Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 44, 2022 - Issue 8
306
Views
0
CrossRef citations to date
0
Altmetric
Original Research Paper

Comparison of astrocytes and gap junction proteins in the white matter of genetic absence epileptic and control rats: an experimental study

, , &
Pages 708-718 | Received 10 Aug 2021, Accepted 01 Feb 2022, Published online: 13 Feb 2022

References

  • Araque A, Navarrete M. Glial cells in neuronal network function, Philos. 2010;Trans R Soc B Biol Sci. 365:2375–2381.
  • Franke H, Verkhratsky A, Burnstock G, et al. Pathophysiology of astroglial purinergic signalling. Purinergic Signal. 2012;8:629–657.
  • Lundgaard I, Osório MJ, Kress BT, et al. White matter astrocytes in health and disease. Neuroscience. 2014;276:161–173.
  • Goursaud S, Kozlova EN, Maloteaux J, et al. Cultured astrocytes derived from corpus callosum or cortical grey matter show distinct glutamate handling properties. J Neurochem. 2009;108:1442–1452.
  • Nagy JI, Rash JE. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS., Brain Res. Brain Res Rev. 2000;32:29–44.
  • Wallraff A, Köhling R, Heinemann U, et al. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci. 2006;26:5438–5447.
  • Langer J, Stephan J, Theis M, et al. Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia. 2012;60:239–252.
  • Rash JE. Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience. 2010;168:982–1008.
  • Gandhi GK, Cruz NF, Ball KK, et al. Selective astrocytic gap junctional trafficking of molecules involved in the glycolytic pathway: impact on cellular brain imaging. J Neurochem. 2009;110:857–869.
  • Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science. 2008;322:1551–1555.
  • Verhoog QP, Holtman L, and Aronica E, et al. Astrocytes as guardians of neuronal excitability: mechanisms underlying epileptogenesis. Front Neurol. 2020;11:591690.
  • Binder DK, Steinhäuser C. Astrocytes and epilepsy. Neurochem Res. 2021;1–9. doi:https://doi.org/10.1007/s11064-020-03184-y
  • Dutuit M, Didier‐Bazès M, Vergnes M, et al. Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia. 2000;32:15–24.
  • Çavdar S, Kuvvet Y, Sur-Erdem I, et al. Relationships between astrocytes and absence epilepsy in rat: an experimental study, Neurosci. Lett. 2019;712:134518.
  • Matute C, Alberdi E, Domercq M, et al. Excitotoxic damage to white matter. J Anat. 2007;210:693–702.
  • Ohtomo R, Iwata A, Arai K. Molecular mechanisms of oligodendrocyte regeneration in white matter-related diseases. Int J Mol Sci. 2018;19:1743.
  • Kıray H, Lindsay SL, Hosseinzadeh S, et al. The multifaceted role of astrocytes in regulating myelination. Exp Neurol. 2016;283:541–549.
  • Casella C, Lipp I, Rosser A, et al. A critical review of white matter changes in Huntington’s disease. Mov Disord. 2020;35:1302–1311.
  • Kao Y-H, Chou M-C, Chen C-H, et al. White matter changes in patients with Alzheimer’s disease and associated factors. J Clin Med. 2019;8:167.
  • Baltan S, Besancon EF, Mbow B, et al. White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci. 2008;28:1479–1489.
  • Funnell MG, Corballis PM, Gazzaniga MS. Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Arch Neurol. 2000;57:185–189.
  • Musiek FE. Neuroanatomy, neurophysiology, and central auditory assessment. Part III: corpus callosum and efferent pathways. Ear Hear. 1986;7:349–358.
  • Wada JA Midline subcortical structures for transhemispheric ictal and interictal transmission. In: Epilepsy Corpus Callosum 2. Boston, MA: Springer; 1995. p. 61–78.
  • Vergnes M, Marescaux C, Lannes B, et al. Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy. Epilepsy Res. 1989;4:8–13.
  • Musgrave J, Gloor P. The role of the corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized penicillin epilepsy. Epilepsia. 1980;21:369–378.
  • Chahboune H, Mishra AM, DeSalvo MN, et al. DTI abnormalities in anterior corpus callosum of rats with spike–wave epilepsy. Neuroimage. 2009;47:459–466.
  • Asadi-Pooya AA, Sharan A, Nei M, et al. Corpus callosotomy. Epilepsy Behav. 2008;13:271–278.
  • Chan AY, Rolston JD, Lee B, et al. Rates and predictors of seizure outcome after corpus callosotomy for drug-resistant epilepsy: a meta-analysis. J Neurosurg. 2018;130:1193–1202.
  • Vergnes M, Marescaux C, Depaulis A, et al. Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Exp Neurol. 1987;96:127–136.
  • Danober L, Deransart C, Depaulis A, et al. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol. 1998;55:27–57.
  • Bertram EH. Neuronal circuits in epilepsy: do they matter? Exp Neurol. 2013;244:67–74.
  • Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002;3:371–382.
  • Huguenard JR, McCormick DA. Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci. 2007;30:350–356.
  • D’antuono M, Inaba Y, Biagini G, et al. Synaptic hyperexcitability of deep layer neocortical cells in a genetic model of absence seizures. Genes, Brain Behav. 2006;5:73–84.
  • Tutkun E, Ayyildiz M, Agar E. Short-duration swimming exercise decreases penicillin-induced epileptiform ECoG activity in rats. Acta Neurobiol Exp. 2010;70:382–389.
  • Meeren HKM, Pijn JPM, Van Luijtelaar ELJM, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci. 2002;22:1480–1495.
  • Paxinos G, and Watson C. The Rat Brain in Stereotaxic Coordinates. New York: Academic Press; 2013.
  • Yamamoto T, Vukelic J, Hertzberg EL, et al., Differential anatomical and cellular patterns of connexin43 expression during postnatal development of rat brain. Dev Brain Res. 1992;66:165–180.
  • Griemsmann S, Höft SP, Bedner P, et al. Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells. Cereb Cortex. 2015;25:3420–3433.
  • Nagy JI, Patel D, Ochalski PA, et al. Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience. 1999;88:447–468.
  • Lutz SE, Zhao Y, Gulinello M, et al. Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci. 2009;29:7743–7752.
  • Magnotti LM, Goodenough DA, Paul DL. Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia. 2011;59:1064–1074.
  • Tress O, Maglione M, May D, et al. Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci. 2012;32:7499–7518.
  • Odermatt B, Wellershaus K, Wallraff A, et al. Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci. 2003;23:4549–4559.
  • Maglione M, Tress O, Haas B, et al. Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia. 2010;58:1104–1117.
  • Liedtke W, Edelmann W, Bieri PL, et al. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 1996;17:607–615.
  • Kaaijk P, Pals ST, Morsink F, et al. Differential expression of CD44 splice variants in the normal human central nervous system. J Neuroimmunol. 1997;73:70–76.
  • Meencke HJ. The density of dystopic neurons in the white matter of the gyrus frontalis inferior in epilepsies. J Neurol. 1983;230:171–181.
  • Yogarajah M, Duncan JS. Diffusion‐based magnetic resonance imaging and tractography in epilepsy. Epilepsia. 2008;49:189–200.
  • Deppe M, Kellinghaus C, Duning T, et al. Nerve fiber impairment of anterior thalamocortical circuitry in juvenile myoclonic epilepsy. Neurology. 2008;71:1981–1985.
  • Rossi MA. Deep White Matter Track Record of Functional Integrity in Childhood Absence Epilepsy: deep White Matter Integrity in CAE. Epilepsy Curr. 2012;12:234–235.
  • Sitnikova E, Kulikova S, Birioukova L, Raevsky, VV, et al. Cellular neuropathology of absence epilepsy in the neocortex: a population of glial cells rather than neurons is impaired in genetic rat model. Acta Neurobiol Exp. 2011;71:263–268.
  • Steinhäuser C, Seifert G, Bedner P. Astrocyte dysfunction in temporal lobe epilepsy: k+ channels and gap junction coupling. Glia. 2012;60:1192–1202.
  • Fonseca CG, Green CR, Nicholson LFB. Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res. 2002;929:105–116.
  • Giaume C, Koulakoff A, Roux L, et al. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci. 2010;11:87–99.
  • Elisevich K, Rempel SA, Smith BJ, et al. Hippocampal connexin 43 expression in human complex partial seizure disorder. Exp Neurol. 1997;145:154–164.
  • Naus CCG, Bechberger JF, Zhang Y, et al. Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin43. J Neurosci Res. 1997;49:528–540.
  • Samoilova M, Li J, Pelletier MR, et al. Epileptiform activity in hippocampal slice cultures exposed chronically to bicuculline: increased gap junctional function and expression. J Neurochem. 2003;86:687–699.
  • Akbarpour B, Sayyah M, Babapour V, et al. Expression of connexin 30 and connexin 32 in hippocampus of rat during epileptogenesis in a kindling model of epilepsy. Neurosci Bull. 2012;28:729–736.
  • Çavdar S, Köse B, Sur-Erdem İ, et al. Comparing astrocytic gap junction of genetic absence epileptic rats with control rats: an experimental study. Brain Struct Funct. 2021;226:2113–2123.
  • Pinault D, O’Brien TJ. Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat Syst. 2005;3:181.
  • van Luijtelaar G, Sitnikova E. Global and focal aspects of absence epilepsy: the contribution of genetic models. Neurosci Biobehav Rev. 2006;30:983–1003.
  • Steriade M, Contreras D. Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J Neurophysiol. 1998;80:1439–1455.
  • Sitnikova E, van Luijtelaar G. Cortical and thalamic coherence during spike–wave seizures in WAG/Rij rats. Epilepsy Res. 2006;71:159–180.
  • Yan J, Thomson JK, Zhao W, et al. The stress kinase JNK regulates gap junction Cx43 gene expression and promotes atrial fibrillation in the aged heart. J Mol Cell Cardiol. 2018;114:105–115.
  • Káradóttir R, Cavelier P, Bergersen LH, et al. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438(7071):1162–1166.
  • Walz W. Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int. 2000;36:291–300.
  • Oliet SHR, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science. 2001;292:923–926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.