174
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

DNA Microarray Profiling Highlights Nrf2-Mediated Chemoprevention Targeted by Wasabi-Derived Isothiocyanates in HepG2 Cells

, , , &
Pages 105-116 | Received 17 Nov 2015, Accepted 26 Jul 2016, Published online: 02 Dec 2016

References

  • Keum Y, Jeong W, and Tony Kong A: Chemoprevention by isothiocyanates & their underlying molecular signaling mechanisms. Mutat Res 555, 191–202, 2004.
  • Chaudhuri D, Orsulic S, and Ashok BT: Antiproliferative activity of sulforaphane in Akt-overexpressing ovarian cancer cells. Mol Cancer Ther 6, 334–345, 2007.
  • Chung YK, Or RCH, Lu CH, Ouyang WT, Yang SY, et al.: Sulforaphane down-regulates SKP2 to stabilize p27KIP1 for inducing anti-proliferation in human colon adenocarcinoma cells. J Biosci Bioeng 119, 35–42, 2015.
  • Sun CC, Li SJ, Yang CL, Xue RL, Xi YY, et al.: Sulforaphane Attenuates Muscle Inflammation in Dystrophin-deficient mdx Mice via NF-E2-related Factor 2 (Nrf2)-mediated Inhibition of NF-κB Signaling Pathway. J Biol Chem 290, 17784–17795, 2015.
  • Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH: Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice. FASEB J 20, 506–508, 2006.
  • Atwell LL, Beaver LM, Shannon J, Williams DE, Dashwood RH, et al.: Epigenetic regulation by sulforaphane: Opportunities for breast and prostate cancer chemoprevention. Curr Pharmacol Rep 1, 102–111, 2015.
  • Fuentes F, Paredes-Gonzales X, and Kong AT: Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indol-3-carbinol/3,3′-diindolylmethane: Antioxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer preventive efficacy. Curr Pharm Reports 1, 179–196, 2015.
  • Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, et al.: Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev DOI: 10.1155/2013/415078, 2013.
  • Isshiki K and Tokuoka K: Allyl isothiocyanate and wholesomeness of food. Jpn J Food Microbiol 12, 1–6, 1993.
  • Kumagai H, Kashima N, Seki T, Sakurai H, Ishii K, et al.: Analysis of components in essential oil of upland Wasabi and their inhibitory effects on platelet aggregation. Biosci Biotech Biochem 58, 2131–2135, 1994.
  • Nagai M and Okunishi I: The effect of Wasabi rhizome extract on atopic dermatitis-like symptoms in HR-1 hairless mice. J Nutr Sci Vitaminol 55, 195–200, 2009.
  • Yamasaki M, Ogawa T, Wang L, Katsube T, Yamasaki Y, et al.: Anti-obesity effects of hot water extract from Wasabi (Wasabi japonica Matsum.) leaves in mice fed high-fat diets. Nutr Res Pract 7, 267–272, 2013.
  • Uto T, Hou DX, Morinaga O, and Shuyama Y: Molecular mechnisms underlying anti-inflammatory actions of 6-(methylsulfinyl)hexyl isothiocyanate derived from Wasabi (Wasabi japonica). Adv Pharmacol Sci 2012, DOI: 10.1155/2012/614046, 2012.
  • Morroni F, Sita G, Tarrozi A, Cantelli-Forti G, and Hrelia P: Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson's disease. Brain Res 1589, 93–104, 2014.
  • Hou DX, Korenori Y, Tanigawa S, Yamada-Kato T, Nagai M, et al.: Dynamics of Nrf2 and Keap1 in ARE-mediated NQO1 expression by Wasabi-6-(methylsulfinyl)hexyl isothiocyanate. J Agr Food Chem 59, 11975–11982, 2011.
  • Korenori Y, Tanigawa S, Kumamoto T, Qin S, Daikoku Y, et al.: Modulation of Nrf2/Keap1 system by Wasabi 6-methylthiohexyl isothiocyanate in ARE-mediated NQO1 expression. Mol Nutr Food Res 57, 854–864, 2013.
  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, et al.: An Nrf2/small Maf heterodimer mediates the induction pf phase II detoxifying enzyme genes through antioxidant response element. Biochem Biophys Res Commun 236, 313–322, 1997.
  • Nguyen T, Huang HC, and Pickett CB: Transcriptional regulation of the antioxidant response element: Activation by Nrf2 and repression by MafK. J Biol Chem 275, 15466–15473, 2000.
  • Jung KA and Kwak MK: The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15, 7266–7291, 2010.
  • Xu C, Huang MT, Shen G, Yuan X, Lin W, et al.: Inhibition of 7,12-dimethylbenz(a)anthrcene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res 66, 8293–8296, 2006.
  • Khor TO, Huang MT, Prawan A, Liu Y, Hao X, et al.: Increase susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res 1, 187–191, 2008.
  • Frohlich DA, McCabe MT, Arnold RS, Day ML: The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27, 4353–4362, 2008.
  • Uto T, Fuji M, and Hou DX: Inhibition of lipopolysaccharide-induced cyclooxygenase-2 transcription by 6-(methylsulfinyl) hexyl isothiocyanate, a chemopreventive compound from Wasabi japonca (Miq.) Matsumura, in mouse macrophages. Biochem Pharmacol 70, 1772–1784, 2005.
  • Uto T, Fuji M, and Hou DX: Effects of 6-(methylsulfinyl)hexyl isothiocyanate on cyclooxygenase-2 expression induced by lipopolysaccharide, interferon-γ and 12-O-tetradecanoylphorbol-13-acetate. Oncol Rep 17, 233–238, 2007.
  • Barrett JC and Kawasaki ES: Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. Drug Discov Today 8, 134–141, 2003.
  • Rushmore TH and Kong ANT: Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 3, 481–490, 2002.
  • Chen J, Uto T, Tanigawa S, Kato TY, Fuji M, et al.: Microarray-based determination of anti-inflammatory genes targeted by 6-(methylsulfinyl)hexyl isothiocyanate in macrophages. Exp Ther Med 10, 33–40, 2010.
  • Qin S, Chen J, Tanigawa S, and Hou DX: Gene expression profiling and pathway analysis of hepatic metabolic enzymes targeted by baicalein. J Ethnopharmacol 140, 131–140, 2012.
  • Hou DX, Fukuda M, Fujii M, and Fuke Y: Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase in murine hepatoma cells by 6-(methylsulfinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim.). Cancer Lett 20, 195–200, 2000.
  • Sumida K, Igarash Y, Toritsuka N, Matsushita T, Abe-Tomizawa K, et al.: Effects of DMSO on gene expression in human and rat hepatocytes. Hum Exp Toxicol 30, 1701–1709, 2011.
  • Brown RH, Reynnolds C, Brooker A, Talalay P, and Fahey JW: Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respir Res DOI: 10.1186/s12931-015-0253-z, 2015.
  • Dwivedi S, Rajaseker N, Hanif K, Nath C, and Shukla R: Sulforaphane ameliorates okadaic acid-induced memory impairment in rats by activating the Nrf2/HO-1 anti-oxidant pathway. Mol Neurobiol DOI: 10.1007/s12035-015-9451-4, 2015.
  • Wang L, Tian Z, Yang Q, Li H, Guan H, et al.: Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway. Oncotarget 6, 25917–25931.
  • Ye L, Yu T, Li Y, Chen B, Zhang J, et al.: Sulforaphane enhances the ability of human retinal pigment epithelial cell against oxidative stress, and its effect on gene expression profile evaluated by microarray analysis. Oxid Med Cell Longev DOI: 10.1155/2013/413024, 2013.
  • Bergantin E, Quarta C, Nanni C, Fanti S, Pession A, et al.: Sulforaphane induces apoptosis in rhabdomyosarcoma and restores TRAIL-sensitivity in aggressive alveolar subtype leading to tumor elimination in mice. Cancer Biol Ther 15, 1219–1225, 2014.
  • Kuno T, Hirose Y, Yamada Y, Imaida K, Tatematsu K, et al.: Chemoprevention of 1,2-dimethylhydrazine-induced colonic preneoplastic lesions in Fischer rats by 6-methylsulfinylhexyl isothiocyanate, a wasabi derivative. Oncol Lett 1, 273–278, 2010.
  • Okamoto T and Akita N: 6-Methylsulfinylhexyl isothiocyanate modulates endothelial cell function and suppress leukocyte adhesion. J Nat Med 68, 144–153, 2013.
  • Ina K, Ina H, Ueda M, Yagi A, and Kishima I: ω-Methylthioalkyl isothiocyanates in Wasabi. Agric Biol Chem 53, 537–538, 1989.
  • Etoh H, Nishimura A, Takasawa R, Yagi A, Saito K, et al.: ω-Methylsulfinylalkyl isothiocyanates in Wasabi, Wasabi japonica Matsum. Agric Biol Chem 54, 1587–1589, 1990.
  • Qin S, Chen J, Tanigawa S, and Hou DX: Microarray and pathway analysis highlight Nrf2/ARE-mediated expression profiling by polyphenolic myrcetin. Mol Nutr Food Res 57, 435–446, 2013.
  • Trio P, Fujisaki S, Tanigawa S, Hisaniga A, Sakao K, and Hou DX: DNA microarray highlights Nrf2-mediated neuron protection targeted by Wasabi-derived isothiocyanates in IMR-32 cells. Gene Regul Syst. Bio ( In press).
  • Elhalem E, Recio R, Werner S, Lieder F, Calderon-Montaño JM, et al.: Sulforaphane homologues: Enantiodivergent synthesis of both enantiomers, activation of the Nrf2 transcription factor and selective cytotoxic activity. Eur J Med Chem 87, 552–563, 2014.
  • Wild A, Moinova HR, and Mulcahy T: Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274, 33627–33636, 1999.
  • Solis WA, Dalton TP, Dieter MZ, Freshwater S, Harrer JM, et al.: Glutamate-cysteine ligase modifier subunit: mouse Gclm gene structure and regulation by agents that cause oxidative stress. Biochem Pharmacol 63, 1739–1754, 2002.
  • Tsai MF, Wang CC, Chang GC, Chen CY, Chen HY, et al.: A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst 98, 825–838, 2006.
  • Hu R, Xu C, Shen G, Jain M, Khor TO, et al.: Gene expression profiles induced by cancer chemopreventive isothiocyanate sulfuraphane in liver of C57BL/6J mice and C57BL/6J/Nrf2(−/−) mice. Cancer Lett 243, 170–192, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.