183
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Crocus sativus L. Causes a Non Apoptotic Calpain Dependent Death in C6 Rat Glioma Cells, Exhibiting a Synergistic Effect with Temozolomide

, ORCID Icon, , , , , , , & show all
Pages 491-507 | Received 06 Nov 2017, Accepted 17 Jul 2018, Published online: 01 Oct 2018

References

  • Anderson JC, McFarland BC, and Gladson CL: New molecular targets in angiogenic vessels of glioblastoma tumours. Expert Rev Mol Med 10, e23, 2008. doi:10.1017/S1462399408000768
  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114, 97–109, 2007. doi:10.1007/s00401-007-0243-4
  • Graeber MB and Streit WJ: Microglia: biology and pathology. Acta Neuropathol 119, 89–105, 2010. doi:10.1007/s00401-009-0622-0
  • van den Bent MJ, Hegi ME, and Stupp R: Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer 42, 582–588, 2006. doi:10.1016/j.ejca.2005.06.031
  • Soffietti R, Ruda R, and Trevisan E: New chemotherapy options for the treatment of malignant gliomas. Anticancer Drugs 18, 621–632, 2007. doi:10.1097/CAD.0b013e32801476fd
  • Hart MG, Grant R, Garside R, Rogers G, Somerville M, et al.: Temozolomide for high grade glioma. Cochrane Database Syst Rev 8, CD007415, 2008. doi:10.1002/14651858.CD007415
  • DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, et al.: Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64, 252–271, 2014. doi:10.3322/caac.21235
  • Costa SL, Paillaud E, Fages C, Rochette-Egly C, Plassat JL, et al.: Effects of a novel synthetic retinoid on malignant glioma in vitro: inhibition of cell proliferation, induction of apoptosis and differentiation. Eur J Cancer 37, 520–530, 2001. doi:10.1016/S0959-8049(00)00430-5
  • Silva AR, Pinheiro AM, Souza CS, Freitas SR, Vasconcellos V, et al.: The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures. Cell Biol Toxicol 24, 75–86, 2008. doi:10.1007/s10565-007-9017-y
  • Santos BL, Silva AR, Pitanga BP, Sousa CS, Grangeiro MS, et al.: Antiproliferative, proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells. Food Chem 127, 404–411, 2011. doi:10.1016/j.foodchem.2010.12.131
  • Coelho PL, Oliveira MN, da Silva AB, Pitanga BP, Silva VD, et al.: The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells. Anticancer Drugs 27, 960–969, 2016. doi:10.1097/CAD.0000000000000413
  • Palozza P, Serini S, Di Nicuolo F, and Calviello G: Modulation of apoptotic signalling by carotenoids in cancer cells. Arch Biochem Biophys 430, 104–109, 2004. doi:10.1016/j.abb.2004.02.038
  • Bakshi HA, Hakkim FL, and Sam S: Molecular Mechanism of Crocin induced caspase mediated MCF-7 cell death: in vivo toxicity profiling and ex vivo macrophage activation. Asian Pac J Cancer Prev 17, 1499–1506, 2016.
  • Greenlee H: Natural products for cancer prevention. Semin Oncol Nurs 28, 29–44, 2012. doi:10.1016/j.soncn.2011.11.004
  • Lee JE, Mannisto S, Spiegelman D, Hunter DJ, Bernstein L, et al.: Intakes of fruit, vegetables, and carotenoids and renal cell cancer risk: a pooled analysis of 13 prospective studies. Cancer Epidemiol Biomarkers Prev 18, 1730–1739, 2009. doi:10.1158/1055-9965.EPI-09-0045
  • Samarghandian S, Shoshtari ME, Sargolzaei J, Hossinimoghadam H, and Farahzad JA: Anti-tumor activity of safranal against neuroblastoma cells. Pharmacogn Mag 10, S419–S424, 2014. doi:10.4103/0973-1296.133296
  • Chahar MK, Sharma N, Dobhal MP, and Joshi YC: Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5, 1–12, 2011. doi:10.4103/0973-7847.79093
  • Gismondi A, Serio M, Canuti L, and Canini A: Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am J Plant Sci 3, 1573–1580, 2012. doi:10.4236/ajps.2012.311190
  • Kawabata K, Tung NH, Shoyama Y, Sugie S, Mori T, et al.: Dietary Crocin inhibits colitis and colitis-associated colorectal carcinogenesis in male ICR mice. Evid Based Complement Alternat Med 2012, 820415, 2012. doi:10.1155/2012/820415
  • Gutheil WG, Reed G, Ray A, Anant S, and Dhar A: Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 13, 173–179, 2012.
  • Nilakshi N GR, Abhyankar M, and Champalal KD: Detailed profile of Crocus sativus. Int J Pharma Bio Sci 2, 530–540, 2011.
  • Kumar V, Bhat Z, Kumar D, Khan NA, Chashoo IA, et al.: Pharmacological profile of Crocus sativus – a comprehensive review. Pharmacologyonline 3, 799–811, 2012.
  • Salomi MJ, Nair SC, and Panikkar KR: Inhibitory effects of Nigella sativa and saffron (Crocus sativus) on chemical carcinogenesis in mice. Nutr Cancer 16, 67–72, 1991. doi:10.1080/01635589109514142
  • Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, et al.: Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int 2014, 135048, 2014. doi:10.1155/2014/135048
  • Noureini SK, and Wink M: Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation. Asian Pac J Cancer Prev 13, 2305–2309, 2012.
  • Bajbouj K, Schulze-Luehrmann J, Diermeier S, Amin A, Schneider-Stock R: The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines. BMC Complement Altern Med 12, 69, 2012. doi:10.1186/1472-6882-12-69
  • Abdullaev FI: Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med. (Maywood) 227, 20–25, 2002.
  • Abdullaev FI, and Espinosa-Aguirre JJ: Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev 28, 426–432, 2004. doi:10.1016/j.cdp.2004.09.002
  • Tavakkol-Afshari J, Brook A, and Mousavi SH: Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol 46, 3443–3447, 2008. doi:10.1016/j.fct.2008.08.018
  • Mousavi SH, Tavakkol-Afshari J, Brook A, and Jafari-Anarkooli I: Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol 47, 1909–1913, 2009. doi:10.1016/j.fct.2009.05.017
  • Mousavi SH, Tavakkol-Afshari J, Brook A, and Jafari-Anarkooli I: Direct toxicity of Rose Bengal in MCF-7 cell line: role of apoptosis. Food Chem Toxicol 47, 855–859, 2009. doi:10.1016/j.fct.2009.01.018
  • Chryssanthi DG, Dedes PG, Karamanos NK, Cordopatis P, and Lamari FN: Crocetin inhibits invasiveness of MDA-MB-231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Med 77, 146–151, 2011. doi:10.1055/s-0030-1250178
  • Bolhassani A, Khavari A, and Bathaie SZ: Saffron and natural carotenoids: biochemical activities and anti-tumor effects. Biochim Biophys Acta 1845, 20–30, 2014. doi:10.1016/j.bbcan.2013.11.001
  • Lv CF, Luo CL, Ji HY, and Zhao P: Influence of crocin on gene expression profile of human bladder cancer cell lines T24. Zhongguo Zhong Yao Za Zhi 33, 1612–1617, 2008.
  • Sun Y, Xu HJ, Zhao YX, Wang LZ, Sun LR, et al.: Crocin exhibits antitumor effects on human leukemia HL-60 cells in vitro and in vivo. Evid Based Complement Alternat Med 2013, 690164, 2013. doi:10.1155/2013/690164
  • Samarghandian S, Tavakkol Afshari J, and Davoodi S: Suppression of pulmonary tumor promotion and induction of apoptosis by Crocus sativus L. extraction. Appl Biochem Biotechnol 164, 238–247, 2011. doi:10.1007/s12010-010-9130-x
  • Liang Q, Li W, and Zhou B: Caspase-independent apoptosis in yeast. Biochim Biophys Acta 1783, 1311–1319, 2008. doi:10.1016/j.bbamcr.2008.02.018
  • Samarghandian S, Borji A, Farahmand SK, Afshari R, and Davoodi S: Crocus sativus L. (saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. Biomed Res Int 2013, 417928, 2013. doi:10.1155/2013/417928
  • Kritis A, Pourzitaki C, Klagas I, Chourdakis M, and Albani M: Proteases inhibition assessment on PC12 and NGF treated cells after oxygen and glucose deprivation reveals a distinct role for aspartyl proteases. PLoS One 6, e25950, 2011. doi:10.1371/journal.pone.0025950
  • Kang GS, Wang XD, Mohler ML, Kirichenko OV, Patil R, et al.: Effects, in an in-vivo model system, of 1,2,3,4-tetrahydroisoquinoline on glioma. Anticancer Drugs 19, 859–870, 2008. doi:10.1097/CAD.0b013e32830d5887
  • Megalizzi V, Mathieu V, Mijatovic T, Gailly P, Debeir O, et al.: 4-IBP, a sigma1 receptor agonist, decreases the migration of human cancer cells, including glioblastoma cells, in vitro and sensitizes them in vitro and in vivo to cytotoxic insults of proapoptotic and proautophagic drugs. Neoplasia 9, 358–369, 2007.
  • Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, et al.: A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9, 341–349, 2006. doi:10.1016/j.ccr.2006.03.029
  • Tanida I, Ueno T, and Kominami E: LC3 and autophagy. Methods Mol Biol 445, 77–88, 2008. doi:10.1007/978-1-59745-157-4_4
  • Mizushima N and Yoshimori T: How to interpret LC3 immunoblotting. Autophagy 3, 542–545, 2007. doi:10.4161/auto.4600
  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al.: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO J 19, 5720–5728, 2000. doi:10.1093/emboj/19.21.5720
  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, et al.: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117, 2805–2812, 2004. doi:10.1242/jcs.01131
  • Tanida I, Minematsu-Ikeguchi N, Ueno T, and Kominami E: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84–91, 2005. doi:10.3410/f.1033557.388810
  • Nikoletopoulou V, Markaki M, Palikaras K, and Tavernarakis N: Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta (BBA) - Mol Cell Res 1833, 3448–3459, 2013. doi:10.1016/j.bbamcr.2013.06.001
  • Hosseinzadeh H and Younesi H: Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2, 7, 2002.
  • Kyriakoudi ACA, Mantzouridou F, and Tsimidou MZ: Revisiting extraction of bioactive apocarotenoids from Crocus sativus L. dry stigmas (saffron). Anal Chim Acta 755, 77–85, 2012.
  • Kyriakoudi ATM, O’Callaghan YC, Galvin K, and O’Brien NM: Changes in total and individual crocetin esters upon in vitro gastrointestinal digestion of saffron aqueous extracts. J Agric Food Chem 61, 5318–5327, 2013.
  • Stagg RB, Thomas WJ, Jones RA, and Adey WR: DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field. Bioelectromagnetics 18, 230–236, 1997. doi:10.1002/(SICI)1521-186X(1997)18:3<230::AID-BEM5>3.0.CO;2-3
  • Lim R, Hicklin DJ, Ryken TC, Han XM, Liu KN, et al.: Suppression of glioma growth in vitro and in vivo by glia maturation factor. Cancer Res 46, 5241–5247, 1986.
  • Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63, 1983. doi:10.1016/0022-1759(83)90303-4
  • Strober W: Trypan Blue exclusion test of cell viability. Curr Protoc Immunol. Appendix 3:Appendix 3B, 2001. doi:10.1002/0471142735.ima03bs21
  • Chou J and Chou, T.-C.: Computerized simulation of dose reduction index (DRI) in synergistic drug combinations. Pharmacologist 30, A231, 1988.
  • Chou T-C and Talalay P: Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Reg 22, 27–55, 1984. doi:10.1016/0065-2571(84)90007-4
  • Gavrieli Y, Sherman Y, and Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119, 493–501, 1992. doi:10.1083/jcb.119.3.493
  • Chatzimeletiou K, Sioga A, Oikonomou L, Charalampidou S, Kantartzi P, et al.: Semen analysis by electron and fluorescence microscopy in a case of partial hydatidiform mole reveals a high incidence of abnormal morphology, diploidy, and tetraploidy. Fertility Sterility 95, 2430.e1–2430.e5, 2011.
  • Boix-Chornet M, Fraga MF, Villar-Garea A, Caballero R, Espada J, et al.: Release of hypoacetylated and trimethylated histone H4 is an epigenetic marker of early apoptosis. J Biol Chem 281, 13540–13547, 2006. doi:10.1074/jbc.M601136200
  • Agrelo R, Cheng W-H, Setien F, Ropero S, Espada J, et al.: Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 103, 8822–8827, 2006. doi:10.1073/pnas.0600645103
  • Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254, 1976. doi:10.1016/0003-2697(76)90527-3
  • Vavilis T, Delivanoglou N, Aggelidou E, Stamoula E, Mellidis K, et al.: Oxygen-glucose deprivation (OGD) modulates the unfolded protein response (UPR) and inflicts autophagy in a PC12 hypoxia cell line model. Cell Mol Neurobiol 36, 701–712, 2016. doi:10.1007/s10571-015-0250-2
  • Nicolaas AP, Franken HMR, Stap J, Haveman J, and van Bree C: Clonogenic assay of cells in vitro. Nat Protocols 1, 2315–2319, 2006. doi:10.1038/nprot.2006.339
  • Franken NA, Rodermond HM, Stap J, Haveman J, and van Bree C: Clonogenic assay of cells in vitro. Nat Protocols 1, 2315–2319, 2006. doi:10.1038/nprot.2006.339
  • Chou T-C: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70, 440–446, 2010. doi:10.1158/0008-5472.can-09-1947
  • Chou T- C: Relationships between inhibition constants and fractional inhibition in enzyme-catalyzed reactions with different numbers of reactants, different reaction mechanisms, and different types and mechanisms of inhibition. Mol Pharmacol 10, 235–247, 1974.
  • Chou T-C: Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J Theor Biol 59, 253–276, 1976. doi:10.1016/0022-5193(76)90169-7
  • Kyriakoudi A OS, Roldán-Medina M, and Tsimidou MZ: Saffron, a functional spice. Austin J Nutri Food Sci 3, 1059, 2015.
  • Srivastava R, Ahmed H, Dixit RK, Dharamveer, and Saraf SA: Crocus sativus L.: A comprehensive review. Pharmacogn Rev 4, 200–208, 2010. doi:10.4103/0973-7847.70919
  • Malathi M, Devi DR, Hari BNV: Crocus sativus linn − a potential sourcefor diverse therapeutic applications. Int J Pharm Pharm Rev 26, 299–305, 2014.
  • Patel S, Sarwat M, and Khan TH: Mechanism behind the anti-tumour potential of saffron (Crocus sativus L.): the molecular perspective. Crit Rev Oncol Hematol 115, 27–35, 2017. doi:10.1016/j.critrevonc.2017.04.010
  • Nair SC, Pannikar B, and Panikkar KR: Antitumour activity of saffron (Crocus sativus). Cancer Lett 57, 109–114, 1991. doi:0304-3835(91)90203-T
  • Hoshyar R and Mollaei H: A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J Pharm Pharmacol 69, 1419–1427, 2017. doi:10.1111/jphp.12776
  • Wang Cj LJK: Inhibitory effects of carotenoids and retinoids on the in vitro growth of rat C-6 glioma cells. Proc Natl Sci Coun, Repub Chin Part B, Life Sci 13, 176–183, 1989.
  • Hosseinzadeh H, Modaghegh MH, Saffari Z: Crocus Sativus L. (Saffron) extract and its active constituents (Crocin and Safranal) on ischemia-reperfusion in rat skeletal muscle. eCAM 6, 343–350, 2007. doi:10.1093/ecam/nem125
  • Nishino H, Murakosh M, Ii T, Takemura M, Kuchide M, et al.: Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21, 257–264, 2002.
  • Abdullaev FI: Inhibitory effect of crocetin on intracellular nucleic acid and protein synthesis in malignant cells. Toxicol Lett 70, 243–251, 1994.
  • Takashi Ochiai SO, Shinji Soeda, Hiroyuki Tanaka, and Yukihiro Shoyama HS: Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of a-tocopherol. Neurosci Lett 362, 61–64, 2004. doi:10.1016/j.neulet.2004.02.067
  • Ochiai T, Shimeno H, Mishima K-i, Iwasaki K, Fujiwara M, et al.: Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta (BBA) - Gen Subjects 1770, 578–584, 2007. doi:10.1016/j.bbagen.2006.11.012
  • Aung HH, Wang CZ, Ni M, Fishbein A, Mehendale SR, et al.: Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 29, 175–80, 2007.
  • Lobner D: Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods 96, 147–152, 2000. doi:10.1016/S0165-0270(99)00193-4
  • Zhang J, Stevens MF, and Bradshaw TD: Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5, 102–114, 2012. doi:10.2174/1874467211205010102
  • Wang Y, Gao S, Wang W, and Liang J: Temozolomide inhibits cellular growth and motility via targeting ERK signaling in glioma C6 cells. Mol Med Rep 14, 5732–5738, 2016. doi:10.3892/mmr.2016.5964
  • Escribano J AG, Coca-Prados M, and Fernandez JA.: Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100, 23–30, 1996.
  • Bathaie SZ, Miri H, Mohagheghi MA, Mokhtari-Dizaji M, Shahbazfar AA, et al.: Saffron aqueous extract inhibits the chemically-induced gastric cancer progression in the Wistar albino rat. Iran J Basic Med Sci 16, 27–38, 2013.
  • Hariri AT, Moallem SA, Mahmoudi M, and Hosseinzadeh H: The effect of crocin and safranal, constituents of saffron, against subacute effect of diazinon on hematological and genotoxicity indices in rats. Phytomedicine 18, 499–504, 2011. doi:10.1016/j.phymed.2010.10.001
  • Ziaee T, Razavi BM, and Hosseinzadeh H: Saffron reduced toxic effects of its constituent, safranal, in acute and subacute toxicities in rats. Jundishapur J Nat Pharm Prod 9, 3–8, 2014.
  • Riahi-Zanjani B, Balali-Mood M, Mohammadi E, Badie-Bostan H, Memar B, et al.: Safranal as a safe compound to mice immune system. Avicenna J Phytomed 5, 441–449, 2015.
  • Hariri AT, Moallem SA, Mahmoudi M, Memar B, and Hosseinzadeh H: Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48, 2803–2808, 2010. doi:10.1016/j.fct.2010.07.010
  • Huang XJ, Li CT, Zhang WP, Lu YB, Fang SH, et al.: Dihydroartemisinin potentiates the cytotoxic effect of temozolomide in rat C6 glioma cells. Pharmacology 82, 1–9, 2008. doi:10.1159/000125673
  • Beier D, Schulz JB, and Beier CP: Chemoresistance of glioblastoma cancer stem cells–much more complex than expected. Mol Cancer 10, 128, 2011. doi:10.1186/1476-4598-10-128
  • Xie Y, Zeng X, Wu X, Hu J, Zhu Y, et al.: Hyperbaric oxygen as an adjuvant to temozolomide nanoparticle inhibits glioma growth by inducing G2/M phase arrest. Nanomedicine (Lond) 13, 887–898, 2018. doi:10.2217/nnm-2017-0395
  • Stepanenko AA and Dmitrenko VV: Pitfalls of the MTT assay: direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 574, 193–203, 2015. doi:10.1016/j.gene.2015.08.009
  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al.: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720–5728, 2000. doi:10.1093/emboj/19.21.5720
  • Jordan J, Galindo MF, and Miller RJ: Role of calpain- and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture. J Neurochem 68, 1612–1621, 1997.
  • Nath R, Raser KJ, McGinnis K, Nadimpalli R, Stafford D, et al.: Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. Neuroreport 8, 249–255, 1996.
  • Rami A, Ferger D, and Krieglstein J: Blockade of calpain proteolytic activity rescues neurons from glutamate excitotoxicity. Neurosci Res 27, 93–97, 1997.
  • Schumacher PA, Siman RG, and Fehlings MG: Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem 74, 1646–1655, 2000.
  • Bartus RT, Baker KL, Heiser AD, Sawyer SD, Dean RL, et al.: Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab 14, 537–544, 1994. doi:10.1038/jcbfm.1994.67
  • Markgraf CG, Velayo NL, Johnson MP, McCarty DR, Medhi S, et al.: Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29, 152–158, 1998.
  • Atencio IA, Ramachandra M, Shabram P, and Demers GW: Calpain inhibitor 1 activates p53-dependent apoptosis in tumor cell lines. Cell Growth Differ 11, 247–253, 2000.
  • Zhu DM and Uckun FM: Calpain inhibitor II induces caspase-dependent apoptosis in human acute lymphoblastic leukemia and non-Hodgkin's lymphoma cells as well as some solid tumor cells. Clin Cancer Res 6, 2456–2463, 2000.
  • Maiuri MC, Zalckvar E, Kimchi A, and Kroemer G: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741–752, 2007. doi:10.1038/nrm2239

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.