184
Views
23
CrossRef citations to date
0
Altmetric
Articles

Parallel Iterative Methods for Solving the Split Common Fixed Point Problem in Hilbert Spaces

, &
Pages 778-805 | Received 03 Apr 2019, Accepted 13 Oct 2019, Published online: 25 Oct 2019

References

  • Censor, Y., Elfving, T. (1994). A multi projection algorithm using Bregman projections in a product space. Numer. Algorithm. 8(2):221–239. DOI: 10.1007/BF02142692.
  • Byrne, C. (2002). Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2):441–453. DOI: 10.1088/0266-5611/18/2/310.
  • Byrne, C. (2004). A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1):103–120. DOI: 10.1088/0266-5611/20/1/006.
  • Censor, Y., Elfving, T., Kopf, N., Bortfeld, T. (2005). The multiple-sets split feasibility problem and its application. Inverse Probl. 21(6):2071–2084. DOI: 10.1088/0266-5611/21/6/017.
  • Censor, Y., Segal, A. (2009). The split common fixed point problem for directed operators. J. Convex Anal. 16:587–600.
  • Censor, Y., Gibali, A., Reich, R. (2012). Algorithms for the split variational inequality problem. Numer. Algorithm. 59(2):301–323. DOI: 10.1007/s11075-011-9490-5.
  • Masad, E., Reich, S. (2007). A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8:367–371.
  • Moudafi, A. (2010). The split common fixed point problem for demicontractive mappings. Inverse Probl. 26(5):055007. DOI: 10.1088/0266-5611/26/5/055007.
  • Schöpfer, F., Schuster, T., Louis, A. K. (2008). An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24(5):055008. DOI: 10.1088/0266-5611/24/5/055008.
  • Shehu, Y., Iyiola, O. S., Enyi, C. D. (2016). An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithm. 72(4):835–864. DOI: 10.1007/s11075-015-0069-4.
  • Takahashi, W. (2014). The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15:1349–1355.
  • Takahashi, W. (2015). The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16:1449–1459.
  • Xu, H. K. (2006). A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22(6):2021–2034. DOI: 10.1088/0266-5611/22/6/007.
  • Xu, H. K. (2010). Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26(10):105018. DOI: 10.1088/0266-5611/26/10/105018.
  • Eicke, B. (1992). Iteration methods for convexly constrained ill-posed problems in Hilbert space. Numer. Funct. Anal. Optim. 13:423–429.
  • Cegielski, A. (2015). General method for solving the split common fixed point problem. J. Optim. Theory Appl. 165(2):385–404. DOI: 10.1007/s10957-014-0662-z.
  • Cegielski, A., Al-Musallam, F. (2016). Strong convergence of a hybrid steepest descent method for the split common fixed point problem. Optimization 65(7):1463–1476. DOI: 10.1080/02331934.2016.1147038.
  • Eslamian, M., Eslamian, P. (2016). Strong convergence of a split common fixed point problem. Numer. Funct. Anal. Optim. 37(10):1248–1266. DOI: 10.1080/01630563.2016.1200076.
  • Kraikaew, R., Saejung, S. (2014). On split common fixed point problems. J. Math. Anal. Appl. 415(2):513–524. DOI: 10.1016/j.jmaa.2014.01.068.
  • Shehu, Y. (2015). New convergence theorems for split common fixed point problems in Hilbert spaces. J. Nonlinear Convex Anal. 16:167–181.
  • Shehu, Y., Cholamjiak, P. (2016). Another look at the split common fixed point problem for demicontractive operators. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. 110(1):201–218. DOI: 10.1007/s13398-015-0231-9.
  • Tang, Y. C., Liu, L. W. (2016). Several iterative algorithms for solving the split common fixed point problem of directed operators with applications. Optimization 65(1):53–65. DOI: 10.1080/02331934.2014.984708.
  • Padcharoen, A., Kumam, P., Cho, Y. J. (2019). Split common fixed point problems for demicontractive operators. Numer. Algorithm. 82(1):297–320. DOI: 10.1007/s11075-018-0605-0.
  • Reich, S., Tuyen, T. M. (2019). A new algorithm for solving the split common null point problem in Hilbert spaces. Numer. Algorithm. https://doi.org/10.1007/s11075-019-00703-z
  • Reich, S., Tuyen, T. M. (2019). Iterative methods for solving the generalized split common null point problem in Hilbert spaces. Optimization:1–26. DOI: 10.1080/02331934.2019.1655562.
  • Halpern, B. (1967). Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73(6):597–957. DOI: 10.1090/S0002-9904-1967-11864-0.
  • Moudafi, A. (2000). Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241(1):46–55. DOI: 10.1006/jmaa.1999.6615.
  • Goebel, K., Reich, S. (1984). Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York, NY: Marcel Dekker.
  • Bauschke, H. H., Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. New York: Springer.
  • Goebel, K., Kirk, W. A. (1990). Topics in Metric Fixed Point Theory. Cambridge Stud. Adv. Math 28. Cambridge: Cambridge University Press.
  • Maingé, P. E. (2008). Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16(7-8):899–912. DOI: 10.1007/s11228-008-0102-z.
  • Xu, H. K. (2006). Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl. 314(2):631–643. DOI: 10.1016/j.jmaa.2005.04.082.
  • Byrne, C., Censor, Y., Gibali, A., Reich, S. (2012). The split common null point problem. J. Nonlinear Convex Anal. 13:759–775.
  • Chuang, C. S. (2013). Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl. 2013(1):320–350. pp. DOI: 10.1186/1687-1812-2013-350.
  • Chuang, C. S. (2016). Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem. Optimization 65(4):859–876. DOI: 10.1080/02331934.2015.1072715.
  • Dadashi, V. (2017). Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99:299–306. DOI: 10.1017/S000497271700017X.
  • Takahashi, S., Takahashi, W. (2016). The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65(2):281–287. DOI: 10.1080/02331934.2015.1020943.
  • Takahashi, W. (2015). The split common null point problem in Banach spaces. Arch. Math. 104(4):357–365. DOI: 10.1007/s00013-015-0738-5.
  • Tuyen, T. M. (2019). A strong convergence theorem for the split common null point problem in Banach spaces. Appl. Math. Optim. 79(1):207–227. DOI: 10.1007/s00245-017-9427-z.
  • Takahashi, S., Takahashi, W., Toyoda, M. (2010). Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147(1):27–41. DOI: 10.1007/s10957-010-9713-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.