Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 46, 2024 - Issue 1
159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effects of dexmedetomidine on trauma-induced secondary injury in rat brain

, , , , , & show all
Pages 23-32 | Received 05 Mar 2023, Accepted 29 Jul 2023, Published online: 16 Oct 2023

References

  • Steinmann J, Hartung B, Bostelmann R, et al. Rupture of intracranial aneurysms in patients with blunt head trauma: review of the literature. Clin Neurol Neurosur Internet. 2020;199:106208. doi: 10.1016/j.clineuro.2020.106208
  • Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130(4):1080–1097. doi: 10.3171/2017.10.JNS17352
  • Gean AD, Fischbein NJ. Head trauma. Neuroimaging Clinical N Am. 2010;20(4):527–556. Internet. doi: 10.1016/j.nic.2010.08.001
  • Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–378. doi: 10.1097/00001199-200609000-00001
  • Humble SS, Wilson LD, Leath TC, et al. ICU sedation with dexmedetomidine after severe traumatic brain injury. Brain Inj. 2016;30(10):1266–1270. Internet. doi: 10.1080/02699052.2016.1187289
  • Wu J, Vogel T, Gao X, et al. Neuroprotective effect of dexmedetomidine in a murine model of traumatic brain injury. Sci Rep. 2018;8(1):1–10. Internet. doi: 10.1038/s41598-018-23003-3
  • Gaetz M. The neurophysiology of brain injury. Clin Neurophysiol. 2004;115(1):4–18. doi: 10.1016/S1388-2457(03)00258-X
  • Martins ET, Linhares MN, Sousa DS, et al. Mortality in severe traumatic brain injury: a multivariated analysis of 748 Brazilian patients from florianópolis city. J Trauma Inj Infect Crit Care. 2009;67(1):85–90. doi: 10.1097/TA.0b013e318187acee
  • Sud’ina GF, Mirzoeva OK, Pushkareva MA, et al. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett. 1993;329(1–2):21–24. doi: 10.1016/0014-5793(93)80184-V
  • Wallace SS. Biological consequences of free radical-damaged DNA bases 1,2 1Guest editor: Miral Dizdaroglu 2This article is part of a series of reviews on “oxidative DNA damage and repair.” the full list of papers may be found on the homepage of the journal. Free Radic Biol Med. 2002;33(1):1–14. doi: 10.1016/S0891-5849(02)00827-4
  • Procaccio F, Stocchetti N, Citerio G, et al. Guidelines for the treatment of adults with severe head trauma (part I). Initial assessment; evaluation and pre-hospital treatment; current criteria for hospital admission; systemic and cerebral monitoring. J Neurosurg Sci. 44(1):1–10.
  • Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs. 2009;14(1):67–84. doi: 10.1517/14728210902769601
  • Schoeler M, Loetscher PD, Rossaint R, et al. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC neurol. 2012;12(1):20. Internet. doi: 10.1186/1471-2377-12-20
  • Ertler RAG, Rown HCLB, Itchell DOHM, et al. Dexmedetomidine: a novel sedative-analgesic agent. BUMC Proceedings. 2001;14:13–21.
  • Hellas JA, Andrew RD. Neuronal swelling: a non-osmotic consequence of spreading depolarization. Neurocrit Care. 2021;35(S2):112–134. Internet. doi: 10.1007/s12028-021-01326-w
  • Ikinci A, Mercantepe T, Unal D, et al. Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence. J Chem Neuroanat. 2015;75:99–104. doi: 10.1016/j.jchemneu.2015.11.006
  • Cassol G, Cipolat RP, Papalia WL, et al. A role of Na+, K+ -ATPase in spatial memory deficits and inflammatory/oxidative stress after recurrent concussion in adolescent rats. Brain Res Bull Internet. 2022;180:1–11. doi: 10.1016/j.brainresbull.2021.12.009
  • Pivovarov AS, Calahorro F, Walker RJ. Na+/k±pump and neurotransmitter membrane receptors. Invertebr Neurosci. 2019;19(1):1–16. Internet. doi: 10.1007/s10158-018-0221-7
  • Frank R, Bari F, Menyhárt Á, et al. Comparative analysis of spreading depolarizations in brain slices exposed to osmotic or metabolic stress. BMC Neurosci. 2021;22(1):1–10. Internet. doi: 10.1186/s12868-021-00637-0
  • Roberson SW, Patel MB, Dabrowski W, et al. Challenges of delirium management in patients with traumatic brain injury: from pathophysiology to clinical practice. Curr Neuropharmacol. 2021;19(9):1519–1544. doi: 10.2174/1570159X19666210119153839
  • Unchiti K, Leurcharusmee P, Samerchua A, et al. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: evidence from in vitro and in vivo studies. Eur J Neurosci. 2021;54(9):7006–7047. doi: 10.1111/ejn.15474
  • Burlacu CC, Neag MA, Mitre AO, et al. The role of miRnas in dexmedetomidine’s neuroprotective effects against brain disorders. Int J Mol Sci. 2022;23(10):1–30. doi: 10.3390/ijms23105452
  • Soltani F, Tabatabaei S, Jannatmakan F, et al. Comparison of the effects of haloperidol and dexmedetomidine on delirium and agitation in patients with a traumatic brain injury admitted to the intensive care unit. Anesthesiol Pain Med. 2021;11(3):11. doi: 10.5812/aapm.113802
  • Hu Y, Zhou H, Zhang H, et al. The neuroprotective effect of dexmedetomidine and its mechanism. Front Pharmacol. 2022;13:1–15. doi: 10.3389/fphar.2022.965661
  • Garrity AG, Botta S, Lazar SB, et al. Dexmedetomidine-induced sedation does not mimic the neurobehavioral phenotypes of sleep in Sprague Dawley rat. Sleep. 2015;38(1):73–84. doi: 10.5665/sleep.4328
  • Mychasiuk R, Farran A, Angoa-Perez M, et al. A novel model of mild traumatic brain injury for juvenile rats. J Vis Exp. 2014;(94):1–7. doi:10.3791/51820
  • Dixon CE, Bramlett HM, Dietrich WD, et al. Cyclosporine treatment in traumatic brain injury: operation brain Trauma therapy. J Neurotrauma. 2016;33(6):553–566. doi: 10.1089/neu.2015.4122
  • Rojas DB, Gemelli T, De Andrade RB, et al. Administration of histidine to female rats induces changes in oxidative status in cortex and hippocampus of the offspring. Neurochem Res. 2012;37(5):1031–1036. doi: 10.1007/s11064-012-0703-7
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3
  • YOSHIMURA K. Activation rat brain of by activated ATPase in catecholamine. J Biochem. 1973;391:389–391.
  • Fiske CH, Subbarow Y. The COLORIMETRIC DETERMINATION of PHOSPHORUS. Color Determ PHOSPHORUS. 1925;7:1–16.
  • Yeler H, Tahtabas F, Candan F. Investigation of oxidative stress during fracture healing in the rats. Cell Biochem Funct. 2005;23(2):137–139. doi: 10.1002/cbf.1199
  • Barut S, Canbolat A, Bılge T, et al. Lıpıd perox‘datıon ın experımental spınal cord ınjury: tıme-level relatıonshıp. Neurosurg Rev. 1993;16:53–59. doi: 10.1007/BF00308614
  • Zeng X, Wang H, Xing X, et al. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats. PLoS One. 2016;11(3):1–15. doi: 10.1371/journal.pone.0151620
  • Öztürk M, Güzelhan Y, Sayar K, et al. Yaygin gelişimsel bozukluǧu olan çocuklarda plazma malondialdehit ve glutatyon düzeylerinin araştirilmasi. Klin Psikofarmakol Bul. 2001;11:155–159.
  • Kaptanoglu E, Sen S, Beskonakli E, et al. Antioxidant actions and early ultrastructural findings of thiopental and propofol in experimental spinal cord injury. J Neurosurg Anesthesiol. 2002;14(2):114–122. doi: 10.1097/00008506-200204000-00005
  • Ignowski E, Winter AN, Duval N, et al. The cysteine-rich whey protein supplement, Immunocal®, preserves brain glutathione and improves cognitive, motor, and histopathological indices of traumatic brain injury in a mouse model of controlled cortical impact. Free Radic Biol Med Internet. 2018;124:328–341. doi: 10.1016/j.freeradbiomed.2018.06.026
  • Di Meo S, Reed TT, Venditti P, et al. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1–44. doi: 10.1155/2016/1245049
  • Lima FD, Souza MA, Furian AF, et al. Na+,k±ATPase activity impairment after experimental traumatic brain injury: relationship to spatial learning deficits and oxidative stress. Behav Brain Res. 2008;193(2):306–310. doi: 10.1016/j.bbr.2008.05.013
  • Ger A, Konya D. Marmara University institute of neurological sciences, clinic of Anesthesiology and Reanimation, Istanbul, Türkiye 2 Marmara University School of Medicine, department of Anesthesiology and Reanimation, Istanbul, Türkiye 3. Istanbul: Marmara University Institute of N; 2007. pp. 129–134.
  • Aslan A, Cemek M, Eser O, et al. Does dexmedetomidine reduce secondary damage after spinal cord injury? An experimental study. Eur Spine J. 2009;18(3):336–344. doi: 10.1007/s00586-008-0872-x
  • Shen M, Wang S, Wen X, et al. Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed Pharmacother. 2017;95:885–893. doi: 10.1016/j.biopha.2017.08.125
  • Zhang MH, Zhou XM, Cui JZ, et al. Neuroprotective effects of dexmedetomidine on traumatic brain injury: involvement of neuronal apoptosis and HSP70 expression. Mol Med Rep. 2018;17:8079–8086. doi: 10.3892/mmr.2018.8898
  • Li F, Wang X, Zhang Z, et al. Dexmedetomidine attenuates neuroinflammatory–induced apoptosis after traumatic brain injury via Nrf2 signaling pathway. Ann Clin Transl Neurol. 2019;6(9):1825–1835. doi: 10.1002/acn3.50878
  • Ikeda Y, Long DM. The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery. 1990;27(1):1–11. doi: 10.1097/00006123-199007000-00001
  • Can M, Gul S, Bektas S, et al. Effects of dexmedetomidine or methylprednisolone on inflammatory responses in spinal cord injury. Acta Anaesthesiol Scand. 2009;53(8):1068–1072. doi: 10.1111/j.1399-6576.2009.02019.x
  • Cosar M, Eser O, Fidan H, et al. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage. Surg Neurol. 2009;71(1):54–59. doi: 10.1016/j.surneu.2007.08.020
  • Kwiecien JM, Dabrowski W, Dąbrowska-Bouta B, et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS One. 2020;15(3):1–22. doi: 10.1371/journal.pone.0226584
  • Hall SRR, Wang L, Milne B, et al. La dexmédétomidine centrale atténue la dysfonction cardiaque chez un modèle rongeur d’hypertension intracrânienne. Can J Anaesth. 2004;51(10):1025–1033. doi: 10.1007/BF03018493
  • Laundenbach V, Mantz J, Lagercrantz H, et al. Effects of α2-adrenoceptor agonists on perinatal excitotoxic brain injury. Anesthesiology. 2002;96(1):134–141. doi: 10.1097/00000542-200201000-00026
  • Flierl MA, Stahel PF, Beauchamp KM, et al. Mouse closed head injury model induced by a weight-drop device. Nat Protoc. 2009;4(9):1328–1337. doi: 10.1038/nprot.2009.148
  • Blaha M, Schwab J, Vajnerova O, et al. Intracranial pressure and experimental model of diffuse brain injury in rats. J Korean Neurosurg Soc. 2010;47(1):7–10. doi: 10.3340/jkns.2010.47.1.7
  • Jo YY, Lee D, Jung WS, et al. Comparison of intravenous dexmedetomidine and midazolam for bispectral index-guided sedation during spinal anesthesia. Med Sci Monit. 2016;22:3544–3551. doi: 10.12659/MSM.896461
  • Alam A, Suen KC, Hana Z, et al. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol Internet. 2017;60:102–116. doi: 10.1016/j.ntt.2017.01.001
  • Endesfelder S, Makki H, Von Haefen C, et al. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. PLoS One. 2017;12(2):1–20. doi: 10.1371/journal.pone.0171498

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.