoE4-associated motor impairments in adult GFAP-ApoE mice. Behav Brain Res. 2016 May 15; 305:37–45.
  • WJM CK, Vann Philip H. Sumien Nathalie Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice. J Sport Health Sci. 2014;3(3):196–205.
  • Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013 Oct 30;80(3):807–815.
  • Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–434.
  • Azevedo FA, Carvalho LR, Grinberg LT, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009 Apr 10; 513(5):532–541.
  • Andersen K, Andersen BB, Pakkenberg B. Stereological quantification of the cerebellum in patients with Alzheimer’s disease. Neurobiol Aging. 2012 Jan;33(1):197e11–20.
  • Mavroudis I, Petridis F, Kazis D, et al. Purkinje cells pathology in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2019 Nov-Dec;34(7–8):439–449.
  • Pettersson AF, Engardt M, Wahlund LO. Activity level and balance in subjects with mild Alzheimer's disease. Dement Geriatr Cogn Disord. 2002 ;13(4):213–216.
  • Aggarwal NT, Wilson RS, Beck TL, et al. Motor dysfunction in mild cognitive impairment and the risk of incident Alzheimer disease. Arch Neurol. 2006 Dec;63(12):1763–1769.
  • Hoxha E, Boda E, Montarolo F, et al. Excitability and synaptic alterations in the cerebellum of APP/PS1 mice. PLoS One. 2012;7(4):e34726.
  • Arendash GW, King DL, Gordon MN, et al. Progressive, age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes. Brain Res. 2001 Feb 09; 891(1–2):42–53.
  • Arendash GW, Gordon MN, Diamond DM, et al. Behavioral assessment of Alzheimer’s transgenic mice following long-term Abeta vaccination: task specificity and correlations between Abeta deposition and spatial memory. DNA Cell Biol. 2001 Nov;20(11):737–744.
  • Van Dam D, D’Hooge R, Staufenbiel M, et al. Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci. 2003 Jan;17(2):388–396.
  • Kuwabara Y, Ishizeki M, Watamura N, et al. Impairments of long-term depression induction and motor coordination precede Abeta accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice. J Neurochem. 2014 Aug;130(3):432–443.
  • Russo R, Cattaneo F, Lippiello P, et al. Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer’s disease. Neurobiol Aging. 2018;68:123–133.
  • Ewers M, Morgan DG, Gordon MN, et al. Associative and motor learning in 12-month-old transgenic APP+PS1 mice. Neurobiol Aging. 2006 Aug;27(8):1118–1128.
  • Kilgore M, Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2010 Mar;35(4):870–880.
  • Volianskis A, Kostner R, Molgaard M, et al. Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1deltaE9-deleted transgenic mice model of ss-amyloidosis. Neurobiol Aging. 2010 Jul;31(7):1173–1187.
  • Wagner JM, Sichler ME, Schleicher EM, et al. Analysis of motor function in the Tg4-42 mouse model of Alzheimer’s disease. Front Behav Neurosci. 2019;13:107.
  • Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006 Oct 4; 26(40):10129–10140.
  • Dineley KT, Xia X, Bui D, et al. Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem. 2002 Jun 21; 277(25):22768–22780.
  • Ferguson SA, Sarkar S, Schmued LC. Longitudinal behavioral changes in the APP/PS1 transgenic Alzheimer's disease model. Behav Brain Res. 2013 Apr 1;242:125-134.
  • Fine JM, Renner DB, Forsberg AC, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015 Jan 1;584:362-367.
  • Lalonde R, Kim HD, Fukuchi K. Exploratory activity, anxiety, and motor coordination in bigenic APPswe + PS1/DeltaE9 mice. Neurosci Lett. 2004 Oct 14;369(2):156-161.
  • Xu J, Wang K, Yuan Y, et al. A Novel peroxidase mimics and ameliorates Alzheimer’s disease-related pathology and cognitive decline in mice. Int J Mol Sci. 2018 Oct 24; 19(11):3304
  • Jackson HM, Soto I, Graham LC, et al. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer’s disease. BMC Genomics. 2013 Nov 25; 14:831.
  • Thal DR, Rub U, Orantes M, et al. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002 Jun 25; 58(12):1791–1800.
  • Jin LW, Shie FS, Maezawa I, et al. Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol. 2004 Mar;164(3):975–985.
  • Jung ES, Hong H, Kim C, et al. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation. Sci Rep. 2015 Mar 5; 5:8805.
  • Cullen WK, Suh YH, Anwyl R, et al. Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport. 1997 Oct 20; 8(15):3213–3217.
  • Mavroudis I. Cerebellar pathology in Alzheimer’s disease. Suppl Hell J Nucl Med. 2019 Jan-Apr; 22:174–179.
  • Wang HW, Pasternak JF, Kuo H, et al. Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 2002 Jan 11; 924(2):133–140.
  • Grundke-Iqbal I, Iqbal K, George L, et al. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2853–2857.
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007 Jul;8(7):499–509.
  • Greenfield JP, Tsai J, Gouras GK, et al. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci U S A. 1999 Jan 19; 96(2):742–747.
  • Choy RW, Cheng Z, Schekman R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid beta (Abeta) production in the trans-Golgi network. Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):E2077–82.
  • O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.
  • Devi L, Ohno M. Mitochondrial dysfunction and accumulation of the beta-secretase-cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice. Neurobiol Dis. 2012 Jan;45(1):417–424.
  • Lauritzen I, Pardossi-Piquard R, Bauer C, et al. The beta-secretase-derived C-terminal fragment of betaAPP, C99, but not Abeta, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus. J Neurosci. 2012 Nov 14; 32(46):16243–1655a.
  • Lauritzen I, Pardossi-Piquard R, Bourgeois A, et al. Intraneuronal aggregation of the beta-CTF fragment of APP (C99) induces Abeta-independent lysosomal-autophagic pathology. Acta Neuropathol. 2016 Aug;132(2):257–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.