167
Views
7
CrossRef citations to date
0
Altmetric
Articles

Dietary Turmeric Bisdemethoxycurcumin Suppresses Wilms’ Tumor 1 and CD34 Protein Expressions in KG-1a Leukemic Stem Cells

, , & ORCID Icon
Pages 1189-1200 | Received 15 Nov 2018, Accepted 04 Mar 2019, Published online: 07 Apr 2019

References

  • Geethanjali A, Lalitha P, and Jannathul Firdhouse M: Analysis of curcumin content of turmeric samples from various states of India. Int J Pharma Chem Res 2, 55–62, 2016.
  • Feller N, van der Pol MA, van Stijn A, Weijers GWD, Westra AH, et al. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia 18, 1380–1390, 2004.
  • van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 11, 6520–6527, 2005. doi: 10.1158/1078-0432.ccr-05-0468
  • Lutz C, Woll PS, Hall G, Castor A, Dreau H, et al. Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia 27, 1204–1207, 2013. doi: 10.1038/leu.2012.306
  • Bonnet D, and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730–737, 1997.
  • Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325, 2002.
  • Jordan CT, Guzman ML, and Noble M: Cancer stem cells. N Engl J Med 355, 1253–1261, 2006. doi: 10.1056/NEJMra061808
  • Abdullah LN, and Chow E-H: Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2, 3, 2013. doi: 10.1186/2001-1326-2-3
  • Fraizer G, Patmasiriwat P, Zhang X, and Saunders G: Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow [letter]. Blood 86, 4704–4706, 1995.
  • Baird PN, and Simmons PJ: Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis. Exp Hematol 25, 312–320, 1997.
  • Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 116, 409–420, 2002.
  • Coppes MJ, Campbell CE, and Williams BR: The role of WT1 in Wilms tumorigenesis. FASEB J 7, 886–895, 1993.
  • Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, et al. Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood 87, 2878–2884, 1996.
  • Brown EJ, and Frazier WA: Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11, 130–135, 2001. doi: 10.1016/S0962-8924(00)01906-1
  • Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84, 3071–3079, 1994.
  • Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, et al. High levels of Wilms’ tumor gene (WT1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90, 1217–1225, 1997.
  • Barragan E, Cervera J, Bolufer P, Ballester S, Martin G, et al. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica 89, 926–933, 2004.
  • Tamaki H, Ogawa H, Inoue K, Soma T, Yamagami T, et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia [letter]. Blood 88, 4396–4398, 1996.
  • Ammon HP, and Wahl MA: Pharmacology of curcuma longa. Planta Med 57, 1–7, 1991. doi: 10.1055/s-2006-960004
  • Aggarwal BB, Sundaram C, Malani N, and Ichikawa H: Curcumin: the indian solid gold. Adv Exp Med Biol 595, 1–75, 2007. doi: 10.1007/978-0-387-46401-5_1
  • Amalraj A, Pius A, Gopi S, and Gopi S: Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J Tradit Complement Med 7, 205–233, 2017. doi: 10.1016/j.jtcme.2016.05.005
  • Anuchapreeda S, Thanarattanakorn P, Sittipreechacharn S, Chanarat P, and Limtrakul P: Curcumin inhibits WT1 gene expression in human leukemic K562 cells. Acta Pharmacol Sin 27, 360–366, 2006. doi: 10.1111/j.1745-7254.2006.00291.x
  • Anuchapreeda S, Limtrakul P, Thanarattanakorn P, Sittipreechacharn S, and Chanarat P: Inhibitory effect of curcumin on WT1 gene expression in patient leukemic cells. Arch Pharm Res 29, 80–87, 2006.
  • Anuchapreeda S, Tima S, Duangrat C, and Limtrakul P: Effect of pure curcumin, demethoxycurcumin, and bisdemethoxycurcumin on WT1 gene expression in leukemic cell lines. Cancer Chemother Pharmacol 62, 585–594, 2008. doi: 10.1007/s00280-007-0642-1
  • Semsri S, Krig SR, Kotelawala L, Sweeney CA, and Anuchapreeda S: Inhibitory mechanism of pure curcumin on Wilms’ tumor 1 (WT1) gene expression through the PKCα signaling pathway in leukemic K562 cells. FEBS Lett 585, 2235–2242, 2011. doi: 10.1016/j.febslet.2011.05.043
  • Limtrakul P, Anuchapreeda S, and Buddhasukh D: Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC Cancer 4, 13, 2004. doi: 10.1186/1471-2407-4-13
  • Chearwae W, Anuchapreeda S, Nandigama K, Ambudkar SV, and Limtrakul P: Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem Pharmacol 68, 2043–2052, 2004. doi: 10.1016/j.bcp.2004.07.009
  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648, 1994.
  • Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87, 1539–1548, 1996.
  • de Figueiredo-Pontes LL, Pintao MC, Oliveira LC, Dalmazzo LF, Jacomo RH, et al. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry Part Cytometry 74, 163–168, 2008. doi: 10.1002/cyto.b.20403
  • Tima S, Ichikawa H, Ampasavate C, Okonogi S, and Anuchapreeda S: Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line. J Nat Prod 77, 948–954, 2014. doi: 10.1021/np401028h
  • Furley AJ, Reeves BR, Mizutani S, Altass LJ, Watt SM, et al. Divergent molecular phenotypes of KG1 and KG1a myeloid cell lines. Blood 68, 1101–1107, 1986.
  • Fuchs D, Daniel V, Sadeghi M, Opelz G, and Naujokat C: Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun 394, 1098–1104, 2010. doi: 10.1016/j.bbrc.2010.03.138
  • She M, Niu X, Chen X, Li J, Zhou M, et al. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett 318, 173–179, 2012. doi: 10.1016/j.canlet.2011.12.017
  • Panyajai P, Amnajphook N, Keawsangthongcharoen S, Chiampanichayakul S, Tima S, et al. Study of leukemic stem cell population (CD34+/CD38-) and WT1 protein expression in human leukemic cell lines. J Associated Med Sci 51, 38–44, 2018.
  • Hosen N, Shirakata T, Nishida S, Yanagihara M, Tsuboi A, et al. The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21, 1783–1791, 2007. doi: 10.1038/sj.leu.2404752
  • Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2, 17ra9, 2010. doi: 10.1126/scitranslmed.3000349
  • Madden SL, Cook DM, and Rauscher FJ: 3rd: A structure-function analysis of transcriptional repression mediated by the WT1, Wilms’ tumor suppressor protein. Oncogene 8, 1713–1720, 1993.
  • Liu JY, Lin SJ, and Lin JK: Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14, 857–861, 1993.
  • Reddy S, and Aggarwal BB: Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett 341, 19–22, 1994.
  • Weng G, Zeng Y, Huang J, Fan J, and Guo K: Curcumin enhanced busulfan-induced apoptosis through downregulating the expression of survivin in leukemia stem-like KG1a cells. BioMed Res Int 2015, 630397, 2015. doi: 10.1155/2015/630397
  • Jayaprakasha GK, Jaganmohan Rao L, and Sakariah KK: Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 98, 720–724, 2006. doi: 10.1016/j.foodchem.2005.06.037
  • Ak T, and Gülçin İ: Antioxidant and radical scavenging properties of curcumin. Chemico-Biol Interact 174, 27–37, 2008. doi: 10.1016/j.cbi.2008.05.003
  • Galano A, Álvarez-Diduk R, Ramírez-Silva MT, Alarcón-Ángeles G, and Rojas-Hernández A: Role of the reacting free radicals on the antioxidant mechanism of curcumin. Chem Phys 363, 13–23, 2009. doi: 10.1016/j.chemphys.2009.07.003
  • Fischer N, Seo E-J, and Efferth T: Prevention from radiation damage by natural products. Phytomedicine 47, 192–200, 2018. doi: 10.1016/j.phymed.2017.11.005
  • Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, et al. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr 34, 1101–1108, 2015. doi: 10.1016/j.clnu.2014.12.019
  • Cooney JM, Barnett MPG, Dommels YEM, Brewster D, Butts CA, et al. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a−/− mouse model of inflammatory bowel disease. J Nutr Biochem 27, 181–192, 2016. doi: 10.1016/j.jnutbio.2015.08.030
  • Yang H, Du Z, Wang W, Song M, Sanidad K, et al. Structure–activity relationship of curcumin: role of the methoxy group in anti-inflammatory and anticolitis effects of curcumin. J Agric Food Chem 65, 4509–4515, 2017. doi: 10.1021/acs.jafc.7b01792
  • Negi PS, Jayaprakasha GK, Jagan Mohan Rao L, and Sakariah KK: Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem 47, 4297–4300, 1999.
  • Anuchapreeda S, Leechanachai P, Smith M, Ambudkar SV, and Limtrakul P: Modulation of P-glycoprotein expression and function by curcumin in Multidrug resistant human KB cells. Biochem Pharmacol 64, 573–582, 2002. doi: 10.1016/s0006-2952(02)01224-8
  • Radhakrishna Pillai G, Srivastava AS, Hassanein TI, Chauhan DP, and Carrier E: Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208, 163–170, 2004. doi: 10.1016/j.canlet.2004.01.008
  • Yodkeeree S, Chaiwangyen W, Garbisa S, and Limtrakul P: Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem 20, 87–95, 2009. doi: 10.1016/j.jnutbio.2007.12.003
  • Liu X, Sun K, Song A, Zhang X, Zhang X, et al. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J Surg Onc 12, 389, 2014. doi: 10.1186/1477-7819-12-389
  • Tima S, Okonogi S, Ampasavate C, Pickens C, Berkland C, et al. Development and characterization of FLT3-specific curcumin-loaded polymeric micelles as a drug delivery system for treating FLT3-overexpressing leukemic cells. J Pharm Sci 105, 3645–3657, 2016. doi: 10.1016/j.xphs.2016.09.010
  • Li H, Krstin S, and Wink M: Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin. Phytomedicine 50, 213–222, 2018. doi: 10.1016/j.phymed.2018.09.169
  • Mukherjee S, Fried A, Hussaini R, White R, Baidoo J, et al. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J Exp Clin Cancer Res 37, 168, 2018. doi: 10.1186/s13046-018-0792-5
  • Tima S, Okonogi S, Ampasavate C, Berkland C, and Anuchapreeda S: FLT3-specific curcumin micelles enhance activity of curcumin on FLT3-ITD overexpressing MV4-11 leukemic cells. Drug Dev Ind Pharm 45, 498–505, 2019. doi: 10.1080/03639045.2018.1562462
  • Kamalabadi-Farahani M, Vasei M, Ahmadbeigi N, Ebrahimi-Barough S, Soleimani M, et al. Anti-tumour effects of TRAIL-expressing human placental derived mesenchymal stem cells with curcumin-loaded chitosan nanoparticles in a mice model of triple negative breast cancer. Artif Cells, Nanomed Biotechnol 1–11, 2018. doi: 10.1080/21691401.2018.1527345
  • Kumar G, Farooqui M, and Rao CV: Role of dietary cancer-preventive phytochemicals in pancreatic cancer stem cells. Curr Pharmacol Rep 4, 326–335, 2018. doi: 10.1007/s40495-018-0145-2
  • Wang J, Wang C, and Bu G: Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp Ther Med 15, 3650–3658, 2018. doi: 10.3892/etm.2018.5805
  • Li Y, Domina A, Lim G, Chang T, and Zhang T: Evaluation of curcumin, a natural product in turmeric, on Burkitt lymphoma and acute myeloid leukemia cancer stem cell markers. Future Oncol 14, 2353–2360, 2018. doi: 10.2217/fon-2018-0202
  • Bao B, Ali S, Banerjee S, Wang Z, Logna F, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72, 335–345, 2012. doi: 10.1158/0008-5472.CAN-11-2182
  • Zendehdel E, Abdollahi E, Momtazi-Borojeni AA, Korani M, Alavizadeh SH, et al. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 120, 4739–4747, 2019. doi: 10.1002/jcb.27757
  • Sheefa M, Aakanksha V, Hemangini V, Nayan J, and Rakesh R: Curcumin targets circulating cancer stem cells by inhibiting self-renewal efficacy in non-small cell lung carcinoma. Anti-Cancer Agents Med Chem 17, 859–864, 2017. doi: 10.2174/1871520616666160923102549
  • Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, et al. Targeting lung cancer stem cells: research and clinical impacts. Front Oncol 7, 80, 2017. doi: 10.3389/fonc.2017.00080
  • Bao B, Ali S, Ahmad A, Azmi AS, Li Y, et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PloS One 7, e50165, 2012. doi: 10.1371/journal.pone.0050165
  • Sun CY, Liu XY, Chen Y, Liu F, and Wang Y: Experimental study on anticancer effect of curcumin on Raji cells in vitro. Zhongguo Zhong xi yi Jie he za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chinese Journal of Integrated Traditional and Western Medicine 24, 1003–1006, 2004.
  • Yue GGL, Chan BCL, Hon P-M, Lee MYH, Fung K-P, et al. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem Toxicol 48, 2011–2020, 2010. doi: 10.1016/j.fct.2010.04.039
  • Gopal PK, Paul M, and Paul S: Curcumin induces caspase mediated apoptosis in JURKAT cells by disrupting the redox balance. Asian Pac J Cancer Prev 15, 93–100, 2014.
  • Fackler MJ, Civin CI, Sutherland DR, Baker MA, and May WS: Activated protein kinase C directly phosphorylates the CD34 antigen on hematopoietic cells. J Biol Chem 265, 11056–11061, 1990.
  • Fackler MJ, Civin CI, and May WS: Up-regulation of surface CD34 is associated with protein kinase C-mediated hyperphosphorylation of CD34. J Biol Chem 267, 17540–17546, 1992.
  • Krause DS, Ito T, Fackler MJ, Smith OM, Collector MI, et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood 84, 691–701, 1994.
  • Nielsen JS, and McNagny KM: Novel functions of the CD34 family. J Cell Sci 121, 3683–3692, 2008. doi: 10.1242/jcs.037507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.