Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 46, 2024 - Issue 7
65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sevoflurane-induced cognitive effect on α7-nicotine receptor and M1 acetylcholine receptor expression in the hippocampus of aged rats

, & ORCID Icon
Pages 593-604 | Received 07 Feb 2024, Accepted 28 Mar 2024, Published online: 15 May 2024

References

  • Huang JM, Lv ZT, Zhang B, et al. Intravenous parecoxib for early postoperative cognitive dysfunction in elderly patients: evidence from a meta-analysis. Expert Rev Clin Pharmacol. 2020 Apr;13(4):451–460.
  • Cui RS, Wang K, Wang ZL. Sevoflurane anesthesia alters cognitive function by activating inflammation and cell death in rats. Exp Ther Med. 2018 May;15(5):4127–4130. doi: 10.3892/etm.2018.5976
  • Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth. 2017 Dec 1;119(suppl_1):i115–i125. doi: 10.1093/bja/aex354
  • Tang X, Zhao Y, Zhou Z, et al. Resveratrol mitigates sevoflurane-induced neurotoxicity by the SIRT1-dependent regulation of BDNF expression in developing mice. Oxid Med Cell Longevity. 2020;2020:9018624. doi: 10.1155/2020/9018624
  • Gibert S, Sabourdin N, Louvet N, et al. Epileptogenic effect of sevoflurane: determination of the minimal alveolar concentration of sevoflurane associated with major epileptoid signs in children. Anesthesiology. 2012 Dec;117(6):1253–1261.
  • Ozer AB, Ceribasi S, Ceribasi AO, et al. Effects of sevoflurane on apoptosis, BDNF and cognitive functions in neonatal rats. Bratisl Lek Listy. 2017;118(2):80–84. doi: 10.4149/BLL_2017_017
  • Qiu Y, Wang Y, Wang X, et al. Role of the hippocampal 5-HT1A receptor-mediated cAMP/PKA signalling pathway in sevoflurane-induced cognitive dysfunction in aged rats. J Int Med Res. 2018 Mar;46(3):1073–1085.
  • Chen X, Zhao M, White PF, et al. The recovery of cognitive function after general anesthesia in elderly patients: a comparison of desflurane and sevoflurane. Anesthesia & Analgesia. 2001 Dec;93(6):1489–1494. table of contents. doi: 10.1097/00000539-200112000-00029
  • Wu X, Lu Y, Dong Y, et al. The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-α, IL-6, and IL-1β. Neurobiol Aging.2012 Jul;33(7):1364–1378.
  • Peng S, Zhang Y, Li GJ, et al. The effect of sevoflurane on the expression of M1 acetylcholine receptor in the hippocampus and cognitive function of aged rats. Mol Cell Biochem. 2012 Feb;361(1–2):229–233.
  • Tian Y, Guo S, Wu X, et al. Minocycline alleviates sevoflurane-induced cognitive impairment in aged rats. Cell mol neurobiol. 2015 May;35(4):585–594.
  • Chen G, Gong M, Yan M, et al. Sevoflurane induces endoplasmic reticulum stress mediated apoptosis in hippocampal neurons of aging rats. PLoS One. 2013;8(2):e57870. doi: 10.1371/journal.pone.0057870
  • Izquierdo I, McGaugh JL. Behavioural pharmacology and its contribution to the molecular basis of memory consolidation. Behav Pharmacol. 2000 Nov;11(7–8):517–534. doi: 10.1097/00008877-200011000-00001
  • Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci. 2018 Sep;48(5):2199–2230. doi: 10.1111/ejn.14089
  • Chen ZR, Huang JB, Yang SL, et al. Role of cholinergic signaling in alzheimer’s disease. Molecules. 2022 Mar 10;27(6):1816. doi: 10.3390/molecules27061816
  • Mangelus M, Kroyter A, Galron R, et al. Reactive oxygen species regulate signaling pathways induced by M1 muscarinic receptors in PC12M1 cells. J Neurochem. 2001 Mar;76(6):1701–1711.
  • Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006 Dec;16(6):710–715. doi: 10.1016/j.conb.2006.09.002
  • Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res. 2011 Aug 10;221(2):443–465. doi: 10.1016/j.bbr.2011.01.055
  • Alkire MT, Gorski LA. Relative amnesic potency of five inhalational anesthetics follows the Meyer-Overton rule. Anesthesiology. 2004 Aug;101(2):417–429. doi: 10.1097/00000542-200408000-00023
  • Dutton RC, Maurer AJ, Sonner JM, et al. The concentration of isoflurane required to suppress learning depends on the type of learning. Anesthesiology. 2001 Mar;94(3):514–519.
  • McGaugh JL. Memory–a century of consolidation. Science. 2000 Jan 14;287(5451):248–251. doi: 10.1126/science.287.5451.248
  • Kim DH, Yoon BH, Kim YW, et al. The seed extract of cassia obtusifolia ameliorates learning and memory impairments induced by scopolamine or transient cerebral hypoperfusion in mice. J Pharmacol Sci. 2007 Sep;105(1):82–93.
  • Peng S, Zhang Y, Zhang J, et al. Effect of ketamine on ERK expression in hippocampal neural cell and the ability of learning behavior in minor rats. Mol Biol Rep. 2010 Oct;37(7):3137–3142.
  • Ma Y, Peng J, Liu W, et al. Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol & Cell Proteomics. 2009 Aug;8(8):1878–1890.
  • Ramage TM, Chang FL, Shih J, et al. Distinct long-term neurocognitive outcomes after equipotent sevoflurane or isoflurane anaesthesia in immature rats. Br J Anaesth. 2013 Jun;110(110 Suppl 1(Suppl 1)):i39–46.
  • Shen X, Liu Y, Xu S, et al. Early life exposure to sevoflurane impairs adulthood spatial memory in the rat. Neurotoxicology. 2013 Dec;39:45–56. doi: 10.1016/j.neuro.2013.08.007
  • Goebel-Goody SM, Davies KD, Alvestad Linger RM, et al. Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adult hippocampal slices. Neuroscience. 2009 Feb 18;158(4):1446–1459. doi: 10.1016/j.neuroscience.2008.11.006
  • Head BP, Patel HH, Niesman IR, et al. Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology. 2009 Apr;110(4):813–825.
  • Fabian-Fine R, Skehel P, Errington ML, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci. 2001 Oct 15;21(20):7993–8003. doi: 10.1523/JNEUROSCI.21-20-07993.2001
  • Lozada AF, Wang X, Gounko NV, et al. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors. J Neurosci. 2012 May 30;32(22):7651–7661. doi: 10.1523/JNEUROSCI.6246-11.2012
  • Morley BJ, Mervis RF. Dendritic spine alterations in the hippocampus and parietal cortex of alpha7 nicotinic acetylcholine receptor knockout mice. Neuroscience. 2013 Mar 13;233:54–63. doi: 10.1016/j.neuroscience.2012.12.025
  • Luo JH, Fu ZY, Losi G, et al. Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture. Neuropharmacology. 2002 Mar;42(3):306–318.
  • Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology. 2008 Dec;55(7):1081–1094. doi: 10.1016/j.neuropharm.2008.07.046
  • Gambrill AC, Barria A. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci USA. 2011 Apr 5;108(14):5855–5860. doi: 10.1073/pnas.1012676108
  • Shi Y, Ethell IM. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci. 2006 Feb 8;26(6):1813–1822. doi: 10.1523/JNEUROSCI.4091-05.2006
  • Brigman JL, Wright T, Talani G, et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci. 2010 Mar 31;30(13):4590–4600. doi: 10.1523/JNEUROSCI.0640-10.2010
  • Zhou Q, Homma KJ, Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron. 2004 Dec 2;44(5):749–757. doi: 10.1016/j.neuron.2004.11.011
  • Rada EM, Tharakan EC, Flood P. Volatile anesthetics reduce agonist affinity at nicotinic acetylcholine receptors in the brain. Anesthesia & Analgesia. 2003 Jan;96(1):108–111. doi: 10.1213/00000539-200301000-00023 table of contents.
  • Lu Y, Wu X, Dong Y, et al. Anesthetic sevoflurane causes neurotoxicity differently in neonatal naïve and Alzheimer disease transgenic mice. Anesthesiology.2010 Jun;112(6):1404–1416.
  • Wang WY, Jia LJ, Luo Y, et al. Location- and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling. Mol Neurobiol. 2016 Jan;53(1):216–230.
  • Han XD, Li M, Zhang XG, et al. Single sevoflurane exposure increases methyl-CpG island binding protein 2 phosphorylation in the hippocampus of developing mice. Mol Med Rep. 2015 Jan;11(1):226–230.
  • Lee S, Kim W, Ham BJ, et al. Activity-dependent NR2B expression is mediated by MeCP2-dependent epigenetic regulation. Biochem Biophys Res Commun. 2008 Dec 19;377(3):930–934. doi: 10.1016/j.bbrc.2008.10.082
  • Li S, Li Z, Pei L, et al. The α7nACh-NMDA receptor complex is involved in cue-induced reinstatement of nicotine seeking. J Exp Med. 2012 Nov 19;209(12):2141–2147. doi: 10.1084/jem.20121270
  • Yang Y, Paspalas CD, Jin LE, et al. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA. 2013 Jul 16;110(29):12078–12083. doi: 10.1073/pnas.1307849110
  • Yamazaki Y, Jia Y, Niu R, et al. Nicotine exposure in vivo induces long-lasting enhancement of NMDA receptor-mediated currents in the hippocampus. Eur J Neurosci. 2006 Apr;23(7):1819–1828.
  • Grosshans DR, Clayton DA, Coultrap SJ, et al. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat neurosci. 2002 Jan;5(1):27–33.
  • Orsini C, Castellano C, Cabib S. Pharmacological evidence of muscarinic-cholinergic sensitization following chronic stress. Psychopharmacology. 2001 May;155(2):144–147. doi: 10.1007/s002130100690
  • Yokoyama T, Minami K, Sudo Y, et al. Effects of sevoflurane on voltage-gated sodium channel Na(v)1.8, Na(v)1.7, and Na(v)1.4 expressed in Xenopus oocytes. J Anesth. 2011 Aug;25(4):609–613.
  • Mehmood A, Ali W, Din ZU, et al. Clustered regularly interspaced short palindromic repeats as an advanced treatment for Parkinson’s disease. Brain Behav. 2021 Aug;11(8):e2280.
  • Mehmood A, Ali W, Song S, et al. Optical coherence tomography monitoring and diagnosing retinal changes in multiple sclerosis. Brain Behav. 2021 Oct;11(10):e2302.
  • Yin BW, Li B, Mehmood A, et al. BLK polymorphisms and expression level in neuromyelitis optica spectrum disorder. CNS Neurosci Ther. 2021 Dec;27(12):1549–1560.
  • Song S, Guo R, Mehmood A, et al. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway. CNS Neurosci Ther. 2022 Mar;28(3):422–434.
  • Haider A, Wei Z, Parveen S, et al. The association between comorbid body dysmorphic disorder and depression: moderation effect of age and mediation effect of body mass index and body image among Pakistani students. Middle East Current Psychiatry. 2023/02/6;30(1):11. doi: 10.1186/s43045-023-00283-8
  • Shah W, Ali I, Shahid W, et al. Obesity prevalence factors associated with sympathetic overactivity and hypertension. Neurol Clin Neurosci. 2023;11(6):310–315. doi: 10.1111/ncn3.12765
  • Mehmood A, Song S, Du X, et al. mRNA expression profile reveals differentially expressed genes in splenocytes of experimental autoimmune encephalomyelitis model. Int J Experimental Path. 2023 Oct;104(5):247–257.
  • Mehmood A, Shah S, Guo RY, et al. Methyl-CpG-binding protein 2 emerges as a central player in multiple sclerosis and neuromyelitis optica spectrum disorders. Cell mol neurobiol. 2023 Nov;43(8):4071–4101.
  • Wenqi Y, Lingxi W, Mehmood A, et al. Nanotechnology-enabled therapies improve blood-brain barrier challenges in brain tumor. Int J Polym Mater Polym Biomater. 2023;Biomaterials.1–22. doi: 10.1080/00914037.2023.2291105
  • Zeng X, Zhang K, Liang M, et al. NAD+ affects differentially expressed genes-MBOAT2-SLC25A21-SOX6 in experimental autoimmune encephalomyelitis model. Int J Neurosci. 2024;1–8. doi: 10.1080/00207454.2024.2313022
  • Khan M, Shah S, Shah W, et al. Gut microbiome as a treatment in colorectal cancer. Int Rev Immunol. 2024;1–19. doi: 10.1080/08830185.2024.2312294
  • Uludag K, Wang DM, Zhang XY. Tardive dyskinesia development, superoxide dismutase levels, and relevant genetic polymorphisms. Oxid Med Cell Longevity. 2022;2022:5748924. doi: 10.1155/2022/5748924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.