221
Views
10
CrossRef citations to date
0
Altmetric
Articles

Numerical Simulation of the Coupled Sine-Gordon Equations via a Linearized and Decoupled Compact ADI Method

Pages 1053-1079 | Received 11 Oct 2017, Accepted 14 Mar 2019, Published online: 04 Apr 2019

References

  • Khusnutdinova, K. R., Pelinovsky, D. E. (2003). On the exchange of energy in coupled Klein–Gordon equations. Wave Motion 38(1):1–10. DOI: 10.1016/S0165-2125(03)00022-2.
  • Braun, O. M., Kivshar, Y. S. (1998). Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306(1–2):1–108. DOI: 10.1016/S0370-1573(98)00029-5.
  • Yomosa, S. (1983). Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A 27(4):2120–2125. DOI: 10.1103/PhysRevA.27.2120.
  • Campbell, D. K., Peyrard, M., Sodano, P. (1986). Kink-antikink interactions in the double sine-Gordon equation. Physica D 19(2):165–205. DOI: 10.1016/0167-2789(86)90019-9.
  • Sun, Y. (2015). New exact traveling wave solutions for double sine–Gordon equation. Appl. Math. Comput. 258:100–104. DOI: 10.1016/j.amc.2015.02.002.
  • Salamo, G., Gibbs, H., Churchill, G. (1974). Effects of degeneracy on self-induced transparency. Phys. Rev. Lett. 33(5):273. DOI: 10.1103/PhysRevLett.33.273.
  • Popov, C. A. (2005). Perturbation theory for the double sine-Gordon equation. Wave Motion 42(4):309–316. DOI: 10.1016/j.wavemoti.2005.04.007.
  • Batiha, B., Noorani, M. S. M., Hashim, I. (2007). Approximate analytical solution of the coupled sine-Gordon equation using the variational iteration method. Phys. Scr. 76(5):445–448. DOI: 10.1088/0031-8949/76/5/007.
  • Darvishi, M. T., Khani, F., Hamedi-Nezhad, S., Ryu, S. W. (2010). New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations. Inter. J. Comput. Math. 87(4):908–919. DOI: 10.1080/00207160802247596.
  • Hernandez, J., Salas, A., Lugo, J., Clbavir, G. (2010). Exact solutions for a nonlinear model. Appl. Math. Comput. 217:1646–1651. DOI: 10.1016/j.amc.2009.09.011.
  • Salas, A. H. (2010). Exact solutions of coupled sine-Gordon equations. Nonlinear Anal. RWA 11(5):3930–3935. DOI: 10.1016/j.nonrwa.2010.02.020.
  • Zhou, Q., Ekici, M., Mirzazadeh, M., Sonmezoglu, A. (2017). The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics. J. Morden Optics 64(16):1677–1682. DOI: 10.1080/09500340.2017.1310318.
  • Cui, M. (2010). High order compact alternating direction implicit method for the generalized sine-Gordon equation. J. Comput. Appl. Math. 235(3):837–849. DOI: 10.1016/j.cam.2010.07.016.
  • Deng, D., Zhang, C. (2012). A new fourth-order numerical algorithm for a class of nonlinear wave equations. Appl. Numer. Math. 62(12):1864–1879. DOI: 10.1016/j.apnum.2012.07.004.
  • Shi, D., Pei, L. (2013). Nonconforming quadrilateral finite element method for a class of nonlinear sine–Gordon equations. Appl. Math. Comput. 219:9447–9460. DOI: 10.1016/j.amc.2013.03.008.
  • Cao, W., Guo, B. (1993). Fourier collocation method for solving nonlinear Klein–Gordon equation. J. Comput. Phys. 108(2):296–305. DOI: 10.1006/jcph.1993.1183.
  • Sheng, Q., Khaliq, A. Q. M., Voss, D. A. (2005). Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme. Math. Comput. Simulat. 68(4):355–373. DOI: 10.1016/j.matcom.2005.02.017.
  • Harish Kumar, K., Antony Vijesh, V. (2016). Chebyshev wavelet quasilinearization scheme for coupled nonlinear sine-Gordon equations. J. Comput. Nonlinear Dynam. 12(1):011018. DOI: 10.1115/1.4035056.
  • Lele, R. K. (1992). Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1):16–42. DOI: 10.1016/0021-9991(92)90324-R.
  • Ilati, M., Dehghan, M. (2015). The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52:99–109. DOI: 10.1016/j.enganabound.2014.11.023.
  • Shah, A., Yuan, L., Khan, A. (2010). Upwind compact fnite difference scheme for time-accurate solution of the incompressible Navier-Stokes equation. Appl. Math. Comput. 215:3201–3213. DOI: 10.1016/j.amc.2009.10.001.
  • Koleva, M. N., Mudzimbabwe, W., Vulkov, L. G. (2017). Fourth-order compact schemes for a parabolic-ordinary system of European option pricing liquidity shocks model. Numer. Algor. 74(1):59–75. DOI: 10.1007/s11075-016-0138-3.
  • Deng, D., Jiang, Y., Liang, D. (2017). High-order finite difference methods for a second order dual-phase-lagging models of microscale heat transfer. Appl. Math. Comput. 309:31–48. DOI: 10.1016/j.amc.2017.03.035.
  • Douglas, J., Gunn, J. (1964). A general formulation of alternating direction method: Part I. Parabolic and hyperbolic problem. Numer. Math. 6(1):428–453. DOI: 10.1007/BF01386093.
  • Zhang, Z. (2011). The multistep finite difference fractional steps method for a class of viscous wave equations. Math. Meth. Appl. Sci. 34(4):442–454.
  • Deng, D., Zhang, C. (2015). Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations. Appl. Math. Model. 39(3–4):1033–1049. DOI: 10.1016/j.apm.2014.07.031.
  • Deng, D. (2015). The study of a fourth-order multistep ADI method applied to nonlinear delay reaction-diffusion equations. Appl. Numer. Math. 96:118–133. DOI: 10.1016/j.apnum.2015.05.007.
  • Liao, H. L., Sun, Z. Z. (2010). Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Meth. Part. Differ. Eq. 26(1):37–60. DOI: 10.1002/num.20414.
  • Liao, H. L., Sun, Z. Z., Shi, H. S. (2010). Error estimate of fourth-order compact scheme for solving linear Schrodinger equations. SIAM J. Numer. Anal. 47(6):4381–4401. DOI: 10.1137/080714907.
  • Liao, H. L., Sun, Z. Z., Shi, H. S., Wang, T. C. (2012). Convergence of compact ADI method for solving linear Schrodinger equations. Numer. Meth Part Differ Eq. 28(5):1598–1619. DOI: 10.1002/num.20694.
  • Liao, H. L., Sun, Z. Z. (2013). A two-level compact ADI method for solving second-order wave equations. Int. J. Comput. Math. 90(7):1471–1488. DOI: 10.1080/00207160.2012.754016.
  • Liao, H. L., Sun, Z. Z. (2011). Maximum norm error estimates of effcient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235(8):2217–2233. DOI: 10.1016/j.cam.2010.10.019.
  • Sun, Z. (2012). Numerical Methods for Partial Differential Equations[M]. 2nd ed. Beijing: Science Press (In Chinese).
  • Wang, T., Guo, B. (2011). Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation. Numer. Meth Part Differ Eq. 27(5):1340–1363. DOI: 10.1002/num.20588.
  • Dodd, R. K., Eilbeck, I. C., Gibbon, J. D., Morris, H. C. (1982). Solitons and Nonlinear Wave Equations[M]. London: Academic.
  • Kontorova T. A., and Frenkel, Y. I. (1938). On the theory of plastic deformation and twinning I, II. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 8:89–95, 1340–1368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.