171
Views
4
CrossRef citations to date
0
Altmetric
Articles

Leelamine Exerts Antineoplastic Effects in Association with Modulating Mitogen‑Activated Protein Kinase Signaling Cascade

, , , , ORCID Icon, ORCID Icon, & show all
Pages 3375-3387 | Received 07 Sep 2021, Accepted 20 Mar 2022, Published online: 17 May 2022

References

  • Kim S-M, Kim C, Bae H, Lee JH, Baek SH, Nam D, Chung W-S, Shim BS, Lee S-G, Kim S-H, et al. 6-Shogaol exerts anti-proliferative and pro-apoptotic effects through the modulation of STAT3 and MAPKs signaling pathways. Mol Carcinog. 2015;54(10):1132–46. doi:10.1002/mc.22184
  • Kostenko S, Dumitriu G, Laegreid KJ, Moens U. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase. World J Biol Chem. 2011;2(5):73–89. doi:10.4331/wjbc.v2.i5.73
  • Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 2007;26(22):3203–13. doi:10.1038/sj.onc.1210412
  • Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene. 2007;26(22):3100–12. doi:10.1038/sj.onc.1210392
  • Zhang Y, Dong C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol Life Sci. 2007;64(21):2771–89. doi:10.1007/s00018-007-7012-3
  • Wang H, Segaran C, Chan LY, Aladresi A, Chinnathambi A, Alharbi SA, Sethi G, Tang FR . Gamma radiation-induced disruption of cellular junctions in HUVECs is mediated through affecting MAPK/NF-κB inflammatory pathways. Oxid Med Cell Longev. 2019;2019:1486232. doi:10.1155/2019/1486232
  • Ahn KS, Sethi G, Jain AK, Jaiswal AK, Aggarwal BB. Genetic deletion of NAD(P)H: quinone oxidoreductase 1 abrogates activation of nuclear factor-κB, IκBα Kinase, c-Jun N-terminal Kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis*. J Biol Chem. 2006;281(29):19798–808. doi:10.1074/jbc.M601162200
  • Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One. 2013;8(10):e75356. doi:10.1371/journal.pone.0075356
  • Dai X, Wang L, Deivasigamni A, Looi CY, Karthikeyan C, Trivedi P, Chinnathambi A, Alharbi SA, Arfuso F, Dharmarajan A, et al. A novel benzimidazole derivative, MBIC inhibits tumor growth and promotes apoptosis via activation of ROS-dependent JNK signaling pathway in hepatocellular carcinoma. Oncotarget. 2017;8(8):12831–42. doi:10.18632/oncotarget.14606
  • Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci. 2020;77(22):4459–83. doi:10.1007/s00018-020-03536-5
  • Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012;92(2):689–737. doi:10.1152/physrev.00028.2011
  • Chen L, Jiang K, Chen H, Tang Y, Zhou X, Tan Y, Yuan Y, Xiao Q, Ding K. Deguelin induces apoptosis in colorectal cancer cells by activating the p38 MAPK pathway. Cancer Manag Res. 2019;11:95–105. doi:10.2147/cmar.s169476
  • Chen Y, Wu Q, Song SY, Su WJ. Activation of JNK by TPA promotes apoptosis via PKC pathway in gastric cancer cells. World J Gastroenterol. 2002;8(6):1014–8. doi:10.3748/wjg.v8.i6.1014
  • Wu N, Gu C, Gu H, Hu H, Han Y, Li Q. Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma. 2011;58(6):482–90. doi:10.4149/neo_2011_06_482
  • Kang YH, Lee SJ. The role of p38 MAPK and JNK in Arsenic trioxide-induced mitochondrial cell death in human cervical cancer cells. J Cell Physiol. 2008;217(1):23–33. doi:10.1002/jcp.21470
  • Li Y, Zhang X, Zhang J, Li Y, Liu W, Wang Z, Wang Y, Si S. A small molecule, MTBT, prevents cancer cell growth by activating p38 MAPK. Anticancer Drugs. 2014;25(4):423–32. doi:10.1097/cad.0000000000000074
  • Mohan CD, Liew YY, Jung YY, Rangappa S, Preetham H, Chinnathambi A, Alahmadi TA, Alharbi SA, Lin Z-X, Rangappa K, et al. Brucein D modulates MAPK signaling cascade to exert multi-faceted anti-neoplastic actions against breast cancer cells. Biochimie. 2021;182:140–51. doi:10.1016/j.biochi.2021.01.009
  • Mohan CD, Rangappa S, Nayak C, Jadimurthy R, Wang L, Sethi G, Garg M, Rangappa K. Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol. 2021; doi:10.1016/j.semcancer.2021.05.006
  • Uzma F, Mohan C, Hashem A, Konappa N, Rangappa S, Kamath P, Singh B, Mudili V, Gupta V, Siddaiah C, et al. Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol. 2018;9:309. doi: 10.3389/fphar.2018.00309
  • Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, et al. Targeting heparanase in cancer: inhibition by synthetic, chemically modified, and natural compounds. iScience. 2019;15:360–90. doi:10.1016/j.isci.2019.04.034
  • Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov A, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018;128:366–75. doi:10.1016/j.phrs.2017.09.014
  • Shanmugam MK, Warrier S, Kumar AP, Sethi G, Arfuso F. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr Vasc Pharmacol. 2017;15(6):503–19. doi:10.2174/1570161115666170713094319
  • Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, Pandey A, Garg VK, Sethi G, Bishayee A, et al. Natural product-based nanoformulations for cancer therapy: opportunities and challenges. Semin Cancer Biol. 2021;69:5–23. doi:10.1016/j.semcancer.2019.08.014
  • Sethi G, Shanmugam M, Warrier S, Merarchi M, Arfuso F, Kumar A, Bishayee A. Pro-apoptotic and anti-cancer properties of diosgenin: a comprehensive and critical review. Nutrients. 2018;10(5):645. doi:10.3390/nu10050645
  • Jung YY, Um J-Y, Nasif O, Alharbi SA, Sethi G, et al. Blockage of the JAK/STAT3 signaling pathway in multiple myeloma by leelamine. Phytomedicine. 2021; 87:153574. doi: 10.1016/j.phymed.2021.153574
  • Mohan CD, Kim C, Siveen KS, Manu KA, Rangappa S, Chinnathambi A, Alharbi SA, Rangappa K, Kumar AP, Ahn KS, et al. Crocetin imparts antiproliferative activity via inhibiting STAT3 signaling in hepatocellular carcinoma. IUBMB Life. 2021;73(11):1348–62. doi:10.1002/iub.2555
  • Arora L, Mohan CD, Yang MH, Rangappa S, Deivasigamani A, Kumar AP, Kunnumakkara A, Garg M, Chinnathambi A, Alharbi SA, et al. Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) abrogates tumor progression in hepatocellular carcinoma and multiple myeloma preclinical models by regulating the STAT3 signaling pathway. Cancers. 2021;13(21):5479. doi:10.3390/cancers13215479
  • Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, et al. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol. 2020;80:157–82. doi:10.1016/j.semcancer.2020.03.016
  • Gowda R, Madhunapantula SV, Kuzu OF, Sharma A, Robertson GP. Targeting multiple key signaling pathways in melanoma using leelamine. Mol Cancer Ther. 2014;13(7):1679–89. doi:10.1158/1535-7163.MCT-13-0867
  • Kuzu OF, Gowda R, Sharma A, Robertson GP. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol Cancer Ther. 2014;13(7):1690–703. doi:10.1158/1535-7163.mct-13-0868
  • Sehrawat A, Kim S-H, Hahm E-R, Arlotti J, Eiseman J, Shiva S, Rigatti L, Singh S. Cancer-selective death of human breast cancer cells by leelamine is mediated by bax and bak activation. Mol Carcinog. 2017;56(2):337–48. doi:10.1002/mc.22497
  • Singh KB, Ji X, Singh SV. Therapeutic potential of leelamine, a novel inhibitor of androgen receptor and castration-resistant prostate cancer. Mol Cancer Ther. 2018;17(10):2079–90. doi:10.1158/1535-7163.MCT-18-0117
  • Singh KB, Hahm E-R, Pore SK, Singh SV. Leelamine is a novel lipogenesis inhibitor in prostate cancer cells in vitro and in vivo. Mol Cancer Ther. 2019;18(10):1800–10. doi:10.1158/1535-7163.MCT-19-0046
  • Shishodia S, Sethi G, Ahn KS, Aggarwal BB. Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of Akt pathway, and downregulation of antiapoptotic gene products. Biochem Pharmacol. 2007;74(1):118–30. doi:10.1016/j.bcp.2007.03.026
  • Lee JH, Kim C, Sethi G, Ahn KS. Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel. Oncotarget. 2015;6(8):6386–405. doi:10.18632/oncotarget.3443
  • Bharathkumar H, Paricharak S, Dinesh KR, Siveen KS, Fuchs J, Rangappa S, Mohan CD, Mohandas N, Kumar AP, Sethi G, et al. Synthesis, biological evaluation and in silico and in vitro mode-of-action analysis of novel dihydropyrimidones targeting PPAR-γ. RSC Adv. 2014;4(85):45143–6. doi:10.1039/C4RA08713E
  • Sulaiman NBS, Mohan CD, Basappa S, Pandey V, Rangappa S, Bharathkumar H, Kumar AP, Lobie P, Rangappa K. An azaspirane derivative suppresses growth and induces apoptosis of ER-positive and ER-negative breast cancer cells through the modulation of JAK2/STAT3 signaling pathway. Int J Oncol. 2016;49(3):1221–9. [PMC]27500741
  • Kim C, Cho S, Kapoor S, Kumar A, Vali S, Abbasi T, Kim S-H, Sethi G, Ahn KS. β-caryophyllene oxide inhibits constitutive and inducible STAT3 signaling pathway through induction of the SHP-1 protein tyrosine phosphatase. Mol Carcinog. 2014;53(10):793–806. doi:10.1002/mc.22035
  • Shanmugam M, Ong T, Kumar AP, Lun C, Ho P, Wong P, Hui K, Sethi G. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways. Plos One. 2012;7(3):e32476. doi:10.1371/journal.pone.0032476
  • Chua AWL, Hay HS, Rajendran P, Shanmugam M, Li F, Bist P, Koay E, Lim L, Kumar AP, Sethi G, et al. Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-κB activation in breast and pancreatic tumor cells. Biochem Pharmacol. 2010;80(10):1553–62. doi:10.1016/j.bcp.2010.07.045
  • Shanmugam M, Manu K, Ong T, Ramachandran L, Surana R, Bist P, Lim L, Kumar AP, Hui K, Sethi G, et al. Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model. Int J Cancer. 2011;129(7):1552–63. doi:10.1002/ijc.26120
  • Ramachandran L, Manu KA, Shanmugam M, Li F, Siveen KS, Vali S, Kapoor S, Abbasi T, Surana R, Smoot D, et al. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J Biol Chem. 2012;287(45):38028–40. doi:10.1074/jbc.M112.388702
  • Sawhney M, Rohatgi N, Kaur J, Shishodia S, Sethi G, Gupta S, Deo S, Shukla N, Aggarwal B, Ralhan R, et al. Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int J Cancer. 2007;120(12):2545–56. doi:10.1002/ijc.22657
  • Manu K, Shanmugam M, Ramachandran L, Li F, Fong CW, Kumar AP, Tan P, Sethi G. First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clin Cancer Res. 2012;18(8):2220–9. doi:10.1158/1078-0432.ccr-11-2470
  • Baburajeev CP, Dhananjaya Mohan C, Ananda H, Rangappa S, Fuchs JE, et al. Development of novel triazolo-thiadiazoles from heterogeneous “green” catalysis as protein tyrosine phosphatase 1B inhibitors. Sci Rep. 2015;5:14195. doi:10.1038/srep14195
  • Deng S, Shanmugam M, Kumar AP, Yap C, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer. 2019;125(8):1228–46. doi:10.1002/cncr.31978
  • Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med (Maywood). 2015;240(6):760–73. doi:10.1177/1535370215579167
  • Li F, Shanmugam M, Chen L, Chatterjee S, Basha J, Kumar AP, Kundu T, Sethi G. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila). 2013;6(8):843–54. doi:10.1158/1940-6207.capr-13-0070
  • Manu K, Shanmugam M, Li F, Chen L, Siveen KS, Ahn KS, Kumar AP, Sethi G. Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. J Mol Med (Berl). 2014;92(3):267–76. doi:10.1007/s00109-013-1095-0
  • Mishra S, Verma S, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla K, Sethi G, Gupta S, et al. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci. 2019;76(10):1947–66. doi:10.1007/s00018-019-03053-0
  • Chopra P, Sethi G, Dastidar SG, Ray A. Polo-like kinase inhibitors: an emerging opportunity for cancer therapeutics. Expert Opin Investig Drugs. 2010;19(1):27–43. doi:10.1517/13543780903483191
  • Patel SM, Nagulapalli Venkata KC, Bhattacharyya P, Sethi G, Bishayee A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin Cancer Biol. 2016;40-41:100–15. doi:10.1016/j.semcancer.2016.03.002
  • Merarchi M, Sethi G, Shanmugam M, Fan L, Arfuso F, Ahn K. Role of natural products in modulating histone deacetylases in cancer. Molecules. 2019;24(6):1047. doi:10.3390/molecules24061047
  • Liu C, Ho PC-L, Wong FC, Sethi G, Wang LZ, Goh BC. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett. 2015;362(1):8–14. doi:10.1016/j.canlet.2015.03.019
  • Manu K, Shanmugam M, Ramachandran L, Li F, Siveen KS, Chinnathambi A, Zayed ME, Alharbi SA, Arfuso F, Kumar AP, et al. Isorhamnetin augments the anti-tumor effect of capecitabine through the negative regulation of NF-κB signaling cascade in gastric cancer. Cancer Lett. 2015;363(1):28–36. doi:10.1016/j.canlet.2015.03.033
  • Rakesh K, Jagadish S, Swaroop T, Mohan C, Ashwini N, Harsha K, Zameer F, Girish K, Rangappa K. Anti-cancer activity of 2,4-disubstituted thiophene derivatives: dual inhibitors of lipoxygenase and cyclooxygenase. Med Chem. 2015;11(5):462–72. doi:10.2174/1573406411666141210141918
  • Ahn KS, Sethi G, Aggarwal BB. Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-kappaB pathway. Biochem Pharmacol. 2008;75(4):907–13. doi:10.1016/j.bcp.2007.10.010
  • Merarchi M, Jung YY, Fan L, Sethi G, Ahn KS. A brief overview of the antitumoral actions of leelamine. Biomedicines. 2019;7(3):53. doi:10.3390/biomedicines7030053
  • Singh KB, Hahm E-R, Singh SV. Leelamine suppresses cMyc expression in prostate cancer cells in vitro and inhibits prostate carcinogenesis in vivo. J Cancer Metastasis Treat. 2021;7:16.
  • Gowda R, Madhunapantula SV, Sharma A, Kuzu OF, Robertson GP. Nanolipolee-007, a novel nanoparticle-based drug containing leelamine for the treatment of melanoma. Mol Cancer Ther. 2014;13(10):2328–40. doi:10.1158/1535-7163.MCT-14-0357
  • Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117(Pt 20):4619–28. doi:10.1242/jcs.01481
  • Saika S, Okada Y, Miyamoto T, Yamanaka O, Ohnishi Y, Ooshima A, Liu C-Y, Weng D, Kao WW-Y. Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest Ophthalmol Vis Sci. 2004;45(1):100–9. doi:10.1167/iovs.03-0700
  • Mohan CD, Bharathkumar H, Bulusu KC, Pandey V, Rangappa S, et al. Development of a novel azaspirane that targets the janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo*. J Biol Chem. 2014;289:34296–307. doi:10.1074/jbc.M114.601104
  • Sebastian A, Pandey V, Mohan CD, Chia YT, Rangappa S, et al. Novel adamantanyl-based thiadiazolyl pyrazoles targeting EGFR in triple-negative breast cancer. ACS Omega. 2016;1:1412–24. doi:10.1021/acsomega.6b00251
  • Mohan CD, Rangappa S, Nayak SC, Sethi G, Rangappa KS. Paradoxical functions of long noncoding RNAs in modulating STAT3 signaling pathway in hepatocellular carcinoma. Biochim Biophys Acta (BBA)-Rev Cancer. 1885;74:2021.
  • Roopashree R, Mohan CD, Swaroop TR, Jagadish S, Raghava B, et al. Novel synthetic bisbenzimidazole that targets angiogenesis in Ehrlich ascites carcinoma bearing mice. Bioorg Med Chem Lett. 2015;25:2589–93. doi:10.1016/j.bmcl.2015.04.010
  • Pandey V, Wang B, Mohan CD, Raquib AR, Rangappa S, et al. Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation. Proc Natl Acad Sci. 2018;115:E10505. doi:10.1073/pnas.1804897115
  • Lee JH, Mohan CD, Basappa S, Rangappa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Kumar AP, Sethi G, Ahn KS, et al. The IκB kinase inhibitor ACHP targets the STAT3 signaling pathway in human non-small cell lung carcinoma cells. Biomolecules. 2019;9(12):875. doi:10.3390/biom9120875
  • Lee JH, Rangappa S, Mohan CD, BasappaSethi G, et al. Brusatol, a Nrf2 inhibitor targets STAT3 signaling cascade in head and neck squamous cell carcinoma. Biomolecules. 2019;9:550.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.