111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimal Control of Time-Periodic Navier-Stokes-Voigt Equations

&
Pages 1588-1610 | Received 15 Mar 2019, Accepted 21 Jun 2020, Published online: 03 Jul 2020

References

  • Oskolkov, A. P. (1973). The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Nauchn. Semin. LOMI 38:98–136.
  • Cao, Y., Lunasin, E. M., Titi, E. S. (2006). Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4):823–848. DOI: 10.4310/CMS.2006.v4.n4.a8.
  • Ebrahimi, M. A., Holst, M., Lunasin, E. (2013). The Navier-Stokes-Voight model for image inpainting. IMA J. Appl. Math. 78(5):869–894. DOI: 10.1093/imamat/hxr069.
  • Holst, M., Lunasin, E., Tsogtgerel, G. (2010). Analysis of a general family of regularized Navier-Stokes and MHD models. J. Nonlinear Sci. 20(5):523–567. DOI: 10.1007/s00332-010-9066-x.
  • Kalantarov, V. K., Titi, E. S. (2009). Global attractor and determining modes for the 3D Navier-Stokes-Voight equations. Chin. Ann. Math. Ser. B. 30(6):697–714. DOI: 10.1007/s11401-009-0205-3.
  • Kalantarov, V. K., Levant, B., Titi, E. S. (2009). Gevrey regularity of the global attractor of the 3D Navier-Stokes-Voight equations. J. Nonlinear Sci. 19(2):133–152. DOI: 10.1007/s00332-008-9029-7.
  • Anh, C. T., Trang, P. T. (2013). Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains. Proc. R. Soc. Edinburgh Sect. A. 143(2):223–251. DOI: 10.1017/S0308210511001491.
  • Anh, C. T., Trang, P. T. (2016). Decay rate of solutions to the 3D Navier-Stokes-Voigt equations in Hm spaces. Appl. Math. Lett. 61:1–7. DOI: 10.1016/j.aml.2016.04.015.
  • Celebi, A. O., Kalantarov, V. K., Polat, M. (2009). Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain. Appl. Anal. 88(3):381–392. DOI: 10.1080/00036810902766682.
  • Coti Zelati, M., Gal, C. G. (2015). Singular limits of Voigt models in fluid dynamics. J. Math. Fluid Mech. 17(2):233–259. DOI: 10.1007/s00021-015-0201-1.
  • García-Luengo, J., Marín-Rubio, P., Real, J. (2012). Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations. Nonlinearity. 25(4):905–930. DOI: 10.1088/0951-7715/25/4/905.
  • Kalantarov, V. K. (1986). Attractors for some nonlinear problems of mathematical physics. Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov (LOMI) 152:50–54.
  • Niche, C. J. (2016). Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum. J. Differ. Equ. 260(5):4440–4453. DOI: 10.1016/j.jde.2015.11.014.
  • Qin, Y., Yang, X., Liu, X. (2012). Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces. Nonlinear Anal. Real World Appl. 13(2):893–904. DOI: 10.1016/j.nonrwa.2011.08.025.
  • Yue, G., Zhong, C. K. (2011). Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations. Discrete Contin. Dyn. Syst. Ser. B. 16(3):985–1002. DOI: 10.3934/dcdsb.2011.16.985.
  • Zhao, C., Zhu, H. (2015). Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in R3. Appl. Math. Comput. 256:183–191.
  • Anh, C. T., Nguyet, T. M. (2016). Optimal control of the instationary 3D Navier-Stokes-Voigt equations. Numer. Funct. Anal. Optim. 37(4):415–439. DOI: 10.1080/01630563.2015.1136891.
  • Anh, C. T., Nguyet, T. M. (2019). Time optimal control of the unsteady 3D Navier-Stokes-Voigt equations. Appl. Math. Optim. 79(2):397–426. DOI: 10.1007/s00245-017-9441-1.
  • Barbu, V. (1998). Optimal control of Navier-Stokes equations with periodic inputs. Nonlinear Anal. 31(1-2):15–31. DOI: 10.1016/S0362-546X(96)00306-9.
  • Wang, G. (2002). Optimal controls of 3-dimensional Navier-Stokes equations with state constraints. SIAM J. Control Optim. 41(2):583–606. DOI: 10.1137/S0363012901385769.
  • Wang, L., He, P. (2006). Second-order optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. Acta Math. Sci. Ser. B Engl. Ed. 26(4):729–734. DOI: 10.1016/S0252-9602(06)60099-4.
  • Trenchea, C. (2003). Periodic optimal control of the Boussinesq equation. Nonlinear Anal. 53(1):81–96. DOI: 10.1016/S0362-546X(02)00296-1.
  • Gunzburger, M., Trenchea, C. (2005). Optimal control of the time-periodic MHD equations. Nonlinear Anal. 63:1687–1699.
  • Gunzburger, M., Trenchea, C. (2005). Analysis and discretization of an optimal control problem for the time-periodic MHD equations. J. Math. Anal. Appl. 308(2):440–466. DOI: 10.1016/j.jmaa.2004.11.022.
  • Tachim Medjo, T. (2011). Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs. Appl. Math. Optim. 63(1):75–106. DOI: 10.1007/s00245-010-9112-y.
  • Liu, H. (2012). Boundary optimal control of time-periodic Stokes-Oseen flows. J. Optim. Theory Appl. 154(3):1015–1035. DOI: 10.1007/s10957-012-0026-5.
  • Liu, H. (2014). Boundary optimal feedback controller for time-periodic Stokes-Oseen flows. Nonlinear Differ. Equ. Appl. 21(5):709–735. DOI: 10.1007/s00030-013-0263-9.
  • Gunzburger, M. D., Manservisi, S. (1999). The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control Optim. 37(6):1913–1945. DOI: 10.1137/S0363012998337400.
  • Tröltzsch, F., Wachsmuth, D. (2006). Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations. ESAIM: COCV. 12(1):93–119. DOI: 10.1051/cocv:2005029.
  • Wachsmuth, D. (2006). Optimal control of the unsteady Navier-Stokes equations. PhD thesis. TU Berlin, Berlin.
  • Gunzburger, M. D., Manservisi, S. (2000). The velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J. Control Optim. 39(2):594–634. DOI: 10.1137/S0363012999353771.
  • Contantin, P., Foias, C. (1988). Navier-Stokes Equations, Chicago Lectures in Mathematics. Chicago: University of Chicago Press.
  • Robinson, J. C. (2001). Infinite-Dimensional Dynamical Systems. Cambridge: Cambridge University Press.
  • Temam, R. (1979). Navier-Stokes Equations: Theory and Numerical Analysis, 2nd ed., Amsterdam, North-Holland.
  • Oskolkov, A. P. (1995). Nonlocal problems for the equations of motion of the Kelvin-Voight fluids. J. Math. Sci. 75(6):2058–2078. DOI: 10.1007/BF02362946.
  • Oskolkov, A. P., Shadiev, R. D. (1994). Some nonlocal problems for modified Navier-Stokes equations. (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 188 (1991), Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 22, 105-127, 187; translation in J. Math. Sci. 70(3):1789–1805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.