Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 44, 2022 - Issue 8
382
Views
1
CrossRef citations to date
0
Altmetric
Original Research Paper

Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 726-737 | Received 29 Jun 2021, Accepted 03 Mar 2022, Published online: 13 Mar 2022

References

  • Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett. 2018;667:40–46.
  • Nakahara S, Adachi M, Ito H, et al. Hippocampal pathophysiology: commonality shared by temporal lobe epilepsy and psychiatric disorders. Neurosci J. 2018;2018:1–9. 2018.
  • Kang KW, Kim W, Cho YW, et al. Genetic characteristics of non-familial epilepsy. PeerJ. 2019;7:e8278.
  • Brennan GP, Bauer S, Engel T, et al. Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiol Dis. 2020;144:105048.
  • Baloun J, Bencurova P, Totkova T, et al. Epilepsy miRNA profile depends on the age of onset in humans and rats. Front Neurosci. 2020;14:924.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • de Planell-saguer M, Rodicio MC. Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta. 2011;699(2):134–152.
  • Prendecki M, Florczak-Wyspianska J, Kowalska M, et al. APOE genetic variants and apoE, miR-107 and miR-650 levels in Alzheimer’s disease. Folia Neuropathol. 2019;57(2):106–116.
  • Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR‐146a, an inflammation‐associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010;31(6):1100–1107.
  • Tiwari D, Peariso K, Gross C. MicroRNA‐induced silencing in epilepsy: opportunities and challenges for clinical application. Dev Dyn. 2018;247(1):94–110.
  • Wang J, Zhao J. MicroRNA dysregulation in epilepsy: from pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Front Mol Neurosci. 2021;14:35.
  • Wang Y, Chen Z. An update for epilepsy research and antiepileptic drug development: toward precise circuit therapy. Pharmacol Ther. 2019;201:77–93.
  • Sousa DPD, Nóbrega FF, Santos CC, et al. Anticonvulsant activity of thymoquinone and its structural analogues. Revista Brasileira de Farmacognosia. 2011;21(3):427–431.
  • Ijaz H, Tulain UR, Qureshi J, et al. Nigella sativa (prophetic medicine): a review. Pak J Pharm Sci. 2017;30:229–234. PMID: 28603137.
  • Desai S, Saheb SH, Das KK, et al. Phytochemical analysis of Nigella sativa and it’s antidiabetic effect. J. Pharm. Sci. Res. 2015;7:527.
  • Boskabadi M, Shirmohammadi B Effect of Nigella sativa on isolated Guinea pig trachea . Archives Iranian Med. 2002;5:(2): 103–107. https://www.sid.ir/en/journal/ViewPaper.aspx?id=13035
  • Meral I, Esrefoglu M, Dar KA, et al. Effects of Nigella sativa on apoptosis and GABAA receptor density in cerebral cortical and hippocampal neurons in pentylenetetrazol induced kindling in rats. Biotech Histochem. 2016;91(8):493–500.
  • Majeed A, Muhammad Z, Ahmad H, et al. Nigella sativa L.: uses in traditional and contemporary medicines–An overview . Acta Ecologica Sinica. 2020;41(4): 253–258. doi:https://doi.org/10.1016/j.chnaes.2020.02.001.
  • Imran M, Rauf A, Khan IA, et al. Thymoquinone: a novel strategy to combat cancer: a review. Biomed Pharmacother. 2018;106:390–402.
  • Badibostan H, Mehri S, Mohammadi E, et al. Protective effect of Thymoquinone on D-galactose-induced aging in mice. Jundishapur J Nat Pharm Prod. 2019;14(1): e13911. doi:https://doi.org/10.5812/jjnpp.13911.
  • Hosseinzadeh H, Parvardeh S. Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine. 2004;11(1):56–64.
  • Farkhondeh T, Samarghandian S, Shahri AMP, et al. The neuroprotective effects of thymoquinone: a review. Dose-response. 2018;16(2):1559325818761455.
  • Mohammadi A, Mansoori B, Baradaran B. Regulation of miRNAs by herbal medicine: an emerging field in cancer therapies. Biomed Pharmacother. 2017;86:262–270.
  • Gülşen İ, Ak H, Çölçimen N, et al. Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury. World Neurosurg. 2016;86:243–249.
  • Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32(3):281–294
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402–408.
  • Agarwal V, Bell GW, Nam J-W, et al. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4:e05005.
  • Sticht C, De La Torre C, Parveen A, et al. miRWalk: an online resource for prediction of microRNA binding sites. PloS one. 2018;13(10):e0206239.
  • Huang Z, Shi J, Gao Y, et al. HMDD v3. 0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 2019;47(D1):D1013–D1017.
  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131.
  • Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):1–10.
  • Kehl T, Kern F, Backes C, et al. miRPathDB 2.0: a novel release of the miRNA pathway dictionary database. Nucleic Acids Res. 2020;48(D1):D142–D147.
  • Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–D462.
  • Krämer A, Green J, Pollard J Jr, et al. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–530.
  • Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498–D503.
  • Choudhary KM, Mishra A, Poroikov VV, et al. Ameliorative effect of curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur J Pharmacol. 2013;704(1–3):33–40.
  • Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci . 2012;58(1):9–37.
  • Venø MT, Reschke CR, Morris G, et al. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A. 2020;117(27):15977–15988. doi:https://doi.org/10.1073/pnas.1919313117. PMID: 32581127; PMCID: PMC7355001.
  • Thakran S, Guin D, Singh P, et al. Genetic landscape of common epilepsies: advancing towards precision in treatment. Int J Mol Sci. 2020;21(20):7784.
  • McNamara JO. Kindling: an animal model of complex partial epilepsy. Ann Neurol. 1984;16(S1):S72–S76.
  • Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359–368.
  • Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 2015;18(3):339–343.
  • Marescaux C, Micheletti G, Vergnes M, et al. A model of chronic spontaneous petit mal‐like seizures in the rat: comparison with pentylenetetrazol‐induced seizures. Epilepsia. 1984;25(3):326–331.
  • Kandratavicius L, Balista PA, Lopes-Aguiar C, et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014;1693. https://doi.org/10.2147/NDT.S50371
  • Shaterzadeh-Yazdi H, Noorbakhsh M-F, Hayati F, et al. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc Hematol Disord - Drug Targets. 2018;18(1):52–60
  • Khan MA. Antimicrobial action of thymoquinone. In: Molecular and therapeutic actions of thymoquinone. Springer; 2018. p. 57–64.
  • Staniek K, Gille L. Is thymoquinone an antooxidant. BMC Pharmacol. 2010;10:A9. doi:https://doi.org/10.1186/1471-2210-10-S1-A9.
  • Landucci E, Mazzantini C, Buonvicino D, et al. Neuroprotective effects of thymoquinone by the modulation of ER stress and apoptotic pathway in in vitro model of excitotoxicity. Molecules. 2021;26(6):1592.
  • Khan MA, Tania M, Fu J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov Today. 2019;24(12):2315–2322.
  • Dong H, Dong B, Zhang N, et al. microRNA-182 negatively influences the neuroprotective effect of apelin against neuronal injury in epilepsy. Neuropsychiatr Dis Treat. 2020;16:327.
  • Li L, Peng W, Tian X. Protective effects and mechanisms of microRNA-182 on oxidative stress in RHiN. Open Life Sci. 2019;14(1):400–409.
  • Abdellatif M, van Rooij E. Differential expression of microRNAs in different disease states. Circ Res. 2012;110(4):638–650.
  • Duan X, Gan J, Peng DY, et al. Identification and functional analysis of microRNAs in rats following focal cerebral ischemia injury. Mol Med Rep. 2019;19(5):4175–4184.
  • Ding X, Sun B, Huang J, et al. The role of miR-182 in regulating pineal CLOCK expression after hypoxia-ischemia brain injury in neonatal rats. Neurosci Lett. 2015;591:75–80.
  • Wang X, Yin H, Rich AM, et al. MicroRNAs as biomarkers in molecular diagnosis of refractory epilepsy. Chin Neurosurg J. 2016;2(1):1–6.
  • Henshall DC. MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr Opin Neurol. 2014 27;27(2):199.
  • Thulasingam S, Massilamany C, Gangaplara A, et al. miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells. Mol Cell Biochem. 2011;352(1–2):181–188.
  • Xu W, Li F, Liu Z, et al. MicroRNA-27b inhibition promotes Nrf2/ARE pathway activation and alleviates intracerebral hemorrhage-induced brain injury. Oncotarget. 2017;8(41):70669.
  • Kassab RB, El-Hennamy RE. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt J Basic Appl Sci. 2017;4(3):160–167.
  • Binder DK, Croll SD, Gall CM, et al. BDNF and epilepsy: too much of a good thing? Trends Neurosci. 2001;24(1):47–53.
  • Re CJ, Batterman AI, Gerstner JR, et al. The molecular genetic interaction between circadian rhythms and susceptibility to seizures and epilepsy. Front Neurol. 2020;11. DOI:https://doi.org/10.3389/fneur.2020.00520
  • Lehtinen MK. Epilepsy clocks in. Sci Transl Med. 2017;9(416). https://doi.org/10.1126/scitranslmed.aaq1237
  • Li P, Fu X, Smith NA, et al. Loss of CLOCK results in dysfunction of brain circuits underlying focal epilepsy. Neuron. 2017;96(2):387–401. e6.
  • Romano R, Bucci C. Role of EGFR in the nervous system. Cells. 2020;9(8):1887.
  • Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol. 2013;9(6):328–339.
  • Janssen HLA, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–1694.
  • De Smaele E, Ferretti E, Gulino A. MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res. 2010;1338:100–111.
  • Scholer N, Langer C, Dohner H, et al. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol. 2010;38(12):1126–1130.
  • Balakathiresan N, Bhomia M, Chandran R, et al. MicroRNA Let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma. 2012;29(7):1379–1387.
  • Liu DZ, Tian Y, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30(1):92–101.
  • Gorter JA, Iyer A, White I, et al. Hippocampal subregionspecific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis. 2013;62:508–520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.