794
Views
10
CrossRef citations to date
0
Altmetric
Applications and Case Studies

Diagnosing Glaucoma Progression With Visual Field Data Using a Spatiotemporal Boundary Detection Method

ORCID Icon, &
Pages 1063-1074 | Received 22 Jul 2017, Accepted 11 Oct 2018, Published online: 01 Apr 2019

References

  • Banerjee, S., and Gelfand, A. E. (2006), “Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models,” Journal of the American Statistical Association, 101, 1487–1501. DOI: 10.1198/016214506000000041.
  • Banerjee, S., Gelfand, A. E., and Carlin, B. P. (2003), Hierarchical Modeling and Analysis for Spatial Data, Boca Raton, FL: CRC Press.
  • Besag, J. (1974), “Spatial Interaction and the Statistical Analysis of Lattice Systems,” Journal of the Royal Statistical Society, Series B, 36, 192–236. DOI: 10.1111/j.2517-6161.1974.tb00999.x.
  • Betz-Stablein, B. D., Morgan, W. H., House, P. H., and Hazelton, M. L. (2013), “Spatial Modeling of Visual Field Data for Assessing Glaucoma Progression,” Investigative Ophthalmology & Visual Science, 54, 1544–1553. DOI: 10.1167/iovs.12-11226.
  • Bowman, F. D., Caffo, B., Bassett, S. S., and Kilts, C. (2008), “A Bayesian Hierarchical Framework for Spatial Modeling of fMRI Data,” NeuroImage, 39, 146–156. DOI: 10.1016/j.neuroimage.2007.08.012.
  • Bryan, S. R., Eilers, P. H., Lesaffre, E. M., Lemij, H. G., and Vermeer, K. A. (2015), “Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields,” Investigative Ophthalmology & Visual Science, 56, 4283–4289. DOI: 10.1167/iovs.15-16691.
  • Castruccio, S., Ombao, H., and Genton, M. G. (2016), “A Multi-resolution Spatio-Temporal Model for Brain Activation and Connectivity in fMRI Data,” arXiv no. 1602.02435.
  • Chauhan, B. C., Garway-Heath, D. F., GoñI, F. J., Rossetti, L., Bengtsson, B., Viswanathan, A. C., and Heijl, A. (2008), “Practical Recommendations for Measuring Rates of Visual Field Change in Glaucoma,” British Journal of Ophthalmology, 92, 569–573. DOI: 10.1136/bjo.2007.135012.
  • Davson, H. (2012), Physiology of the Eye, Amsterdam: Elsevier.
  • Ecker, M. D., and Gelfand, A. E. (2003), “Spatial Modeling and Prediction Under Stationary Non-geometric Range Anisotropy,” Environmental and Ecological Statistics, 10, 165–178.
  • Eddelbuettel, D., François, R., Allaire, J., Chambers, J., Bates, D., and Ushey, K. (2011), “Rcpp: Seamless R and C++ Integration,” Journal of Statistical Software, 40, 1–18.
  • Garway-Heath, D. F., Poinoosawmy, D., Fitzke, F. W., and Hitchings, R. A. (2000), “Mapping the Visual Field to the Optic Disc in Normal Tension Glaucoma Eyes,” Ophthalmology, 107, 1809–1815.
  • Gelfand, A. E., Diggle, P., Guttorp, P., and Fuentes, M. (2010), Handbook of Spatial Statistics, Boca Raton, FL: CRC Press.
  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2014), Bayesian Data Analysis (Vol. 2), Boca Raton, FL: Chapman & Hall/CRC.
  • Gelman, A., and Shalizi, C. R. (2013), “Philosophy and the Practice of Bayesian Statistics,” British Journal of Mathematical and Statistical Psychology, 66, 8–38. DOI: 10.1111/j.2044-8317.2011.02037.x.
  • Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741. DOI: 10.1109/TPAMI.1984.4767596.
  • He, Y., Chen, Z., and Evans, A. (2008), “Structural Insights Into Aberrant Topological Patterns of Large-Scale Cortical Networks in Alzheimer’s Disease,” Journal of Neuroscience, 28, 4756–4766. DOI: 10.1523/JNEUROSCI.0141-08.2008.
  • Jacquez, G. M., and Greiling, D. A. (2003), “Geographic Boundaries in Breast, Lung and Colorectal Cancers in Relation to Exposure to Air Toxics in Long Island, New York,” International Journal of Health Geographics, 2, 4.
  • Konrad, K., and Eickhoff, S. B. (2010), “Is the ADHD Brain Wired Differently? A Review on Structural and Functional Connectivity in Attention Deficit Hyperactivity Disorder,” Human Brain Mapping, 31, 904–916. DOI: 10.1002/hbm.21058.
  • Lee, D., and Mitchell, R. (2011), “Boundary Detection in Disease Mapping Studies,” Biostatistics, 15, 457–469.
  • Lee, D., and Mitchell, R. (2013), “Locally Adaptive Spatial Smoothing Using Conditional Auto-regressive Models,” Journal of the Royal Statistical Society, Series C, 62, 593–608. DOI: 10.1111/rssc.12009.
  • Lee, D., and Mitchell, R. (2014), “Controlling for Localised Spatio-Temporal Autocorrelation in Long-Term Air Pollution and Health Studies,” Statistical Methods in Medical Research, 23, 488–506. DOI: 10.1177/0962280214527384.
  • Lee, D., Rushworth, A., and Sahu, S. K. (2014), “A Bayesian Localized Conditional Autoregressive Model for Estimating the Health Effects of Air Pollution,” Biometrics, 70, 419–429. DOI: 10.1111/biom.12156.
  • Leroux, B. G., Lei, X., and Breslow, N. (2000), “Estimation of Disease Rates in Small Areas: A New Mixed Model for Spatial Dependence,” in Statistical Models in Epidemiology, the Environment, and Clinical Trials, eds. M. E. Halloran and D. Berry, New York, NY: Springer, pp. 179–191.
  • Li, P., Banerjee, S., Hanson, T. A., and McBean, A. M. (2015), “Bayesian Models for Detecting Difference Boundaries in Areal Data,” Statistica Sinica, 25, 385–402.
  • Li, P., Banerjee, S., and McBean, A. M. (2011), “Mining Boundary Effects in Areally Referenced Spatial Data Using the Bayesian Information Criterion,” Geoinformatica, 15, 435–454. DOI: 10.1007/s10707-010-0109-0.
  • Lu, H., and Carlin, B. P. (2005), “Bayesian Areal Wombling for Geographical Boundary Analysis,” Geographical Analysis, 37, 265–285. DOI: 10.1111/j.1538-4632.2005.00624.x.
  • Lu, H., Reilly, C. S., Banerjee, S., and Carlin, B. P. (2007), “Bayesian Areal Wombling via Adjacency Modeling,” Environmental and Ecological Statistics, 14, 433–452. DOI: 10.1007/s10651-007-0029-9.
  • Ma, H., and Carlin, B. P. (2007), “Bayesian Multivariate Areal Wombling for Multiple Disease Boundary Analysis,” Bayesian Analysis, 2, 281–302. DOI: 10.1214/07-BA211.
  • Quigley, H. A., Katz, J., Derick, R. J., Gilbert, D., and Sommer, A. (1992), “An Evaluation of Optic Disc and Nerve Fiber Layer Examinations in Monitoring Progression of Early Glaucoma Damage,” Ophthalmology, 99, 19–28. DOI: 10.1016/S0161-6420(92)32018-4.
  • R Core Team (2016), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing.
  • Rushworth, A., Lee, D., and Sarran, C. (2017), “An Adaptive Spatiotemporal Smoothing Model for Estimating Trends and Step Changes in Disease Risk,” Journal of the Royal Statistical Society, Series C, 66, 141–157. DOI: 10.1111/rssc.12155.
  • Sampson, P. D. (2010), “Constructions for Nonstationary Spatial Processes,” in The Handbook of Spatial Statistics, eds. A. E. Gelfand, P. J. Diggle, M. Fuentes, and P. Guttorp, Boca Raton, FL: CRC Press, pp. 119–130, chapter 9.
  • Smith, S. D., Katz, J., and Quigley, H. A. (1996), “Analysis of Progressive Change in Automated Visual Fields in Glaucoma,” Investigative Ophthalmology & Visual Science, 37, 1419–1428.
  • Smythies, J. (1996), “A Note on the Concept of the Visual Field in Neurology, Psychology, and Visual Neuroscience,” Perception, 25, 369–372. DOI: 10.1068/p250369.
  • Tanner, M. (1996), Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, New York: Springer-Verlag.
  • Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., and Cheng, C.-Y. (2014), “Global Prevalence of Glaucoma and Projections of Glaucoma Burden Through 2040: A Systematic Review and Meta-Analysis,” Ophthalmology, 121, 2081–2090. DOI: 10.1016/j.ophtha.2014.05.013.
  • Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., de Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., and Doddrell, D. M. (2004), “Mapping Cortical Change in Alzheimer’s Disease, Brain Development, and Schizophrenia,” NeuroImage, 23, S2–S18. DOI: 10.1016/j.neuroimage.2004.07.071.
  • Tobin, J. (1958), “Estimation of Relationships for Limited Dependent Variables,” Econometrica, 26, 24–36. DOI: 10.2307/1907382.
  • Vianna, J. R., and Chauhan, B. C. (2015), “How to Detect Progression in Glaucoma,” Progress in Brain Research, 221, 135–158. DOI: 10.1016/bs.pbr.2015.04.011.
  • Warren, J. L., Mwanza, J.-C., Tanna, A. P., and Budenz, D. L. (2016), “A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression Using Spatially Correlated Visual Field Data,” Translational Vision Science & Technology, 5, 14–14. DOI: 10.1167/tvst.5.4.14.
  • West, M. (1996), Bayesian Forecasting, Wiley Online Library.
  • Womble, W. H. (1951), “Differential Systematics,” Science, 114, 315–322.
  • Zhu, H., Russell, R. A., Saunders, L. J., Ceccon, S., Garway-Heath, D. F., and Crabb, D. P. (2014), “Detecting Changes in Retinal Function: Analysis With Non-stationary Weibull Error Regression and Spatial Enhancement (ANSWERS),” PLoS One, 9, 1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.