Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 45, 2023 - Issue 12
248
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Astrocyte-derived extracellular vesicles inhibit the abnormal activation of immune function in neonatal mice with hypoxic-ischemic brain damage by carrying miR-124-3p

&
Pages 1079-1090 | Received 04 Sep 2022, Accepted 09 Jun 2023, Published online: 25 Sep 2023

References

  • Yang L, Zhao H, Cui H. Treatment and new progress of neonatal hypoxic-ischemic brain damage. Histol Histopathol. 2020 Sep;35(9):929–936. doi: 10.14670/HH-18-214
  • Mohsenpour H, Pesce M, Patruno A, et al. A review of plant extracts and plant-derived natural compounds in the prevention/treatment of neonatal hypoxic-ischemic brain injury. Int J Mol Sci. 2021 Jan 15;22(2):833. doi: 10.3390/ijms22020833
  • Li B, Concepcion K, Meng X, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol. 2017 Dec;159:50–68.
  • Zhou Y, Yang L, Liu X, et al. Lactylation may be a novel posttranslational modification in inflammation in neonatal hypoxic-ischemic encephalopathy. Front Pharmacol. 2022;13:926802. doi: 10.3389/fphar.2022.926802
  • Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. 2014 Sep;10(9):1171–1184. doi: 10.1586/1744666X.2014.942288
  • Hagberg H, Mallard C, Ferriero DM, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015 Apr;11(4):192–208. doi: 10.1038/nrneurol.2015.13
  • Koehn LM, Chen X, Logsdon AF, et al. Novel neuroprotective agents to treat neonatal hypoxic-ischemic encephalopathy: inter-alpha inhibitor proteins. Int J Mol Sci. 2020 Dec 2;21(23):9193. doi: 10.3390/ijms21239193
  • Zhao F, Qu Y, Liu H, et al. Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage. Int J Dev Neurosci. 2014 Nov;38(1):147–154. doi: 10.1016/j.ijdevneu.2014.06.014
  • Linnerbauer M, Rothhammer V. Protective functions of reactive astrocytes following central nervous System insult. Front Immunol. 2020;11:573256. doi: 10.3389/fimmu.2020.573256
  • Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull. 2018 Jan;136:139–156. doi: 10.1016/j.brainresbull.2017.02.001
  • Yuan M, Wu H. Astrocytes in the traumatic brain injury: the good and the bad. Exp Neurol. 2022 Feb;348:113943. doi: 10.1016/j.expneurol.2021.113943
  • Quek C, Hill AF. The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun. 2017 Feb 19;483(4):1178–1186. doi: 10.1016/j.bbrc.2016.09.090
  • Upadhya R, Zingg W, Shetty S, et al. Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release. 2020 Jul 10;323:225–239. doi: 10.1016/j.jconrel.2020.04.017
  • Dickens AM, Tovar YRLB, Yoo SW, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal. 2017 Apr 4;10(473). doi: 10.1126/scisignal.aai7696
  • Zhang W, Hong J, Zhang H, et al. Astrocyte-derived exosomes protect hippocampal neurons after traumatic brain injury by suppressing mitochondrial oxidative stress and apoptosis. Aging. 2021 Sep 13;13(17):21642–21658. doi: 10.18632/aging.203508
  • Pinchi E, Frati P, Arcangeli M, et al. MicroRNAs: the New challenge for traumatic brain injury diagnosis. Curr Neuropharmacol. 2020;18(4):319–331. doi: 10.2174/1570159X17666191113100808
  • Shen G, Ma Q. MicroRNAs in the blood-brain barrier in hypoxic-ischemic brain injury. Curr Neuropharmacol. 2020;18(12):1180–1186. doi: 10.2174/1570159X18666200429004242
  • Sorensen SS, Nygaard AB, Carlsen AL, et al. Elevation of brain-enriched miRnas in cerebrospinal fluid of patients with acute ischemic stroke. Biomark Res. 2017;5(1):24. doi: 10.1186/s40364-017-0104-9
  • Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016 May 5;44(8):3865–3877. doi: 10.1093/nar/gkw116
  • Vuokila N, Lukasiuk K, Bot AM, et al. miR-124-3p is a chronic regulator of gene expression after brain injury. Cell Mol Life Sci. 2018 Dec;75(24):4557–4581. doi: 10.1007/s00018-018-2911-z
  • Xiong L, Zhou H, Zhao Q, et al. Overexpression of miR-124 protects against neurological dysfunction induced by neonatal hypoxic-ischemic brain injury. Cell Mol Neurobiol. 2020 Jul;40(5):737–750. doi: 10.1007/s10571-019-00769-2
  • Yang J, Zhang X, Chen X, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids. 2017 Jun 16;7:278–287. doi: 10.1016/j.omtn.2017.04.010
  • Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. 2018 Jan;32(1):512–528. doi: 10.1096/fj.201700673r
  • Zhao J, Wang Y, Wang D, et al. MiR-124-3p attenuates brain microvascular endothelial cell injury in vitro by promoting autophagy. Histol Histopathol. 2022 Feb;37(2):159–168. doi: 10.14670/HH-18-406
  • Hu G, Liao K, Niu F, et al. Astrocyte EV-Induced lincRNA-Cox2 regulates microglial phagocytosis: implications for morphine-mediated neurodegeneration. Mol Ther Nucleic Acids. 2018 Dec 7;13:450–463. doi: 10.1016/j.omtn.2018.09.019
  • Zhang Q, Higginbotham JN, Jeppesen DK, et al. Transfer of functional cargo in exomeres. Cell Rep. 2019 Apr 16;27(3):940–954 e6. doi: 10.1016/j.celrep.2019.01.009
  • Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011 Dec;7(6):780–788. doi: 10.1016/j.nano.2011.04.003
  • Albertsson AM, Bi D, Duan L, et al. The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. J Neuroinflammation. 2014 Sep 5;11(1):153. doi: 10.1186/s12974-014-0153-z
  • Han J, Yang S, Hao X, et al. Extracellular vesicle-derived microRNA-410 from mesenchymal stem cells protects against neonatal hypoxia-ischemia brain damage through an HDAC1-dependent EGR2/Bcl2 axis. Front Cell Dev Biol. 2020;8:579236. doi: 10.3389/fcell.2020.579236
  • Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981 Feb;9(2):131–141. doi: 10.1002/ana.410090206
  • Piao JM, Wu W, Yang ZX, et al. MicroRNA-381 favors repair of nerve injury through regulation of the SDF-1/CXCR4 signaling pathway via LRRC4 in acute cerebral ischemia after cerebral lymphatic blockage. Cell Physiol Biochem. 2018;46(3):890–906. doi: 10.1159/000488821
  • Yao RQ, Zhang L, Wang W, et al. Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats. Brain Res Bull. 2009 Apr 6;79(1):69–76. doi: 10.1016/j.brainresbull.2008.12.010
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001 Dec;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Chen Y, An Q, Yang ST, et al. MicroRNA-124 attenuates PTSD-like behaviors and reduces the level of inflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats following single-prolonged stress. Exp Neurol. 2022 Oct;356:114154.
  • Jiao S, Liu Y, Yao Y, et al. miR-124 promotes proliferation and differentiation of neuronal stem cells through inactivating Notch pathway. Cell Biosci. 2017;7(1):68. doi: 10.1186/s13578-017-0194-y
  • Ding S. Dynamic reactive astrocytes after focal ischemia. Neural Regen Res. 2014 Dec 1;9(23):2048–2052. doi: 10.4103/1673-5374.147929
  • Liu X, Feng Z, Du L, et al. The potential role of MicroRNA-124 in cerebral ischemia injury. Int J Mol Sci. 2019 Dec 23;21(1):120. doi: 10.3390/ijms21010120
  • Du L, Jiang Y, Sun Y. Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression. Neurotoxicology. 2021 Mar;83:28–39. doi: 10.1016/j.neuro.2020.12.006
  • Huang J, Liu W, Doycheva DM, et al. Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1alpha/AMPK/Sirt1/PGC-1alpha/UCP2 pathway in a rat model of neonatal HIE. Free Radic Biol Med. 2019 Sep;141:322–337.
  • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002
  • Xing Z, Zhen T, Jie F, et al. Early toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. Int J Med Sci. 2022;19(1):142–151. doi: 10.7150/ijms.66494
  • Gelosa P, Castiglioni L, Rzemieniec J, et al. Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain. J Mol Med (Berl). 2022 Jan;100(1):23–41. doi: 10.1007/s00109-021-02154-3
  • Datta Chaudhuri A, Dasgheyb RM, DeVine LR, et al. Stimulus-dependent modifications in astrocyte-derived extracellular vesicle cargo regulate neuronal excitability. Glia. 2020 Jan;68(1):128–144. doi: 10.1002/glia.23708
  • Kieran NW, Suresh R, Dorion MF, et al. MicroRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes. J Neuroinflammation. 2022 Jan 6;19(1):10. doi: 10.1186/s12974-021-02373-y
  • Feng M, Zhu X, Zhuo C. H19/miR-130a-3p/DAPK1 axis regulates the pathophysiology of neonatal hypoxic-ischemia encephalopathy. Neurosci Res. 2021 Feb;163:52–62. doi: 10.1016/j.neures.2020.03.005
  • Jia Y, Liu J, Hu H, et al. MiR-363-3p attenuates neonatal hypoxic-ischemia encephalopathy by targeting DUSP5. Neurosci Res. 2021 Oct;171:103–113.
  • Li B, Dasgupta C, Huang L, et al. MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell Mol Immunol. 2020 Sep;17(9):976–991. doi: 10.1038/s41423-019-0257-6
  • Xu SY, Jiang XL, Liu Q, et al. Role of rno-miR-124-3p in regulating MCT1 expression in rat brain after permanent focal cerebral ischemia. Genes Dis. 2019 Dec;6(4):398–406. doi: 10.1016/j.gendis.2019.01.002
  • Yang Y, Ye Y, Kong C, et al. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem Res. 2019 Apr;44(4):811–828. doi: 10.1007/s11064-018-02714-z
  • Charriaut-Marlangue C, Besson VC, Baud O. Sexually dimorphic outcomes after neonatal stroke and hypoxia-ischemia. Int J Mol Sci. 2017 Dec 26;19(1):61. doi: 10.3390/ijms19010061
  • Beckmann L, Obst S, Labusek N, et al. Regulatory T cells contribute to sexual dimorphism in neonatal hypoxic-ischemic brain injury. Stroke. 2022 Feb;53(2):381–390. doi: 10.1161/STROKEAHA.121.037537

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.