950
Views
106
CrossRef citations to date
0
Altmetric
Original Articles

Intestinal Proportion of Blautia sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer

, , , , &
Pages 267-275 | Received 25 Mar 2016, Accepted 17 Nov 2016, Published online: 17 Jan 2017

References

  • Hooper LV and Gordon JI: Commensal host-bacterial relationships in the gut. Science 292(5519), 1115–1118, 2001.
  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, et al.: A metagenomic insight into our gut's microbiome. Gut 62, 146–158, 2013.
  • Cammarota G, Ianiro G, Cianci R, Bibbò S, Gasbarrini A, et al.: The involvement of gut microbiota in inflammatory bowel disease pathogenesis: Potential for therapy. Pharmacol Ther 149, 191–212, 2015.
  • Flint HJ, Scott KP, Louis P, and Duncan SH: The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9, 577–589, 2012.
  • De Theije CG, Wopereis H, Ramadan M, Van Eijndthoven T, Lambert J, et al.: Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37, 197–206, 2014.
  • Sekirov I, Russell SL, Antunes M, and Finlay BB: Gut microbiota in health and disease. Physiol Rev 90(3), 859–904, 2010.
  • Tamim HM, Musallam KM, Al Kadri MF, Boivin JF, and Collet JP: Antibiotic use and risk of gynecological cancer. Eur J Obstet Gynecol Reprod Biol 159, 388–393, 2011.
  • Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, et al.: Antibiotic use in relation to the risk of breast cancer. JAMA 291(7), 827–835, 2004.
  • Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, et al.: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44), 15718–15723, 2004.
  • Reeves GK, Pirie K, Beral V, Green J, Spencer E, et al.: Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335, 1134–1144, 2007.
  • Protani M, Coory M, and Martin JH: Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat 123, 627–635, 2010.
  • Walters WA, Xu Z, and Knight R: Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 588, 4223–4233, 2014.
  • Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, et al.: In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49(7), 3178–3186, 2001.
  • Wang LQ: Mammalian phytoestrogens: enterodiol and enterolactone. J Chromatogr B 777, 289–309, 2002.
  • Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, and Queipo-Ortuño MI: Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24(8), 1415–1422, 2013.
  • Clavel T, Borrmann D, Braune A, Doré J, and Blaut M: Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12, 140–147, 2006.
  • Matthies A, Loh G, Blaut M, and Braune A: Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 142, 40–46, 2012.
  • Clavel T, Lippman R, Gavini F, Doré J, and Blaut M: Clostridium saccharogumiasp. nov. and Lactonifactor longoviformisgen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30(16–26), 2007.
  • Jin JS, Kakiuchi N, and Hattori M: Enantioselective oxidation of enterodiol to enterolactone by human intestinal bacteria. Biol Pharm Bull 30(11), 2204–2206, 2007.
  • Goldin BR: Intestinal microflora: Metabolism of drugs and carcinogens. Ann Med 22, 43–48, 1990.
  • Dabek M, McCrae SI, Stevens VJ, Duncan SH, and Louis P: Distribution of b-glucosidase and b-glucuronidase activity and of b-glucuronidase genegus in human colonic bacteria. FEMS Microbiol Ecol 66, 487–495, 2008.
  • Nadkarni MA, Martin FE, Jacques NA, and Hunter N: Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266, 2002.
  • Watanabe K, Kodama Y, and Harayama S: Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44, 253–262, 2001.
  • Bacchetti De Gregoris T, Aldred N, Clare AS, and Burgess JG: Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J Microbiol Methods 86, 351–356, 2011.
  • Guo X, Xia X, Tang R, Zhou J, Zhao H, et al.: Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47, 367–373, 2008.
  • Heilig HG, Zoetendal EG, Vaughan E, Marteau P, Akkermans AD, et al.: Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68, 114–123, 2001.
  • Rinttila T, Kassinen A, Malinen E, Krogius L, and Palva A: Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97, 1166–1177, 2004.
  • Vanhoutte T, De Preter V, De Brandt E, Verbeke K, Swings J, et al.: Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl Environ Microbiol 72, 5990–5997, 2006.
  • Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, et al.: Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70, 167–173, 2004.
  • Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, et al.: Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101, 541–550, 2009.
  • Wang RF, Cao WW, and Cerniglia CE: PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 62, 1242–1247, 1996.
  • Penders J, Vink C, Driessen C, London N, Thijs C, et al.: Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243, 141–147, 2005.
  • Goedert JJ, Jones G, Hua X, Xu X, Yu G, et al.: Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 107(8), 1–5, 2015.
  • Dufour P, Schraub S, and Bergerat JP: Cancer du sein. Guide pratique Cancérologie; Paris, Heures de France, 2009, pp. 4–13.
  • Charles MA, Eschwège E, and Basdevant A: Monitoring the obesity epidemic in France: The obepi surveys 1997–2006. Obesity 16, 2182–2186, 2008.
  • Postollec F, Falentin H, Pavan S, Combrisson J, and Sohier D: Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28(5), 848–861, 2011.
  • Coudeyras S and Forestier C: Microbiote et probiotiques: impact en sante humaine. Can J Microbiol 56, 611–650, 2010.
  • Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, et al.: Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One 10(4), 1–14, 2015. doi: 10.1371/journal.pone.0124599.
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al.: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031, 2006.
  • Ley RE, Backhed F, Turnbaugh PJ, Lozupone CA, Knight RD, et al.: Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102, 11070–11075, 2005.
  • Ley RE, Turnbaugh PJ, Klein S, and Gordon JI: Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023, 2006.
  • Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, et al.: Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32, 1720–1724, 2008.
  • Zhang H, Dibaise JK, Zuccolo A, Kudrna D, Braidotti M, et al.: Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106, 2365–2370, 2009.
  • Li M, Wang B, Zhang M, Rantalainen M, Wang S, et al.: Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105, 2117–2122, 2008.
  • Louis P and Flint HJ: Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294, 1–8, 2009.
  • Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, and Garcia-Gil LJ: Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12(12), 1136–1145, 2006.
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, et al.: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43), 16731–16736, 2008.
  • Vinoloa AR, Rodriguesa HG, Hatanaka E, Satoa FT, Sampaio SC, et al.: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 22, 849–855, 2011.
  • Park JS, Lee EJ, Lee JC, Kim WK, and Kim HS: Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-κB and ERK signaling pathways. Int Immunopharmacol 7(1), 70–77, 2007.
  • Faloia E, Michetti G, De Robertis M, Luconi MP, Furlani G, et al.: Inflammation as a Link between Obesity and Metabolic Syndrome. J Nutr Metab 2012, 7pp., 2012.
  • Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, et al.: Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517, 2009.
  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, et al.: Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27, 104–119, 2007.
  • Lawless MW, Norris S, O'Byrne KJ, and Gray SG: Targeting histone deacetylases for the treatment of immune, endocrine & metabolic disorders. Endocr Metab Immune Disord Drug Targets 9, 84–107, 2009.
  • Martin F, Peltonen J, Laatikainen T, Pulkkinen M, and Adlercreutz H: Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem 6, 1339–1346, 1975.
  • Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, et al.: Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 10, 253, 2012.
  • Kaaks R, Berrino F, Key T, Rinaldi S, Dossus L, et al.: Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97, 755–765, 2005.
  • Woolcott CG, Shvetsov YB, Stanczy FZ, Wilkens LR, White KK, et al.: Plasma sex hormone concentrations and breast cancer risk in an ethnically diverse population of postmenopausal women: the Multiethnic Cohort Study. Endocr Relat Cancer 17, 125–134, 2010.
  • Hildebrandt MA, Hoffman C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, et al.: High fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724, 2009.
  • Adlercreutz H: Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl 201, 3–23, 1990.
  • Clavel T, Henderson G, Engst W, Doré J, and Blaut M: Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55, 471–478, 2006.
  • Mueller SO, Simon S, Chae K, Metzler M, and Korach KS: Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor α (ERα) and ERβ in human cells. Toxicol Sci 80, 14–25, 2004.
  • Cosentino M, Marino F, Ferrari M, Rasini E, Bombelli R, et al.: Estrogenic activity of 7-hydroxymatairesinol potassium acetate (HMR/lignanTM) from Norway spruce (Picea abies) knots and of its active metabolite enterolactone in MCF-7 cells. Pharmacol Res 56, 140–147, 2007.
  • Carreau C, Flouriot G, Bennetau-Pelissero C, and Potier M: Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ER transcriptional activation in human breast cancer cells. J Steroid Biochem Mol Biol 110, 176–185, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.