310
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids

, , , , &
Pages 534-554 | Received 08 Sep 2016, Accepted 10 Feb 2017, Published online: 21 Mar 2017

References

  • Cantor JR and Sabatini DM: Cancer cell metabolism: One hallmark, many faces. Cancer Discov 2, 881–898, 2012.
  • Sato A, Sunayama J, Okada M, Watanabe E, Seino S, et al.: Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med 1, 811–824, 2012.
  • Tennant DA, Durán RV, Boulahbel H, and Gottlieb E: Metabolic transformation in cancer. Carcinogenesis 30, 1269–1280, 2009.
  • Vander Heiden MG, Cantley LC, and Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033, 2009.
  • Martinez-Outschoorn U, Sotgia F, and Lisanti MP: Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin Oncol 41, 195–216, 2014.
  • Carmona-Fontaine C, Bucci V, Akkari L, Deforet M, Joyce JA, et al.: Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc Natl Acad Sci USA 110, 19402–19407, 2013.
  • El Sayed SM, El-Magd RM, Shishido Y, Chung SP, Diem TH, et al.: 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti- glioma effects. J Bioenerg Biomembr 44, 61–79, 2012.
  • Zhu Z, Jiang W, McGinley JN, and Thompson HJ: 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res 65, 7023–7030, 2005.
  • Pelicano H, Martin DS, Xu RH, and Huang P: Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633–4646, 2006.
  • Pedersen PL: The cancer cell's “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr 39, 1–12, 2007.
  • Martin KR: Targeting apoptosis with dietary bioactive agents. Exp Biol Med (Maywood) 231, 117–129, 2006.
  • de Boer VC, van Schothorst EM, Dihal AA, van der Woude H, Arts IC, et al.: Chronic quercetin exposure affects fatty acid catabolism in rat lung. Cell Mol Life Sci 63, 2847–2858, 2006.
  • Dihal AA, de Boer VC, van der Woude H, Tilburgs C, Bruijntjes JP, et al.: Quercetin, but not its glycosidated conjugate rutin, inhibits azoxymethane-induced colorectal carcinogenesis in F344 rats. J Nutr 136, 2862–2867, 2006.
  • Dihal AA, van der Woude H, Hendriksen PJ, Charif H, Dekker LJ, et al.: Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics 8, 45–61, 2008.
  • Dang CV: Links between metabolism and cancer. Genes Dev 26, 877–890, 2012.
  • Garber K: Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96, 1805–1806, 2004.
  • Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, et al.: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241, 2015.
  • Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell 134, 703–707, 2008.
  • Ralph SJ, Rodríguez-Enríquez S, Neuzil J, and Moreno-Sánchez R: Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 31, 29–59, 2013.
  • Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, et al.: Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39, 776–780, 2007.
  • Burns DM and Richter JD: CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 22, 3449–3460, 2008.
  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, et al.: Role of HIF–1αlpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394485–394490, 1998.
  • Hanahan D and Weinberg Robert A: Hallmarks of cancer: The next generation. Cell 144, 646–674, 2011.
  • Contractor T and Harris CR: p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 72, 560–567, 2012.
  • Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, et al.: Mitochondrial activation by inhibition of PDKII suppresses HIF–1α signaling and angiogenesis in cancer. Oncogene 32, 1638–1650, 2013.
  • Kim JW and Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30, 142–150, 2005.
  • Kim JW, Tchernyshyov I, Semenza GL, and Dang V: HIF–1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177–185, 2012.
  • Kluza J, Corazao-Rozas P, Touil Y, Jendoubi M, Maire C, et al.: Inactivation of the HIF–1α/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants. Cancer Res 72, 5035–5047, 2012.
  • Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, et al.: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208, 313–326, 2011.
  • Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, et al.: Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2, 1ra34, 2010.
  • Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408, 2012.
  • Wojtaszewski JFP, Hansen BF, Urso B, and Richter EA: Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol 81, 1501–1509, 1996.
  • Purcell SH, Chi MM, and Moley KH: Insulin-stimulated glucose uptake occurs in specialized cells within the cumulus oocyte complex. Endocrinology 153, 2444–2454, 2012.
  • Zhou SH, Fan J, Chen XM, Cheng KJ, and Wang SQ: Inhibition of cell proliferation and glucose uptake in human laryngeal carcinoma cells by antisense oligonucleotides against glucose transporter–1. Head Neck-J Sci Spec 31, 1624–1633, 2009.
  • Beltrán FA, Acuña AI, Miró MP, Angulo C, Concha II, et al.: Ascorbic acid-dependent GLUT3 inhibition is a critical step for switching neuronal metabolism. J Cell Physiol 226, 3286–3294, 2011.
  • Liu Y, Li YM, Tian RF, Liu WP, Fei Z, et al.: The expression and significance of HIF–1αlpha and GLUT–3 in glioma. Brain Res 1304, 149–154, 2009.
  • Nalini N, Aranganathan S, and Kabalimurthy J: Chemopreventive efficacy of hesperetin (citrus flavonone) against 1, 2-dimethylhydrazine-induced rat colon carcinogenesis. Toxicol Mech Method 22, 397–408, 2012.
  • Patil JR, Chidambara Murthy KN, Jayaprakasha GK, Chetti MB, et al.: Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J Agric Food Chem 57, 10933–10942, 2009.
  • Sivagami G, Vinothkumar R, Preethy CP, Preethy CP, Riyasdeen A, et al.: Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT–29 human colon adenocarcinoma cell line–a comparative study. Food Chem Toxicol 50, 660–671, 2012.
  • Pedersen PL: Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancer's most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39, 211–222, 2007.
  • Brand W, Oosterhuis B, Krajcsi P, Barron D, Dionisi F, et al.: Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculo virus infected Sf9 cells. Biopharm Drug Dispos 32, 530–535, 2011.
  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, et al.: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64, 3892–3899, 2004.
  • Kim JW, Tchernyshyov I, Semenza GL, and Dang CV: HIF–1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177–185, 2006.
  • Papandreou I, Cairns RA, Fontana L, Lim AL, and Denko NC: HIF–1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3, 187–197, 2006.
  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, et al.: c-Myc suppression of miR–23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239), 762–765, 2009.
  • Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, et al.: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5), 2037–2042, 2010.
  • Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, et al.: Overcoming trastuzumabb-resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71, 4585–4597, 2011.
  • Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, et al.: Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9, 33, 2010.
  • Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, et al.: Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18, 207–219, 2010.
  • Lisanti MP, Martinez-Outschoorn UE, and Sotgia F: Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and ‘‘fibroblast addiction’’ are new therapeutic targets for drug discovery. Cell Cycle 12, 2723–2732, 2013.
  • Yoo BC, Ku JL, Hong SH, Shin YK, Park SY, et al.: Decreased pyruvate kinase M2 activity linked to cisplatin resistance in human gastric carcinoma cell lines. Int J Cancer 108, 532–539, 2004.
  • Martinez-Balibrea E, Plasencia C, Ginés A, Martinez-Cardús A, Musulén E, et al.: A proteomic approach links decreased pyruvate kinase M2 expression to oxaliplatin resistance in patients with colorectal cancer and in human cell lines. Mol Cancer Ther 8(4), 771–778, 2009.
  • Li SL, Ye F, Cai WJ, Hu HD, Hu P, et al.: Quantitative proteome analysis of multidrug resistance in human ovarian cancer cell line. J Cell Biochem 109(4), 625–633, 2010.
  • Lin Y, Lv F, Liu F, Guo X, Fan Y, et al.: High expression of pyruvate kinase m2 is associated with chemosensitivity to epirubicin and 5-fluorouracil in breast cancer. J Cancer 6(11), 1130–1139, 2015.
  • Fukuda S, Miyata H, Miyazaki Y, Makino T, Takahashi T, et al.: Pyruvate kinase M2 modulates esophageal squamous cell carcinoma chemotherapy response by regulating the pentose phosphate pathway. Ann Surg Oncol 22(Suppl 3), S1461–S1468, 2015.
  • Guo W, Zhang Y, Chen T, Wang Y, Xue J, et al.: Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol 137(1), 65–72, 2011.
  • Shi HS, Li D, Zhang J, Wang YS, Yang L, et al.: Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci 101(6), 1447–1453, 2010.
  • Sun Q, Chen X, Ma J, Peng H, Wang F, et al.: Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 108(10), 4129–4134, 2011.
  • Leisching GR, Loos B, Botha MH, and Engelbrecht AM: The role of mTOR during cisplatin treatment in an in vitro and ex vivo model of cervical cancer. Toxicology 335, 72–78, 2015.
  • Faried LS, Faried A, Kanuma T, Aoki H, Sano T, et al.: Expression of an activated mammalian target of rapamycin in adenocarcinoma of the cervix: A potential biomarker and molecular target therapy. Mol Carcinog 47(6), 446–457, 2008.
  • Damia G and Garattini S: The pharmacological point of view of resistance to therapy in tumors. Cancer Treat Rev 40, 909–916, 2014.
  • Sullivan EJ, Kurtoglu M, Brenneman R, Liu H, and Lampidis TJ: Targeting cisplatin-resistant human tumor cells with metabolic inhibitors. Cancer Chemother Pharmacol 73, 417–427, 2014.
  • Le Calve B, Rynkowski M, Le Mercier M, Bruyere C, Lonez C, et al.: Long-term in vitro treatment of human glioblastoma cells with temozolomide increases resistance in vivo through up-regulation of GLUT transporter and aldo-keto reductase enzyme AKR1C expression. Neoplasia (New York) 12, 727–739, 2010.
  • Morfouace M, Lalier L, Bahut M, Bonnamain V, Naveilhan P, et al.: Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications. J Biol Chem 287(40), 33664–33674, 2010.
  • Backos DS, Fritz KS, McArthur DG, Kepa JK, Donson AM, et al.: Glycation of glutamate cysteine ligase by 2-deoxy-d-ribose and its potential impact on chemoresistance in glioblastoma. Neurochem Res 38(9), 1838–1849, 2013.
  • Zhang JZ, Behrooz A, and Ismail-Beigi F: Regulation of glucose transport by hypoxia. Am J Kidney Dis 34, 189–202, 1999.
  • Airley RE and Mobasheri A: Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53, 233–256, 2007.
  • Mathieu V, De Nève N, Le Mercier M, Dewelle J, Gaussin JF, et al.: Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastom orthotopic xenograft model. Neoplasia 10, 1383–1392, 2008.
  • Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4, 891–899, 2004.
  • Boado RJ, Back KL, and Pardridge WM: Gene expression of GLUT–3 and GLUT–1 glucose transporters in human brain tumors. Brain Res Mol Brain Res 27, 51–57, 1994.
  • Nagamatsu S, Sawa H, Wakizaka A, and Hoshino T: Expression of facilitative glucose transporter isoforms in human brain tumors. J Neurochem. 61, 2048–2053, 1993.
  • James AD, Patel W, Butt Z, Adiamah M, Dakhel R, et al.: The plasma membrane calcium pump in pancreatic cancer cells exhibiting the warburg effect relies on glycolytic ATP. J Biol Chem 290(41), 24760–24771, 2015.
  • Wei L, Dai Q, Zhou Y, Zou M, Li Z, et al.: Oroxylin A sensitizes non-small cell lung cancer cells to anoikis via glucose-deprivation-like mechanisms: c-Src and hexokinase II. Biochim Biophys Acta 1830(6), 3835–3845, 2013.
  • Wei L, Zhou Y, Dai Q, Qiao C, Zhao L, et al.: Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3- mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis 4, e601, 2013.
  • Liu W, Mu R, Nie FF, Yang Y, Wang J, et al.: MAC-related mitochondrial pathway in oroxylin A -induced apoptosis in human hepatocellular carcinoma HepG2 cells. Cancer Lett 284, 198–207, 2009.
  • Lu Z, Lu N, Li C, Li F, Zhao K, et al.: Oroxylin A inhibits matrix metalloproteinase–2/9 expression and activation by up-regulating tissue inhibitor of metalloproteinase–2 and suppressing the ERK1/2 signaling pathway. Toxicol Lett 209, 211–220, 2012.
  • Yang Y, Hu Y, Gu HY, Lu N, Liu W, et al.: Oroxylin A induces G2/M phase cell-cycle arrest via inhibiting Cdk7-mediated expression of Cdc2/p34 in human gastric carcinoma BGC–823 cells. J Pharm Pharmacol 60, 1459–1463, 2008.
  • Wang H, Zhao L, Zhu LT, Wang Y, Pan D, et al.: Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF–1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog 53, E107–E118, 2014.
  • Dihal AA, van der Woude H, Hendriksen PJ, Charif H, Dekker LJ, et al.: Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics 8(1), 45–61, 2008.
  • Belt JA, Thomas JA, Buchsbaum RN, and Racker E: Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry 18(16), 3506–3511, 1979.
  • Suolinna EM, Lang DR, and Racker E: Quercetin, an artificial regulator of the high aerobic glycolysis of tumor cells. J Natl Cancer Inst 53(5), 1515–1519, 1974.
  • de Boer VC, de Goffau MC, Arts IC, Hollman PC, and Keijer J: SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech Ageing Dev 127(7), 618–627, 2006.
  • Chen V, Staub RE, Baggett S, Chimmani R, Tagliaferri M, et al.: Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle. PLoS One 7(1), e30107, 2012.
  • Chen F, Zhuang M, Zhong C, Peng J, Wang X, et al.: Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/ Akt/HIF–1α signaling pathway. Oncol Rep 33(1), 457–463, 2015.
  • Du GJ, Song ZH, Lin HH, Han XF, Zhang S, et al.: Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells. Biochem Biophys Res Commun 372(3), 497–502, 2008.
  • Melstrom LG, Salabat MR, Ding XZ, Strouch MJ, Grippo PJ, et al.: Apigenin down-regulates the hypoxia response genes: HIF–1α, GLUT–1, and VEGF in human pancreatic cancer cells. J Surg Res 167(2), 173–181, 2011.
  • Macheda ML, Rogers S, and Best JD: Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202, 654–662, 2005.
  • Cao X, Fang L, Gibbs S, Huang Y, Dai Z, et al.: Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemotherapy Pharmacol 59, 495–505, 2007.
  • McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, et al.: Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter- directed therapy. Blood 119, 4686–4697, 2012.
  • Araújo JR, Gonçalves P, and Martel F: Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31(2), 77–87, 2011.
  • Hezel AF and Bardeesy N: LKB1; linking cell structure and tumor suppression. Oncogene 27(55), 6908–6919, 2008.
  • Lee LT, Huang YT, Hwang JJ, Lee PP, Ke FC, et al.: Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res 22, 1615–1627, 2002.
  • Putter J: Peroxidases. In: Methods of Enzymatic Analysis: II, Bergmeyer HU (ed.).. New York: Academic Press. 1974, 685–690.
  • Ngala R and Fianko K: Dyslipidaemia and dysglycaemia in HIV-infected patients on highly active anti-retroviral therapy in Kumasi Metropolis. Afr Health Sci 13(4), 1107–1116, 2013.
  • Moreira L, Araújo I, Costa T, Correia-Branco A, Faria A, et al.: Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor- independent mechanism. Exp Cell Res 319(12), 1784–1795, 2013.
  • Pérez A, Ojeda P, Ojeda L, Salas M, Rivas CI, et al.: Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins. Biochemistry 50(41), 8834–8845, 2011.
  • Kwon O, Eck P, Chen S, Corpe CP, Lee JH, et al.: Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 21, 366–377, 2007.
  • Minutolo F, Macchia M, Katzenellenbogen BS, and Katzenellenbogen JA: Estrogen receptor β ligands: recent advances and biomedical applications. Med Res Rev 31, 364–442, 2011.
  • Harmon AW and Patel YM: Naringenin inhibits glucose uptake in MCF–7 breast cancer cells: a mechanism for impaired cellular proliferation. Breast Cancer Res Treat 85(2), 103–110, 2004.
  • Totta P, Acconcia F, Leone S, Cardillo I, and Marino M: Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor alpha and beta signaling. IUBMB Life 56(8), 491–499, 2004.
  • Park JB: Flavonoids are potential inhibitors of glucose uptake in U937 cells. Biochem Biophys Res Comm 260, 568–574, 1999.
  • Brown RS, Goodman TM, Zasadny KR, Greenson JK, and Wahl RL: Expression of hexokinase II and Glut–1 in untreated human breast cancer. Nucl Med Biol 29, 443–453, 2002.
  • Wojtaszewski JFP, Hansen BF, Urso B, and Richter EA: Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol 81, 1501–1509, 1996.
  • Purcell SH, Chi MM, and Moley KH: Insulin-stimulated glucose uptake occurs in specialized cells within the cumulus oocyte complex. Endocrinology 153, 2444–2454, 2012.
  • Zhou SH, Fan J, Chen XM, Cheng KJ, and Wang SQ: Inhibition of cell proliferation and glucose uptake in human laryngeal carcinoma cells by antisense oligonucleotides against glucose transporter–1. Head Neck-J Sci Spec 31, 1624–1633, 2009.
  • Nalini N, Aranganathan S, and Kabalimurthy J: Chemopreventive efficacy of hesperetin (citrus flavonone) against 1, 2-dimethylhydrazine-induced rat colon carcinogenesis. Toxicol Mec Method 22(5), 397–408, 2012.
  • Patil JR, Chidambara Murthy KN, Jayaprakasha GK, Chetti MB, et al.: Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J Agric Food Chem 57, 10933–10942, 2009.
  • Sivagami G, Vinothkumar R, Preethy CP, Preethy CP, Riyasdeen A, et al.: Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT–29 human colon adenocarcinoma cell line–a comparative study. Food Chem Toxicol 50, 660–671, 2012.
  • Brand W, Oosterhuis B, Krajcsi P, Barron D, Dionisi F, et al.: Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirusinfected Sf9 cells. Biopharm Drug Dispos 32, 530–535, 2011.
  • Siegelin MD, Gaiser T, Habel A, and Siegelin Y: Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl–2. Cancer Lett 283(2), 230–238, 2009.
  • Seibert H, Maser E, Schweda K, Seibert S, and Gülden M: Cytoprotective activity against peroxide-induced oxidative damage and cytotoxicity of flavonoids in C6 rat glioma cells. Food Chem Toxicol 49(9), 2398–2407, 2011.
  • Panickar KS and Anderson RA: Mechanisms underlying the protective effects of myricetin and quercetin following oxygen-glucose deprivation-induced cell swelling and the reduction in glutamate uptake in glial cells. Neuroscience 183, 1–14, 2011.
  • Meireles M, Martel F, Araújo J, Santos-Buelga C, Gonzalez-Manzano S, et al.: Characterization and modulation of glucose uptake in a human blood-brain barrier model. J Membr Biol 246(9), 669–677, 2013.
  • Sahu SC and Gray GC: Pro-oxidant activity of flavonoids: effects on glutathione and glutathione S-transferase in isolated rat liver nuclei. Cancer Lett 104(2), 193–196, 1996.
  • Zhan T, Digel M, Küch EM, Stremmel W, and Füllekrug J: Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J Cell Biochem 112(3), 849–859, 2011.
  • González-Menendez P, Hevia D, Rodriguez-Garcia A, Mayo JC, and Sainz RM: Regulation of GLUT transporters by flavonoids in androgen-sensitive and insensitive prostate cancer cells. Endocrinology 155(9), 3238–3250, 2014.
  • Bao YY, Zhou SH, Fan J, and Wang QY: Anticancer mechanism of apigenin and the implications of GLUT–1 expression in head and neck cancers. Future Oncol 9(9), 1353–1364, 2013.
  • Melstrom LG, Salabat MR, Ding XZ, Strouch MJ, Grippo PJ, et al.: Apigenin down-regulates the hypoxia response genes: HIF–1α, GLUT–1, and VEGF in human pancreatic cancer cells. J Surg Res 167(2), 173–181, 2011.
  • Nelson JA and Falk RE: The efficacy of phloridzin and phloretin on tumor cell growth. Anticancer Res 13, 2287–2292, 1993.
  • Kobori M, Shinmoto H, Tsushida T, and Shinohara K: Phloretin-induced apoptosis in B16 melanoma 4A5 cells by inhibition of glucose transmembrane transport. Cancer Lett 119, 207–212, 1997.
  • Cao X, Fang XL, Gibbs S, Huang Y, Dai Z, et al.: Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59, 495–505, 2007.
  • Pathania D, Millard M, and Neamati N: Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61, 1250–1275, 2009.
  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, and Saavedra E: Energy metabolism in tumor cells. FEBS J 274, 1393–1418, 2007.
  • Mathupala SP, Ko YH, and Pedersen PL: Hexokinase II cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25, 4777–4786, 2006.
  • Zhao Y, Butler EB, and Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4, e532, 2013.
  • Dando I, Cordani M, and Donadelli M: Mutant p53 and mTOR/PKM2 regulation in cancer cells. IUBMB Life 68(9), 722–726, 2016.
  • Shen Y, Chen M, Huang S, and Zou X: Pantoprazole inhibits human gastric adenocarcinoma SGC–7901 cells by downregulating the expression of pyruvate kinase M2. Oncol Lett 11(1), 717–722, 2016.
  • Chahar MK, Sharma N, Dobhal MP, and Joshi YC: Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5, 1–12, 2011.
  • Ravishankar D, Rajora AK, Greco F, and Osborn HMI: Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 45, 2821–2831, 2013.
  • Adem S, Aslan A, Ahmed I, Krohn K, Guler C, et al.: Inhibitory and activating effects of some flavonoid derivatives on human pyruvate kinase isoenzyme M2. Arch Pharm (Weinheim) 349(2), 132–136, 2016.
  • Sun F, Zheng XY, Ye J, Wu TT, Wang Jl, et al.: Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64(4), 599–606, 2012.
  • Adhami VM, Syed DN, Khan N, and Mukhtar H: Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol 84, 1277–1281, 2012.
  • Aslan E, Guler C, and Adem S: In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J Enzyme Inhib Med Chem 31(2), 314–317, 2016.
  • Aslan E and Adem S: In vitro effects of some flavones on human pyruvate kinase isoenzyme M2. J Biochem Mol Toxicol 29(3), 109–113, 2015.
  • Sullivan EJ, Kurtoglu M, Brenneman R, Liu H, and Lampidis TJ: Targeting cisplatin-resistant human tumor cells with metabolic inhibitors. Cancer Chemother Pharmacol 73, 417–427, 2014.
  • Lisanti MP, Martinez-Outschoorn UE, and Sotgia F: Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and ‘‘fibroblast addiction’’ are new therapeutic targets for drug discovery. Cell Cycle 12, 2723–2732, 2013.
  • Sottile ML, Losinno AD, Fanelli MA, Cuello-Carrión FD, Montt-Guevara MM, et al.: Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines. Int J Hyperthermia 31(5), 464–475, 2015.
  • Gerweck LE and Richards B: Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41, 845–849, 1981.
  • Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, et al.: Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 23, 3079–3085, 2005.
  • Jahde E and Radjewsky MF: Tumor selected modification of cellular microenvironment in vivo: Effect of glucose infusion on the pH in normal and malignant rat tissues. Cancer Res 42, 1505–1512, 1982.
  • Hiraoka M and Hahn GM: Changes in pH and blood flow induced by glucose, and their effects on hyperthermia with or without BCNU in RIF-I tumors. Int J Hypertherm 6, 97–103, 1990.
  • Gerweck LE: Modification of cell lethality at elevated temperatures. The pH effect. Radiat Res 70, 224–235, 1977.
  • Dixon JA and Calderwood SK: Effects of hyperglycemia and hyperthermia on the pH, glycolysis and respiration of the Yoshida sarcoma in vivo. JNCI 63, 1371–1381, 1979.
  • Lyons JC, Kim GE, and Song CW: Modification of intracellular pH and thermosensitivity. Radiat Res 129, 79–87, 1992.
  • Wahl ML, Bobyock SB, Leeper DB, and Owen CS: Effects of 428C hyperthermia on intracellular pH in ovarian carcinoma cells during acute or chronic exposure to low extracellular pH. Int J Radiat Oncol Biol Phys 38, 205–212, 1997.
  • Dewhirst MW, Vujaskovic Z, Jones E, and Thrall D: Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia 21, 779–790, 2005.
  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, et al.: The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43, 33–56, 2002.
  • Kim JH, Kim SH and Alfieri AA: Interaction of rhodamine 123 and hyperthermia in HeLa cells in culture. Int J Hyperthermia 1, 247–253, 1985.
  • Kim SH, Kim JH and Hahn EW: Selective potentiation of hyperthermic killing of hypoxic cells by 5-thio-o-glucose. Cancer Res 38, 2935–2938, 1978.
  • Koishi M, Hosokawa N, Sato M, Nakai A, Hirayoshi K, et al.: Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermo-tolerance in a human colon carcinoma cell line. Jpn J Cancer Res 83, 1216–1222, 1992.
  • Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, et al.: Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2, 659–668, 1996.
  • Shen F, Herenyiova M, and Weber G: Synergestic down-regulation of signal transduction and cytotoxicity by tiazofurin and quercetin in human ovarian carcinoma cells. Life Sci 65, 1869–1876, 1999.
  • Wei Y, Zhao X, Kariya Y, Fukagta H, Teshigawara K, et al.: Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54, 4952–7495, 1994.
  • Orsolic N, Sver L, Terzić S, and Basić I: Peroral application of water-soluble derivative of propolis (WSDP) and its related polyphenoliccompounds and their influence on immunological and antitumour activity. Vet Res Commun 29(7), 575–593, 2005.
  • Oršolić N, Benković V, Li s ičić D, Erhard J, and Horvat-Knežević A: Protective effects of propolis and related polyphenolic/flavonoid compounds against toxicity induced by irinotecan. Med Oncol 27, 1346–1358, 2010.
  • Yousef MI, Saad AA, and El-Shennawy LK: Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem Toxicol 47, 1176–1183, 2009.
  • Sharma H, Sen S, and Singh N: Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther 4, 949–955, 2005.
  • Ferry DR, Smith A, Malkhandi J, Fyfe DW, de Takats PG, et al.: Phase I clinical trial of the avonoid quercetin: pharmacoki-netics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2, 659–668, 1996.
  • Flessner MF: The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol 288, F433–F442, 2005.
  • Beebe TJ, Johnson CD, Stoner SM, Anderson KJ, and Limburg PJ: Assessing attitudes toward laxative preparation in colorectal cancer screening and effects on future testing: potential receptivity to computed tomographic colonography. Mayo Clin Proc 82, 666–671, 2007.
  • Calderwood SK and Asea A: Targeting HSP70-induced thermo-tolerance for design of thermal sensitizers. Int J Hyperthermia 18, 597–608, 2002.
  • Yuan ZQ, Peng YZ, Li XL, Huang YS, and Yang ZC: Induction of heat shock protein 70 by sodium arsenite attenuates burn-induced intestinal injury in severe burned rats. Burns 34, 247–253, 2008.
  • Secomb TW, Hsu R, Ong ET, Gross JF, and Dewhirst MW: Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol 34, 313–316, 1995.
  • Kallinowski F, Frills RR, Van Roy RF, and Vaupel P: Oxygenation of tumors derived from ras-transformed cells. Adv Exp Med XII 907–916, 1990.
  • Pavlovic M, Wroblewski K, Manevich Y, Kim S, and Biaglow JE: The importance of choice of anesthetics in studying radiation effects in the 9L rat glioma. Br J Cancer 73, S01–S04, 1996.
  • Varnes ME, Biaglow JE, and Tuttle SW: Role of cellular non-protein thiols in oxygen consumption and peroxide reduction. Adv Exp Med Biol 200, 565–571, 1986.
  • Kuin A, Smets L, Volk T, Paans A, Adams G, et al.: Modulation of intratumoral pH by the mitochondrial inhibitor m-iodobenzylguanidine and moderate hyperglycemia. Cancer Res 54, 3785–3792, 1994.
  • Sharma H, Sen S, and Singh N: Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther 4, 949–955, 2005.
  • Benkovic V, Horvat Knezevic A, DikicD LisicicD, Orsolic N, et al.: Radioprotective effects of propolis and quercetin gamma-irradiated mice evaluated by the alkaline comet assay. Phytomedicine 15, 851–858, 1994.
  • Oršolić N, Benković V, Horvat-Knežević A, Kopjar N, Kosalec I, et al.: Assessment by survival analysis of the radioprotective properties of propolis and its polyphenolic compounds. Biol Pharm Bull 30, 946–951, 2007.
  • Kim JH, Kim SH, Alfieri AA, and Young CW: Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res 44, 102–106, 1984.
  • Oršolić N and Car N: Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumour Biol 35(7), 6445–6454, 2014.
  • Cimini A, d'Angelo M, Benedetti E, D'Angelo B, Laurenti G, et al.: Flavopiridol: An old drug with new perspectives? Implication for development of new drugs. J Cell Physiol 232(2), 312–322, 2017.
  • Wang G, Wang J, Zhao H, Wang J, Tony To SS: The role of Myc and let–7a in glioblastoma, glucose metabolism and response to therapy. Arch Biochem Biophys 580, 84–92, 2015.
  • Zhou Y, Lu N, Qiao C, Ni T, Li Z, et al.: FV–429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB–231 cells. Mol Carcinog 55(9), 1317–1328, 2016.
  • Wenzel U: Flavonoids as drugs at the small intestinal level. Curr Opin Pharmacol 13(6), 864–868, 2013.
  • Kottra G and Daniel H: Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. J Pharmacol Exp Ther 322, 829–835, 2007.
  • Kellett GL, Brot-Laroche E, Mace OJ, and Leturque A: Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 28, 35–54, 2008.
  • Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A, et al.: GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 60, 2598–2607, 2011.
  • Kwon O, Eck P, Chen S, Corpe CP, Lee JH, et al.: Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 21, 366–377, 2007.
  • Suksomboon N, Poolsup N, Boonkaew S, and Suthisisang CC: Meta- analysis of the effect of herbal supplement on glycemic control in type 2 diabetes. J Ethnopharmacol 137, 1328–1333, 2011.
  • Goto T, Horita M, Nagai H, Nagatomo A, Nishida N, et al.: Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract. Mol Nutr Food Res 56, 435–445, 2012.
  • Li JM, Che CT, Lau CB, Leung PS, and Cheng CH: Inhibition of intestinal and renal Na+– glucose cotransporter by naringenin. Int J Biochem Cell Biol 38, 985–995, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.