233
Views
6
CrossRef citations to date
0
Altmetric
Articles

Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1263-1271 | Received 07 Feb 2019, Accepted 09 Apr 2019, Published online: 14 May 2019

References

  • Liu D, Shi J, Posada LR, Kakuda Y, and Xue SJ: Separating tocotrienols from palm oil by molecular distillation. Food Rev Int 24, 376–391, 2008. doi:10.1080/87559120802303840
  • Sundram K, and Gapor A: Vitamin E from palm oil: its extraction and nutritional properties. Lipid Technol 4, 37–41, 1992.
  • Ahsan H, Ahad A, Iqbal J, and Siddique WA: Pharmacological potential of tocotrienols: a review. Nutr Metab 11, 1–22, 2014. doi:10.1186/1743-7075-11-52
  • Srivastava JK, and Gupta S: Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem Biophys Res Commun 346, 447–453, 2006.
  • Lim S-W, Loh H-S, Ting K-N, Bradshaw TD, and Zeenathul NA: Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells. BMC Complement Alternat Med 14, 469, 2014. doi:10.1186/1472-6882-14-469
  • Pierpaoli E, Viola V, Pilolli F, Piroddi M, Galli F, and Provinciali M: Gamma- and delta-tocotrienols exert a more potent anticancer effect than alpha-tocopheryl succinate on breast cancer cell lines irrespective of HER-2/neu expression. Life Sci 86, 668–675, 2010. doi:10.1016/j.lfs.2010.02.018
  • Rajendran P, Li F, Manu KA, Shanmugam MK, Loo SY, et al. γ-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent. Br J Pharmacol 163, 283–298, 2011. doi:10.1111/j.1476-5381.2010.01187.x
  • Wang C, Husain K, Zhang A, Centeno BA, Chen D-T, et al. EGR-1/Bax pathway plays a role in vitamin E delta-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem 26, 797–807, 2015. doi:10.1016/j.jnutbio.2015.02.008
  • Hsieh TC, Elangovan S, and Wu JM: Differential suppression of proliferation in MCF-7 and MDA-MB-231 breast cancer cells exposed to ??-, ??- and ??-tocotrienols is accompanied by altered expression of oxidative stress modulatory enzymes. Anticancer Res 30, 4169–4176, 2010.
  • Shun M-C, Yu W, Gapor A, Parsons R, Atkinson J, et al. Pro-apoptotic mechanisms of action of a novel vitamin E analog (alpha-TEA) and a naturally occurring form of vitamin E (delta-tocotrienol) in MDA-MB-435 human breast cancer cells. Nutr Cancer 48, 95–105, 2004. doi:10.1207/s15327914nc4801_13
  • Shirode AB, and Sylvester PW: Synergistic anticancer effects of combined gamma-tocotrienol and celecoxib treatment are associated with suppression in Akt and NFkappaB signaling. Biomed Pharmacother Bioméd Pharmacothér 64, 327–332, 2010. doi:10.1016/j.biopha.2009.09.018
  • Wada S, Naito Y, Matsushita Y, Nouchi M, Kawai M, et al. δ-Tocotrienol suppresses tumorigenesis by inducing apoptosis and blocking the COX-2/PGE2 pathway that stimulates tumor–stromal interactions in colon cancer. J Funct Foods 35, 428–435, 2017.
  • Luk SU, Yap WN, Chiu Y, Lee DTW, Ma S, et al. Gamma‐tocotrienol as an effective agent in targeting prostate cancer stem cell‐like population. Int J Cancer 128, 2182–2191, 2011.
  • Liang S, Xu Z, Xu X, Zhao X, Huang C, and Wei Y: Quantitative proteomics for cancer biomarker discovery. Combinat Chem High Throughput Screen 15, 221–231, 2012. doi:10.2174/138620712799218635
  • Huang DW, Sherman BT, and Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37, 1–13, 2009.
  • Huang DW, Sherman BT, and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44, 2009.
  • Palmieri D, Lee JW, Juliano RL, and Church FC: Plasminogen activator inhibitor-1 and -3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells . J Biol Chem 277, 40950–40957, 2002.
  • Almholt K, Nielsen BS, Frandsen TL, Brünner N, Danø K, and Johnsen M: Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice. Oncogene 22, 4389–4397, 2003. doi:10.1038/sj.onc.1206601
  • Wang X, Liu C, Wang J, Fan Y, Wang Z, and Wang Y: Oxymatrine inhibits the migration of human colorectal carcinoma RKO cells via inhibition of PAI-1 and the TGF-β1/Smad signaling pathway. Oncol Rep 37, 747–753, 2017.
  • Masuda T, Hattori N, Horimasu Y, Miyamoto S, Nakashima T, et al. PAI-1 plays an important role in lung cancer progression through differentiation of cancer-associated fibroblasts to myofibroblasts. In: A80-C Molecular Immunobiology of Lung Cancer. American Thoracic Society, 2016. A2563–A2563.
  • Mashiko S, Kitatani K, Toyoshima M, Ichimura A, Dan T, et al.: Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy in ovarian cancer. Cancer Biol Ther 16, 253–260, 2015. doi:10.1080/15384047.2014.1001271
  • Serafin A, Böhm L, Fernandez P, Achel D, Akudugu J, and Serafin A: The potential of PAI-1 expression in needle biopsies as a predictive marker for prostate cancer. Cog Med 86, 1–9, 2016. doi:10.1080/2331205X.2016.1183275
  • Wu GS, Saftig P, Peters C, and El-Deiry WS: Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16, 2177–2183, 1998.
  • Coumans JVF, Gau D, Poljak A, Wasinger V, Roy P, and Moens P: Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses. Omics J Integr Biol 18, 778–791, 2014.
  • Zou L, Jaramillo M, Whaley D, Wells A, Panchapakesa V, et al. Profilin-1 is a negative regulator of mammary carcinoma aggressiveness. Br J Cancer 97, 1361–1371, 2007.
  • Zou L, Ding Z, and Roy P: Profilin-1 overexpression inhibits proliferation of MDA-MB-231 breast cancer cells partly through p27kip1 upregulation. J Cell Physiol 223, 623–629, 2010. doi:10.1002/jcp.22058
  • Burbelo P, Wellstein A, and Pestell RG: Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat 84, 43–48, 2004. doi:10.1023/B:BREA.0000018422.02237.f9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.