Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 44, 2022 - Issue 9
148
Views
3
CrossRef citations to date
0
Altmetric
Original Research Paper

Loss of Kir6.1 facilitates peri-infarct depolarizations in focal cerebral ischemia

, &
Pages 797-806 | Received 13 Oct 2021, Accepted 03 Mar 2022, Published online: 10 Mar 2022

References

  • Taş YÇ, Solaroğlu İ, Gürsoy-Özdemir Y. Spreading depolarization waves in neurological diseases: a short review about its pathophysiology and clinical relevance. Curr Neuropharmacol. 2019;17(2):151–164.
  • Hartings JA, Andaluz N, Bullock MR, et al. Prognostic value of spreading depolarizations in patients with severe traumatic brain injury. JAMA Neurol. 2020;77(4):489–499.
  • Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–993.
  • Sugimoto K, Chung DY, Böhm M, et al. Peri-infarct hot-zones have higher susceptibility to optogenetic functional activation-induced spreading depolarizations. Stroke. 2020;51(8):2526–2535.
  • Hartings JA, Shuttleworth CW, Kirov SA, et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2017;37(5):1571–1594.
  • Aiba I, Noebels JL. Kcnq2/Kv7. 2 controls the threshold and bi-hemispheric symmetry of cortical spreading depolarization. Brain. 2021;144(9):2863–2878.
  • Szeto V, N-h C, H-s S, et al. The role of K ATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin. 2018;39(5):683–694.
  • Tinker A, Aziz Q, Li Y, et al. ATP-sensitive potassium channels and their physiological and pathophysiological roles. Compr Physiol. 2018;1463–1511
  • Zlh A, Ts B, Ming LA, et al. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav Immun. 2019;81:509–522.
  • Rocha MP, Campos MO, Mattos JD, et al. KATP channels modulate cerebral blood flow and oxygen delivery during isocapnic hypoxia in humans. J Physiol. 2020;598(16):3343–3356.
  • Juavinett AL, Nauhaus I, Garrett ME, et al. Automated identification of mouse visual areas with intrinsic signal imaging. Nat Protoc. 2017;12(1):32–43.
  • Kura S, Xie H, Fu B, et al. Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex. J Neural Eng. 2018;15(3):035003.
  • Y-l L, Scharfman HE. New insights and methods for recording and imaging spontaneous spreading depolarizations and seizure-like events in mouse hippocampal slices. Front Cell Neurosci. 2021;15(433). 10.3389/fncel.2021.761423
  • Chung DY, Kazutaka S, Paul F, et al. Real-time non-invasive in vivo visible light detection of cortical spreading depolarizations in mice. J Neurosci Methods. 2018;309:143–146.
  • Fischer P, Sugimoto K, Chung DY, et al. Rapid hematoma growth triggers spreading depolarizations in experimental intracortical hemorrhage. J Cereb Blood Flow Metab. 2020;41(6):1264–1276.
  • McBride DW, Zhang JH. Precision stroke animal models: the permanent MCAO model should be the primary model, not transient MCAO. Transl Stroke Res. 2017;8(5):397–404.
  • Zheng Z, Yi X, Lv J. Loss of GFAP and vimentin does not affect peri-infarct depolarizations after focal cerebral ischemia. Eur Neurol. 2020;83(3):301–309.
  • Augustinaite S, Kuhn B. Intrinsic optical signal imaging and targeted injections through a chronic cranial window of a head-fixed mouse. STAR protoc. 2021;2(3):100779.
  • Dreier JP, Major S, Foreman B, et al. Terminal spreading depolarization and electrical silence in death of human cerebral cortex. Ann Neurol. 2018;83(2):295–310.
  • Herreras O, Makarova J. Mechanisms of the negative potential associated with Leão’s spreading depolarization: a history of brain electrogenesis. J Cereb Blood Flow Metab. 2020;40(10):1934–1952.
  • Loonen IC, Jansen NA, Cain SM, et al. Brainstem spreading depolarization and cortical dynamics during fatal seizures in Cacna1a S218L mice. Brain. 2019;142(2):412–425.
  • Yamato H, Jin T, Nomura Y. Near infrared imaging of intrinsic signals in cortical spreading depression observed through the intact scalp in hairless mice. Neurosci Lett. 2019;701:213–217.
  • Desjardins M, Kılıç K, Thunemann M, et al. Awake mouse imaging: from two-photon microscopy to blood oxygen level–dependent functional magnetic resonance imaging. Biol Psych. 2019;4(6):533–542.
  • Chernov MM, Friedman RM, Chen G, et al. Functionally specific optogenetic modulation in primate visual cortex. Proc Nat Acad Sci. 2018;115(41):10505–10510.
  • Brennan KC, Beltrán-Parrazal L, López-Valdés HE, et al. Distinct vascular conduction with cortical spreading depression. J Neurophysiol. 2007;97(6):4143–4151.
  • Welcome MO, Mastorakis NE. Emerging concepts in brain glucose metabolic functions: from glucose sensing to how the sweet taste of glucose regulates its own metabolism in astrocytes and neurons. Neuromolecular Med. 2018;20(3):281–300.
  • Yu X, Nagai J, Khakh BS. Improved tools to study astrocytes. Nat Rev Neurosci. 2020;21(3):121–138.
  • Beckner ME. A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochem Int. 2020;136:104727.
  • Wang F, Qi X, Zhang J, et al. Astrocytic modulation of potassium under seizures. Neural Regen Res. 2020;15(6):980–987.
  • Ginsberg MD. The cerebral collateral circulation: relevance to pathophysiology and treatment of stroke. Neuropharmacology. 2018;134:280–292.
  • Umegaki M, Sanada Y, Waerzeggers Y, et al. Peri-infarct depolarizations reveal penumbra-like conditions in striatum. J Neurosci. 2005;25(6):1387–1394.
  • von Bornstädt D, Houben T, Seidel JL, et al. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origins of spreading injury depolarizations. Neuron. 2015;85(5):1117–1131.
  • Lückl J, Lemale CL, Kola V, et al. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain. 2018;141(6):1734–1752.
  • Schoknecht K, Kikhia M, Lemale CL, et al. The role of spreading depolarizations and electrographic seizures in early injury progression of the rat photothrombosis stroke model. J Cereb Blood Flow Metab. 2021;41(2):413–430.
  • Hartings JA, Rolli ML, X-cm L, et al. Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci. 2003;23(37):11602–11610.
  • Kao Y-CJ, Hsieh B-Y, editors. Monitoring of Vascular response to peri-infarct depolarization (PID) in Photothrombotic Stroke Animal Model. 2019 IEEE International Ultrasonics Symposium (IUS) Glasgow, Scotland, UK; 2019: IEEE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.