139
Views
0
CrossRef citations to date
0
Altmetric
Review

The Dichotomous Effect of Thiamine Supplementation on Tumorigenesis: A Systematic Review

, , &
Pages 1942-1957 | Received 16 Feb 2021, Accepted 10 Nov 2021, Published online: 02 Dec 2021

References

  • Amorim MO, Vieira MM, Gonçalves IV, Rhana P, Rodrigues ALP. Breast cancer: tumoral metabolism ­reprogramming. Rev Médica Minas Gerais. 2018;28:e-1937.
  • Kim S. New and emerging factors in tumorigenesis: an overview. Cancer Manag Res. 2015;7:225–39. doi:10.2147/CMAR.S47797
  • Gu Q, Li F, Ge S, Zhang F, Jia R, Fan X. CDC20 knockdown and acidic microenvironment collaboratively promote tumorigenesis through inhibiting autophagy and apoptosis. Mol Ther Oncolytics. 2020;17:94–106. doi:10.1016/j.omto.2020.03.015
  • Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, Bray F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Heal. 2020;8(2):e191–e203. doi:10.1016/S2214-109X(19)30482-6
  • Person PO. warburg: ‘on the origin of cancer cells. Oral Surg, Oral Med Oral Pathol. 1957;10(4):412–421. doi:10.1016/0030-4220(57)90167-6
  • Gehm PM, Tratado de oncologia. Sao Paulo: Atheneu; 2013.
  • Lonsdale D, Marrs C. The potential of lipid soluble thiamine in the treatment of cancer. AIMS Biophys. 2020;7(1):17–26. doi:10.3934/biophy.2020002
  • Cozzolino SMF, editor. Biodisponibilidade de nutrientes. Barueri: Manole; 2016.
  • Boros LG, Brandes JL, Lee WN, Cascante M, Puigjaner J, Revesz E, Bray TM, Schirmer WJ, Melvin WS. Thiamine supplementation to cancer patients: a double edged sword. Anticancer Res. 1998;18(1B):595–602.
  • Zastre JA, Hanberry BS, Sweet RL, McGinnis AC, Venuti KR, Bartlett MG, Govindarajan R. Up-regulation of vitamin B1 homeostasis genes in breast cancer. J Nutr Biochem. 2013;24(9):1616–1624. doi:10.1016/j.jnutbio.2013.02.002
  • Pourhassan M, Angersbach B, Lueg G, Klimek CN, Wirth R. Blood thiamine level and cognitive function in older hospitalized patients. J Geriatr Psychiatry Neurol. 2019;32(2):90–96. doi:10.1177/0891988718819862
  • Champe PC. Bioquímica Ilustrada. Porto Alegre: Artmed; 2006.
  • Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid-Based Complem Alternat Med. 2006;3(1):49–59. doi:10.1093/ecam/nek009
  • Brasileiro FG. Patologia. 9th ed. Rio de Janeiro: Guanabara Koogan; 2016.
  • Kumar V, Abbas A, Fausto N. Bases Patológica das Doenças. Rio de Janeiro: Elsevier; 2016.
  • Galluzzi L, Kepp O, Heiden MGV, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12(11):829–846. doi:10.1038/nrd4145
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. doi:10.1038/nrc2981
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi:10.1016/S0092-8674(00)81683-9
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. [Database] doi:10.1016/j.cell.2011.02.013
  • Remedios AA, Cutiño MP, Pérez Zv, Pérez Av. Papel de la reprogramación metabólica en la carcinogénesis. Correo Científico Médico. 2016;20(2):292–304.
  • Harvey RA, Ferrier DR. Bioquímica Ilustrada. Porto Alegre: Artmed; 2019.
  • Nelson D. Princípios de Bioquímica de Lehninger. 6th ed. São Paulo: Artmed; 2014.
  • Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s achilles’ heel. Cancer Cell. 2008;13(6):472–482. doi:10.1016/j.ccr.2008.05.005
  • Wojtczak L. The Crabtree effect: A new look at the old problem. Acta Biochim Pol. 1996;43(2):361–368. doi:10.18388/abp.1996_4505
  • Dell’ Antone P. Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Med Hypoth. 2012;79(3):388–392. doi:10.1016/j.mehy.2012.06.002
  • Warbug O, Posener K, Negelein E. On the metabolism of carcinoma cells. Biochemische Zeitschrift. 1924;152:309–44.
  • Kalyanaraman B. Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 2017;12:833–842. doi:10.1016/j.redox.2017.04.018
  • Vernieri C, Casola S, Foiani M, Pietrantonio F, de Braud F, Longo V. Targeting cancer metabolism: dietary and pharmacologic interventions. Cancer Discov. 2016;6(12):1315–1333. doi:10.1158/2159-8290.CD-16-0615
  • Peck B, Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer? Febs J. 2016;283(15):2767–2778. doi:10.1111/febs.13681
  • Prado CM, Purcell SA, Laviano A. Nutrition interventions to treat low muscle mass in cancer. J Cachexia Sarcopenia Muscle. 2020;11(2):366–380. doi:10.1002/jcsm.12525
  • Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–495. doi:10.1016/S1470-2045(10)70218-7
  • Argilés JM, Alvarez B, López-Soriano FJ. The metabolic basis of cancer cachexia. Med Res Rev. 1997;17(5):477–498. doi:10.1002/(SICI)1098-1128(199709)17:5<477::AID-MED3>3.0.CO;2-R
  • Tisdale MJ. Cancer cachexia. Curr Opin Gastroenterol. 2010;26(2):146–151. doi:10.1097/MOG.0b013e3283347e77
  • Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, Blackwell K, Rimer BK. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. JCO. 2001;19(9):2381–2389. doi:10.1200/JCO.2001.19.9.2381
  • Brown JC, Caan BJ, Meyerhardt JA, Weltzien E, Xiao J, Cespedes Feliciano EM, Kroenke CH, Castillo A, Kwan ML, Prado CM. The deterioration of muscle mass and radiodensity is prognostic of poor survival in stage I-III colorectal cancer: a population-based cohort study (C-SCANS). J Cachexia Sarcopenia Muscle. 2018;9(4):664–672. doi:10.1002/jcsm.12305
  • Wallengren O, Lundholm K, Bosaeus I. Diagnostic criteria of cancer cachexia: Relation to quality of life, exercise capacity and survival in unselected palliative care patients. Support Care Cancer. 2013;21(6):1569–1577. doi:10.1007/s00520-012-1697-z
  • Camargo RG, Quintas Teixeira Ribeiro H, Geraldo MV, Matos-Neto E, Neves RX, Carlos Carnevali L, Donatto FF, Alcântara PSM, Ottoch JP, Seelaender M. Cancer cachexia and MicroRNAs. Mediat Inflamm. 2015;2015:1–5. doi:10.1155/2015/367561
  • Argilés JM, Busquets S, López-Soriano FJ. Cytokines as mediators and targets for cancer cachexia. In: Dalgleish AG, Haefner B, editors. The link between inflammation and cancer. Vol. 130. Boston (MA): Springer; 2006. p. 199–217.
  • Tisdale MJ. The ‘cancer cachectic factor’. Support Care Cancer. 2003;11(2):73–78. doi:10.1007/s00520-002-0408-6
  • McMillan D. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer: Nutrition Society and BAPEN Medical Symposium on ‘Nutrition support in cancer therapy. Proc Nutr Soc. 2008;67(3):257–262. doi:10.1017/S0029665108007131
  • Goldman MDL, Bennet MDJ. Tratado de medicina interna. Rio de Janeiro: Guanabara Koogan; 2001.
  • Mahan K, Scott-Stump S. Krause alimentos, nutrição e dietoterapia. São Paulo: Roca; 2002.
  • Murad A, Katz A. Oncologia bases clínicas do tratamento. Rio de Janeiro: Guanabara Koogan; 1996.
  • Silva MPN. Síndrome da anorexia-caquexia em portadores de câncer. Rev Bras Cancerol. 2006; 52(1):59–7. doi:10.32635/2176-9745.RBC.2006v52n1.1910
  • Hauner H, Petruschke T, Russ M, Röhrig K, Eckel J. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia. 1995;38(7):764–771. doi:10.1007/s001250050350
  • Mattox TW. Cancer cachexia: cause, diagnosis, and treatment. Nutr Clin Pract. 2017;32(5):599–606. doi:10.1177/0884533617722986
  • Watters JM, Bessey PQ, Dinarello CA, Wolff SM, Wilmore DW. Both inflammatory and endocrine mediators stimulate host responses to sepsis. Arch Surg. 1986;121(2):179–190. doi:10.1001/archsurg.1986.01400020065008
  • Burt ME, Aoki TT, Gorschboth CM, Brennan MF. Peripheral tissue metabolism in cancer-bearing man. Ann Surg. 1983;198(6):685–691. doi:10.1097/00000658-198312000-00003
  • Rohdenburg GL, Bernhard A, Krehbiel O. Sugar tolerance in cancer. JAMA. 1919;72(21):1528–1530. doi:10.1001/jama.1919.02610210024007
  • Bishop JS, Marks PA. Studies on carbohydrate metabolism in patients with neoplastic disease. II. Response to insulin administration. J Clin Invest. 1959;38(4):668–672. doi:10.1172/JCI103845
  • Petruzzelli M, Wagner EF. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev. 2016;30(5):489–501. doi:10.1101/gad.276733.115
  • Chlebowski RT, Heber D. Metabolic abnormalities in cancer patients: Carbohydrate metabolism. Surg Clin North Am. 1986;66(5):957–968. doi:10.1016/s0039-6109(16)44035-1
  • Das SK, Hoefler G. The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med. 2013;19(5):292–301. doi:10.1016/j.molmed.2013.02.006
  • Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013;27(5):459–484. doi:10.1101/gad.209296.112
  • Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science. 2011;333(6039):233–238. doi:10.1126/science.1198973
  • Tisdale MJ. Pathogenesis of cancer cachexia. J Support Oncol. 2003;1(3):159–168.
  • Wing SS, Goldberg AL. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol - Endocrinol Metab. 1993;264(4):27–4.
  • Mitch WE, Medina R, Grieber S, May RC, England BK, Price SR, Bailey JL, Goldberg AL. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest. 1994;93(5):2127–2133. doi:10.1172/JCI117208
  • Temparis S, Asensi M, Taillandier D, Aurousseau E, Larbaud D, Obled A. Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res. 1994;54(21):5568–73.
  • Baracos V, Rodemann HP, Dinarello CA, Goldberg AL. Stimulation of muscle protein degradation and prostaglandin E 2 release by leukocytic pyrogen (interleukin-1). N Engl J Med. 1983;308(10):553–558. doi:10.1056/NEJM198303103081002
  • Trebukhina RV, Ostrovsky YM, Shapot VS, Mikhaltsevich GN, Tumanov VN. Turnover of [14C]thiamin and activities of thiamin pyrophosphate-dependent enzymes in tissues of mice with ehrlich ascites carcinoma. Nutr Cancer. 1985;6(4):260–273. doi:10.1080/01635588509513832
  • Cascante M, Centelles JJ, Veech RL, Lee WN, Boros LG. Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr Cancer. 2000;36(2):150–154. doi:10.1207/S15327914NC3602_2
  • Hathurusinghe HR, Goonetilleke KS, Siriwardena AK. Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Ann Surg Oncol. 2007;14(10):2714–2720. doi:10.1245/s10434-007-9481-x
  • Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334(6060):1278–1283. doi:10.1126/science.1211485
  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104(49):19345–19350. doi:10.1073/pnas.0709747104
  • Jonus HC, Byrnes CC, Kim J, Valle ML, Bartlett MG, Said HM, Zastre JA. Thiamine mimetics sulbutiamine and benfotiamine as a nutraceutical approach to anticancer therapy. Biomed Pharmacother. 2020;121(109648):109648. doi:10.1016/j.biopha.2019.109648
  • Liu S, Huang H, Lu X, Golinski M, Comesse S, Watt D, Grossman RB, Moscow JA. Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis. Mol Cancer Res. 2003;1(9):665–673.
  • Liu X, Lam EKY, Wang X, Zhang J, Cheng YY, Lam YW, Ng EKO, Yu J, Chan FKL, Jin H, et al. Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer. Tumour Biol. 2009;30(5-6):242–248. doi:10.1159/000243767
  • Ikehata M, Ueda K, Iwakawa S. Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines. Biol Pharm Bull. 2012;35(3):301–307. doi:10.1248/bpb.35.301
  • Kim S, Rhee J-k, Yoo HJ, Lee HJ, Lee EJ, Lee JW, Yu JH, Son BH, Gong G, Kim SB, et al. Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer. Cancer Lett. 2015;357(2):488–497. doi:10.1016/j.canlet.2014.11.058
  • Grabowska E, Czerniecka M, Czyżewska U, Zambrzycka A, Łotowski Z, Tylicki A. Differences in the efficiency of 3-deazathiamine and oxythiamine pyrophosphates as inhibitors of pyruvate dehydrogenase complex and growth of HeLa cells in vitro. J Enzyme Inhib Med Chem. 2021;36(1):122–129. doi:10.1080/14756366.2020.1844681
  • Grimm M, Calgéer B, Teriete P, Biegner T, Munz A, Reinert S. Targeting thiamine-dependent enzymes for metabolic therapies in oral squamous cell carcinoma? Clin Transl Oncol. 2016;18(2):196–205. doi:10.1007/s12094-015-1352-5
  • Boros LG. Population thiamine status and varying cancer rates between western, Asian and African countries. Anticancer Res. 2000;20(3B):2245–2248.
  • Cancarini I, Krogh V, Agnoli C, Grioni S, Matullo G, Pala V, Pedraglio S, Contiero P, Riva C, Muti P, et al. Micronutrients involved in one-carbon metabolism and risk of breast cancer subtypes. PLoS One. 2015;10(9):e0138318. doi:10.1371/journal.pone.0138318
  • Curto-García N, Harrison CN, McLornan DP, Radia DH. Thiamine deficiency appears uncommon in patients with myeloproliferative neoplasms. Br J Haematol. 2017;178(2):338–340. doi:10.1111/bjh.14128
  • Arthur RS, Kirsh VA, Rohan TE. Dietary B-vitamin intake and risk of breast, endometrial, ovarian and colorectal cancer among Canadians. Nutr Cancer. 2019;71(7):1067–1077. doi:10.1080/01635581.2019.1597904
  • Shiao SPK, Grayson J, Lie A, Yu CH. Personalized nutrition-genes, diet, and related interactive parameters as predictors of cancer in multiethnic colorectal cancer families. Nutrients. 2018;10(6):795. doi:10.3390/nu10060795
  • Lee BY, Yanamandra K, Bocchini JA. Jr. Thiamin deficiency: a possible major cause of some tumors? (review). Oncol Rep. 2005;14(6):1589–1592.
  • Isenberg-Grzeda E, Shen MJ, Alici Y, Wills J, Nelson C, Breitbart W. High rate of thiamine deficiency among inpatients with cancer referred for psychiatric consultation: results of a single site prevalence study. Psychooncology. 2017;26(9):1384–1389. doi:10.1002/pon.4155
  • Kikut J, Jasińska A, Pobłocki J, Brodowski J, Małgorzata S. Assessment and state of nutrition of patients with gastroenteropancreatic neuroendocrine neoplasms. Nutrients. 2020;12(7):1961. doi:10.3390/nu12071961
  • Egnell M, Fassier P, Lécuyer L, Zelek L, Vasson MP, Hercberg S, Latino-Martel P, Galan P, Deschasaux M, Touvier M. B-vitamin intake from diet and supplements and breast cancer risk in middle-aged women: results from the prospective NutriNet-Santé cohort. Nutrients. 2017;9(5):488. doi:10.3390/nu9050488
  • Dugué PA, Bassett JK, Brinkman MT, Southey MC, Joo JE, Wong EM, Milne RL, English DR, Giles GG, Boussioutas A, Mitchell H, et al. Dietary intake of nutrients involved in one-carbon metabolism and risk of gastric cancer: a prospective study. Nutr Cancer. 2019;71(4):605–614. doi:10.1080/01635581.2019.1577982
  • Gangat N, Phelps A, Lasho TL, Finke CM, Vallapureddy R, Hanson CA, et al. A prospective evaluation of vitamin B1 (thiamine) level in myeloproliferative neoplasms: clinical correlations and impact of JAK2 inhibitor therapy. Blood Cancer J. 2019;9(2):9–12.
  • Nesterova VI, Chebotareva MA. Thiamine content and enzyme activity in blood cells in leukemia. Vopr Med Khim. 1976;22(6):732–735.
  • Sheline CT. Thiamine supplementation attenuated hepatocellular carcinoma in the Atp7b mouse model of Wilson’s disease. Anticancer Res. 2011;31(10):3395–3399.
  • Gevorkyan L, Gambashidze K. Anticancer efficacy of hydroxyethylthiamine diphosphate in vivo. Exp Oncol. 2014;36(1):48–9.
  • Hanberry BS, Berger R, Zastre JA. High-dose vitamin B1 reduces proliferation in cancer cell lines analogous to dichloroacetate. Cancer Chemother Pharmacol. 2014;73(3):585–594. doi:10.1007/s00280-014-2386-z
  • Liu X, Montissol S, Uber A, et al. The effects of thiamine on breast cancer cells. Molecules. 2018;23(6):1464.
  • Afzal M, Kazmi I, Khan R, Rana P, Kumar V, Al-Abbasi FA, Zamzami MA, Anwar F. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism. Arch Biochem Biophys. 2017;623-624:58–63. doi:10.1016/j.abb.2017.05.006
  • Tiwana GS, Prevo R, Buffa FM, Yu S, Ebner DV, Howarth A, Folkes LK, Budwal B, Chu KY, Durrant L, et al. Identification of vitamin B1 metabolism as a tumor-specific radiosensitizing pathway using a high-throughput colony formation screen. Oncotarget. 2015;6(8):5978–5989. doi:10.18632/oncotarget.3468
  • Wang J, Zhang X, Ma D, Lee W-NP, Xiao J, Zhao Y, Go VL, Wang Q, Yen Y, Recker R, et al. Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Exp Hematol Oncol. 2013;2(1):18. doi:10.1186/2162-3619-2-18
  • Lu H, Lan WX, Bo L, Niu C, Zhou JJ, Zhu HL. Metabolic response of LLC xenografted mice to oxythiamine, as measured by [1H] NMR spectroscopy. Genet Mol Res. 2015;14(3):11043–11051. doi:10.4238/2015.September.21.17
  • Sugimori N, Espinoza JL, Trung LQ, Takami A, Kondo Y, An DT, Sasaki M, Wakayama T, Nakao S. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells. Mills K, organizador. PLoS One. 2015;10(4):e0120709. doi:10.1371/journal.pone.0120709

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.