433
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Role of Plant-Derived Flavonoids in Cancer Treatment

ORCID Icon &
Pages 430-449 | Received 16 Jul 2021, Accepted 07 Oct 2022, Published online: 20 Oct 2022

References

  • Dintcheva NT, D’Anna F. Anti-/pro-oxidant behavior of naturally occurring molecules in polymers and biopolymers: A brief review. ACS Sustainable Chem Eng. 2019;7(15):12656–70. doi:10.1021/acssuschemeng.9b02127
  • Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot. 2018;69(18):4497.
  • Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. BBA-Biomemberanes. 2014;1838(5):1235–46.
  • Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase ii metabolic pathways. RSC Adv. 2012;2(21):7948–63. doi:10.1039/C2RA01369J
  • Tiwari P. Role of flavonoids in dna damage and carcinogenesis prevention. J Carcinog Mutagen. 2017;8(4):1–6. doi:10.4172/2157-2518.1000297
  • Ballard C, Maróstica M. Health Benefits of Flavonoids. Bioactive compounds. Chapter 10; 2019; 185–201. p.
  • Tiwari P, Kumar A, Ali M, Mishra KP. Radioprotection of plasmid and cellular dna and swiss mice by silibinin. Mutat Res/Genet Toxicol Environ Mutag. 2010;695(1–2):55–60. doi:10.1016/j.mrgentox.2009.11.007
  • Kaurinovic B, Vastag G. 2019. Flavonoids and phenolic acids as potential natural antioxidants.
  • Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513–23. doi:10.1016/j.fitote.2011.01.018
  • Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by ‘ferric reducing antioxidant power’ assay and cyclic voltammetry. Biochim Biophys Acta. 2005;1721(1-3):174–84. doi:10.1016/j.bbagen.2004.11.001
  • Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed Res Int. 2014;2014:761264–doi:10.1155/2014/761264
  • Chobot V, Hadacek F. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep. 2011;16(6):242–7. doi:10.1179/1351000211Y.0000000015
  • Simunkova M, Barbierikova Z, Jomova K, Hudecova L, Lauro P, Alwasel SH, Alhazza I, Rhodes CJ, Valko M. Antioxidant vs. Prooxidant properties of the flavonoid, kaempferol, in the presence of cu(ii) ions: A ros-scavenging activity, fenton reaction and dna damage study. IJMS. 2021;22(4):1619. doi:10.3390/ijms22041619
  • Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal. 2005;7(11–12):1630–47. doi:10.1089/ars.2005.7.1630
  • Gibellini L, Pinti M, Nasi M, De Biasi S, Roat E, Bertoncelli L, Cossarizza A. Interfering with ros metabolism in cancer cells: The potential role of quercetin. Cancers (Basel). 2010;2(2):1288–311. doi:10.3390/cancers2021288
  • Kerimi A, Williamson G. Differential impact of flavonoids on redox modulation, bioenergetics, and cell signaling in normal and tumor cells: A comprehensive review. Antioxid Redox Signal. 2018;29(16):1633–59. doi:10.1089/ars.2017.7086
  • Kikuchi H, Yuan B, Hu X, Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res. 2019;9(8):1517–35.
  • Tiwari P, Mishra KP. Flavonoids sensitize tumor cells to radiation: Molecular mechanisms and relevance to cancer radiotherapy. Int J Radiat Biol. 2020;96(3):360–9. doi:10.1080/09553002.2020.1694193
  • Bisol Â, Campos PS, Lamers ML. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother Res. 2020;34(3):568–82. doi:10.1002/ptr.6551
  • George VC, Dellaire G, Rupasinghe HPV. Plant flavonoids in cancer chemoprevention: Role in genome stability. J Nutr Biochem. 2017;45:1–14. doi:10.1016/j.jnutbio.2016.11.007
  • Jeong J-M, Choi C-H, Kang S-K, Lee I-H, Lee J-Y, Jung H. Antioxidant and chemosensitizing effects of flavonoids with hydroxy and/or methoxy groups and structure-activity relationship. J Pharm Pharm Sci. 2007;10(4):537–46. doi:10.18433/j3kw2z
  • Tiwari P, Kumar A, Balakrishnan S, Kushwaha HS, Mishra KP. Silibinin-induced apoptosis in mcf7 and t47d human breast carcinoma cells involves caspase-8 activation and mitochondrial pathway. Cancer Invest. 2011;29(1):12–20. doi:10.3109/07357907.2010.535053
  • Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC. Quercetin, a natural flavonoid interacts with dna, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016;6(1):24049. doi:10.1038/srep24049
  • Batra P, Sharma AK. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech. 2013;3(6):439–59. doi:10.1007/s13205-013-0117-5
  • Ye Q, Liu K, Shen Q, Li Q, Hao J, Han F, Jiang R-W. Reversal of multidrug resistance in cancer by multi-functional flavonoids. Front Oncol. 2019;9:487–doi:10.3389/fonc.2019.00487
  • Ponte LG, Pavan IC, Mancini MC, da Silva LG, Morelli AP, Severino MB, Bezerra RM, Simabuco FM. The hallmarks of flavonoids in cancer. Molecules. 2021;26(7):2029. doi:10.3390/molecules26072029
  • Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the epigenetic landscape of cancer—application potential of flavonoids in the prevention and treatment of cancer. Front Oncol. 2021;11:705903. doi:10.3389/fonc.2021.705903
  • Busch C, Burkard M, Leischner C, Lauer UM, Frank J, Venturelli S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenetics. 2015;7(1):64. doi:10.1186/s13148-015-0095-z
  • To KKW, Cho WCS. Flavonoids overcome drug resistance to cancer chemotherapy by epigenetically modulating multiple mechanisms. Curr Cancer Drug Targets. 2021;21(4):289–305. doi:10.2174/1568009621666210203111220
  • Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh S, Andrews J, McClellan S, Wang B, Singh AP. Microrna-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer. 2015;113(4):660–8. doi:10.1038/bjc.2015.252
  • Phi LTH, Sari IN, Yang Y-G, Lee S-H, Jun N, Kim KS, Lee YK, Kwon HY. Cancer stem cells (cscs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923–doi:10.1155/2018/5416923
  • Kandhari K, Agraval H, Sharma A, Yadav U, Singh R. Flavonoids and Cancer Stem Cells Maintenance and Growth. In: Rani V, Yadav U, editors. Functional Food and Human Health. 2018;587–622. p.
  • Mirossay L, Varinská L, Mojžiš J. Antiangiogenic effect of flavonoids and chalcones: An update. IJMS. 2017;19(1):27. doi:10.3390/ijms19010027
  • Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, Siddiqui M, Biringer K, Kudela E, Pec M, et al. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA Journal. 2021;12(2):155–76. doi:10.1007/s13167-021-00242-5
  • Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of oxidative stress in cancer chemoresistance: Spotlight on nrf2 role. Antioxidants. 2021;10(4):510. doi:10.3390/antiox10040510
  • L. Suraweera T, Rupasinghe HPV, Dellaire G, Xu Z. Regulation of nrf2/are pathway by dietary flavonoids: A friend or foe for cancer management? Antioxidants. 2020;9(10):973. doi:10.3390/antiox9100973
  • Shen M, Chan TH, Dou QP. Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer Agents Med Chem. 2012;12(8):891–901. doi:10.2174/187152012802649978
  • Kaur H, Kaur G. A critical appraisal of solubility enhancement techniques of polyphenols. J Pharm (Cairo). 2014;2014:180845. doi:10.1155/2014/180845
  • Bilia A, Isacchi B, Righeschi C, Guccione C, Maria C, Bergonzi M. Flavonoids loaded in nanocarriers: An opportunity to increase oral bioavailability and bioefficacy. FNS. 2014;05(13):1212–327. doi:10.4236/fns.2014.513132
  • Forbes-Hernández TY. Berries polyphenols: Nano-delivery systems to improve their potential in cancer therapy. JBR. 2020;10(1):45–60. doi:10.3233/JBR-200547
  • Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm. 2019;570:118642. doi:10.1016/j.ijpharm.2019.118642
  • Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, Biava M, Bernardi M, Kamal MA, Perry G, et al. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol. 2021;69:150–65. doi:10.1016/j.semcancer.2019.08.029
  • Thilakarathna SH, Rupasinghe HPV. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 2013;5(9):3367–87. doi:10.3390/nu5093367
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of natural antioxidants: An anti-aging perspective. Front Bioeng Biotechnol. 2020;7:447. doi:10.3389/fbioe.2019.00447
  • Khan H, Ullah H, Martorell M, Valdes SE, Belwal T, Tejada S, Sureda A, Kamal MA. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol. 2021;69:200–11. doi:10.1016/j.semcancer.2019.07.023
  • Li K, Teng C, Min Q. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Front Chem. 2020;8:573297. doi:10.3389/fchem.2020.573297
  • Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano. 2017;11(5):4916–25. doi:10.1021/acsnano.7b01522
  • Wang G, Zhang D, Yang S, Wang Y, Tang Z, Fu X. Co-administration of genistein with doxorubicin-loaded polypeptide nanoparticles weakens the metastasis of malignant prostate cancer by amplifying oxidative damage. Biomater Sci. 2018;6(4):827–35. doi:10.1039/c7bm01201b
  • Huang C, Chen T, Zhu D, Huang Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem. 2020;8:225. doi:10.3389/fchem.2020.00225
  • Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, Alshehri AA. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics. 2021;13(9):1475. doi:10.3390/pharmaceutics13091475
  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi:10.1038/nrc.2016.108
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24. doi:10.1038/s41573-020-0090-8
  • Mladenka P, Macáková K, Zatloukalová L, Reháková Z, Singh BK, Prasad AK, Parmar VS, Jahodár L, Hrdina R, Saso L. In vitro interactions of coumarins with iron. Biochimie. 2010;92(9):1108–14. doi:10.1016/j.biochi.2010.03.025
  • Brillo V, Chieregato L, Leanza L, Muccioli S, Costa R. Mitochondrial dynamics, ros, and cell signaling: A blended overview. Life. 2021;11(4):332. doi:10.3390/life11040332
  • Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed Pharmacother. 2019;116:109004. doi:10.1016/j.biopha.2019.109004
  • NavaneethaKrishnan S, Rosales JL, Lee K-Y. Ros-mediated cancer cell killing through dietary phytochemicals. Oxid Med Cell Longev. 2019;2019:9051542. doi:10.1155/2019/9051542
  • Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. Ros in cancer therapy: The bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi:10.1038/s12276-020-0384-2
  • Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: A review. Appl Biol Chem. 2017;60(3):327–38. doi:10.1007/s13765-017-0285-9
  • Pan M-H, Lai C-S, Ho C-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010;1(1):15–31. doi:10.1039/c0fo00103a
  • Sanhueza C, Wehinger S, Castillo Bennett J, Valenzuela M, Owen GI, Quest AFG. The twisted survivin connection to angiogenesis. Mol Cancer. 2015;14(1):198. doi:10.1186/s12943-015-0467-1
  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735. doi:10.3390/biom9110735
  • Li G, Ding K, Qiao Y, Zhang L, Zheng L, Pan T, Zhang L. Flavonoids regulate inflammation and oxidative stress in cancer. Molecules. 2020;25(23):5628. doi:10.3390/molecules25235628
  • Subbaraj GK, Kumar YS, Kulanthaivel L. Antiangiogenic role of natural flavonoids and their molecular mechanism: An update. Egypt J Intern Med. 2021;33(1):29. doi:10.1186/s43162-021-00056-x
  • Shi Y, Nikulenkov F, Zawacka-Pankau J, Li H, Gabdoulline R, Xu J, Eriksson S, Hedström E, Issaeva N, Kel A, et al. Ros-dependent activation of jnk converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. 2014;21(4):612–23. doi:10.1038/cdd.2013.186
  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta (BBA) - Mol Cell Res. 2016;1863(12):2977–92. doi:10.1016/j.bbamcr.2016.09.012
  • Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother Res. 2016;30(9):1379–91. doi:10.1002/ptr.5643
  • Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H. The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules. 2021;11(4):534. doi:10.3390/biom11040534
  • Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37(1):266– doi:10.1186/s13046-018-0909-x
  • Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev. 2014;8(16):122–46. doi:10.4103/0973-7847.134247
  • Tiwari P, Mishra K. Silibinin in cancer therapy: A promising prospect. Cancer Res Front. 2015;1(3):303–18. doi:10.17980/2015.303
  • You Y, He Q, Lu H, Zhou X, Chen L, Liu H, Lu Z, Liu D, Liu Y, Zuo D, et al. Silibinin induces g2/m cell cycle arrest by activating drp1-dependent mitochondrial fission in cervical cancer. Front Pharmacol. 2020;11:271– doi:10.3389/fphar.2020.00271
  • Deep G, Agarwal R. Antimetastatic efficacy of silibinin: Molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev. 2010;29(3):447–63. doi:10.1007/s10555-010-9237-0
  • Lin CH, Li CH, Liao PL, Tse LS, Huang WK, Cheng HW, Cheng YW. Silibinin inhibits vegf secretion and age-related macular degeneration in a hypoxia-dependent manner through the pi-3 kinase/akt/mtor pathway. Br J Pharmacol. 2013;168(4):920–31. doi:10.1111/j.1476-5381.2012.02227.x
  • Hou X, Du H, Quan X, Shi L, Zhang Q, Wu Y, Liu Y, Xiao J, Li Y, Lu L, et al. Silibinin inhibits nsclc metastasis by targeting the egfr/lox pathway. Front Pharmacol. 2018;9:21. doi:10.3389/fphar.2018.00021
  • Tyagi A, Agarwal C, Dwyer-Nield LD, Singh RP, Malkinson AM, Agarwal R. Silibinin modulates tnf-α and ifn-γ mediated signaling to regulate cox2 and inos expression in tumorigenic mouse lung epithelial lm2 cells. Mol Carcinog. 2012;51(10):832–42. doi:10.1002/mc.20851
  • Bosch-Barrera J, Queralt B, Menendez JA. Targeting stat3 with silibinin to improve cancer therapeutics. Cancer Treat Rev. 2017;58:61–9. doi:10.1016/j.ctrv.2017.06.003
  • Deep G, Kumar R, Nambiar DK, Jain AK, Ramteke AM, Serkova NJ, Agarwal C, Agarwal R. Silibinin inhibits hypoxia-induced hif-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics. Mol Carcinog. 2017;56(3):833–48. doi:10.1002/mc.22537
  • Prasad RR, Paudel S, Raina K, Agarwal R. Silibinin and non-melanoma skin cancers. J Tradit Complement Med. 2020;10(3):236–44. doi:10.1016/j.jtcme.2020.02.003
  • Sherman B, Hernandez AM, Alhado M, Menge L, Price RS. Silibinin differentially decreases the aggressive cancer phenotype in an in vitro model of obesity and prostate cancer. Nutrition and Cancer. 2020;72(2):333–42. doi:10.1080/01635581.2019.1633363
  • Bosch-Barrera J, Sais E, Cañete N, Marruecos J, Cuyàs E, Izquierdo A, Porta R, Haro M, Brunet J, Pedraza S, et al. Response of brain metastasis from lung cancer patients to an oral nutraceutical product containing silibinin. Oncotarget. 2016;7(22):32006–14. doi:10.18632/oncotarget.7900
  • Shafabakhsh R, Asemi Z. Quercetin: A natural compound for ovarian cancer treatment. J Ovarian Res. 2019;12(1):55– doi:10.1186/s13048-019-0530-4
  • Tang S-M, Deng X-T, Zhou J, Li Q-P, Ge X-X, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121:109604. doi:10.1016/j.biopha.2019.109604
  • Chou C-C, Yang J-S, Lu H-F, Ip S-W, Lo C, Wu C-C, Lin J-P, Tang N-Y, Chung J-G, Chou M-J, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer mcf-7 cells. Arch Pharm Res. 2010;33(8):1181–91. doi:10.1007/s12272-010-0808-y
  • Choi EJ, Bae SM, Ahn WS. Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer mda-mb-453 cells. Arch Pharm Res. 2008;31(10):1281–5. doi:10.1007/s12272-001-2107-0
  • Niu G, Yin S, Xie S, Li Y, Nie D, Ma L, Wang X, Wu Y. Quercetin induces apoptosis by activating caspase-3 and regulating bcl-2 and cyclooxygenase-2 pathways in human hl-60 cells. Acta Biochim Biophys Sin (Shanghai). 2011;43(1):30–7. doi:10.1093/abbs/gmq107
  • Chien S-Y, Wu Y-C, Chung J-G, Yang J-S, Lu H-F, Tsou M-F, Wood WG, Kuo S-J, Chen D-R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer mda-mb-231 cells. Hum Exp Toxicol. 2009;28(8):493–503. doi:10.1177/0960327109107002
  • Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin induces apoptosis via caspase activation, regulation of bcl-2, and inhibition of pi-3-kinase/akt and erk pathways in a human hepatoma cell line (hepg2). J Nutr. 2006;136(11):2715–21. doi:10.1093/jn/136.11.2715
  • Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. IJMS. 2019;20(13):3177. doi:10.3390/ijms20133177
  • Yuan Z, Long C, Junming T, Qihuan L, Youshun Z, Chan Z. Quercetin-induced apoptosis of hl-60 cells by reducing pi3k/akt. Mol Biol Rep. 2012;39(7):7785–93. doi:10.1007/s11033-012-1621-0
  • Cao H-H, Tse AK-W, Kwan H-Y, Yu H, Cheng C-Y, Su T, Fong W-F, Yu Z-L. Quercetin exerts anti-melanoma activities and inhibits stat3 signaling. Biochem Pharmacol. 2014;87(3):424–34. doi:10.1016/j.bcp.2013.11.008
  • Lu J, Wang Z, Li S, Xin Q, Yuan M, Li H, Song X, Gao H, Pervaiz N, Sun X, et al. Quercetin inhibits the migration and invasion of hcclm3 cells by suppressing the expression of p-akt1, matrix metalloproteinase (mmp) mmp-2, and mmp-9. Med Sci Monit. 2018;24:2583–9. doi:10.12659/MSM.906172
  • Kee J-Y, Han Y-H, Kim D-S, Mun J-G, Park J, Jeong M-Y, Um J-Y, Hong S-H. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine. 2016;23(13):1680–90. doi:10.1016/j.phymed.2016.09.011
  • Yu D, Ye T, Xiang Y, Shi Z, Zhang J, Lou B, Zhang F, Chen B, Zhou M. Quercetin inhibits epithelial-mesenchymal transition, decreases invasiveness and metastasis, and reverses il-6 induced epithelial-mesenchymal transition, expression of mmp by inhibiting stat3 signaling in pancreatic cancer cells. Onco Targets Ther. 2017;10:4719–29. doi:10.2147/OTT.S136840
  • Fan P, Zhang Y, Liu L, Zhao Z, Yin Y, Xiao X, Bauer N, Gladkich J, Mattern J, Gao C, et al. Continuous exposure of pancreatic cancer cells to dietary bioactive agents does not induce drug resistance unlike chemotherapy. Cell Death Dis. 2016;7(6):e2246-e2246. doi:10.1038/cddis.2016.157
  • Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med. 2019;18(4):2759–76. doi:10.3892/etm.2019.7886
  • Yi X, Zuo J, Tan C, Xian S, Luo C, Chen S, Yu L, Luo Y. Kaempferol, a flavonoid compound from gynura medica induced apoptosis and growth inhibition in mcf-7 breast cancer cell. Afr J Tradit Complement Altern Med. 2016;13(4):210–5. doi:10.21010/ajtcam.v13i4.27
  • Kim S-H, Hwang K-A, Choi K-C. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J Nutr Biochem. 2016;28:70–82. doi:10.1016/j.jnutbio.2015.09.027
  • Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother. 2019;117:109086. doi:10.1016/j.biopha.2019.109086
  • Cho HJ, Park JHY. Kaempferol induces cell cycle arrest in ht-29 human colon cancer cells. J Cancer Prev. 2013;18(3):257–63. doi:10.15430/jcp.2013.18.3.257
  • Gao Y, Yin J, Rankin GO, Chen YC. Kaempferol induces g2/m cell cycle arrest via checkpoint kinase 2 and promotes apoptosis via death receptors in human ovarian carcinoma a2780/cp70 cells. Molecules. 2018;23(5):1095. doi:10.3390/molecules23051095
  • Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - a dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods. 2017;30:203–19. doi:10.1016/j.jff.2017.01.022
  • Li S, Yan T, Deng R, Jiang X, Xiong H, Wang Y, Yu Q, Wang X, Chen C, Zhu Y. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of rhoa and rac1. Onco Targets Ther. 2017;10:4809–19. doi:10.2147/OTT.S140886
  • Kim TW, Lee SY, Kim M, Cheon C, Ko S-G. Kaempferol induces autophagic cell death via ire1-jnk-chop pathway and inhibition of g9a in gastric cancer cells. Cell Death Dis. 2018;9(9):875. doi:10.1038/s41419-018-0930-1
  • Salmani JMM, Zhang X-P, Jacob JA, Chen B-A. Apigenin’s anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chin J Nat Med. 2017;15(5):321–9. doi:10.1016/S1875-5364(17)30052-3
  • Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017;7:50–doi:10.1186/s13578-017-0179-x
  • Sung B, Chung HY, Kim ND. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J Cancer Prev. 2016;21(4):216–26. doi:10.15430/JCP.2016.21.4.216
  • Shan S, Shi J, Yang P, Jia B, Wu H, Zhang X, Li Z. Apigenin restrains colon cancer cell proliferation via targeted blocking of pyruvate kinase m2-dependent glycolysis. J Agric Food Chem. 2017;65(37):8136–44. doi:10.1021/acs.jafc.7b02757
  • Du G-J, Zhang Z, Wen X-D, Yu C, Calway T, Yuan C-S, Wang C-Z. Epigallocatechin gallate (egcg) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients. 2012;4(11):1679–91. doi:10.3390/nu4111679
  • Chen B-H, Hsieh C-H, Tsai S-Y, Wang C-Y, Wang C-C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of amp-activated protein kinase signaling pathway. Sci Rep. 2020;10(1):5163. doi:10.1038/s41598-020-62136-2
  • Negri A, Naponelli V, Rizzi F, Bettuzzi S. Molecular targets of epigallocatechin—gallate (egcg): A special focus on signal transduction and cancer. Nutrients. 2018;10(12):1936. doi:10.3390/nu10121936
  • Liu C, Li P, Qu Z, Xiong W, Liu A, Zhang S. Advances in the antagonism of epigallocatechin-3-gallate in the treatment of digestive tract tumors. Molecules. 2019;24(9):1726. doi:10.3390/molecules24091726
  • Yuan JH, Li YQ, Yang XY. Inhibition of epigallocatechin gallate on orthotopic colon cancer by upregulating the nrf2-ugt1a signal pathway in nude mice. Pharmacology. 2007;80(4):269–78. doi:10.1159/000106447
  • Min K-J, Kwon TK. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med Res. 2014;3(1):16–24. doi:10.1016/j.imr.2013.12.001
  • Wei R, Hackman RM, Wang Y, Mackenzie GG. Targeting glycolysis with epigallocatechin-3-gallate enhances the efficacy of chemotherapeutics in pancreatic cancer cells and xenografts. Cancers. 2019;11(10):1496. doi:10.3390/cancers11101496
  • Li K, Xiao G, Richardson JJ, Tardy BL, Ejima H, Huang W, Guo J, Liao X, Shi B. Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin. Adv Sci (Weinh). 2019;6(5):1801688. doi:10.1002/advs.201801688
  • Ghanbari-Movahed M, Jackson G, Farzaei MH, Bishayee A. A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Front Pharmacol. 2021;12:639840. doi:10.3389/fphar.2021.639840
  • Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ros generation and cell cycle arrest. PLoS One. 2014;9(10):e110003. doi:10.1371/journal.pone.0110003
  • Song HM, Park GH, Eo HJ, Lee JW, Kim MK, Lee JR, Lee MH, Koo JS, Jeong JB. Anti-proliferative effect of naringenin through p38-dependent downregulation of cyclin d1 in human colorectal cancer cells. Biomol Ther (Seoul). 2015;23(4):339–44. doi:10.4062/biomolther.2015.024
  • Li Q, Wang Y, Zhang L, Chen L, Du Y, Ye T, Shi X. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of errα/vegf/kdr signaling pathway. Fitoterapia. 2016;111:78–86. doi:10.1016/j.fitote.2016.04.015
  • Gumushan Aktas H, Akgun T. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomed Pharmacother. 2018;106:770–5. doi:10.1016/j.biopha.2018.07.008
  • Krishnakumar N, Sulfikkarali N, RajendraPrasad N, Karthikeyan S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (hela) cancer cells. Biomedicine & Preventive Nutrition. 2011;1(4):223–31. doi:10.1016/j.bionut.2011.09.003
  • Fuster MG, Carissimi G, Montalbán MG, Víllora G. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials. 2020;10(4):718. doi:10.3390/nano10040718
  • Alappat B, Alappat J. Anthocyanin pigments: Beyond aesthetics. Molecules. 2020;25(23):5500. doi:10.3390/molecules25235500
  • Wang Y, Lin J, Tian J, Si X, Jiao X, Zhang W, Gong E, Li B. Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J Agric Food Chem. 2019;67(2):625–36. doi:10.1021/acs.jafc.8b06209
  • Pan F, Liu Y, Liu J, Wang E. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer hela cells. RSC Adv. 2019;9(19):10842–53. doi:10.1039/c9ra01772k
  • Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1361779–doi:10.1080/16546628.2017.1361779
  • Shih P-H, Yeh C-T, Yen G-C. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food and chemical toxicology: an international journal published for the British Industrial. Biological Research Association. 2005;43(10):1557–66. doi:10.1016/j.fct.2005.05.001
  • Lin J, Tian J, Shu C, Cheng Z, Liu Y, Wang W, Liu R, Li B, Wang Y. Malvidin-3-galactoside from blueberry suppresses the growth and metastasis potential of hepatocellular carcinoma cell huh-7 by regulating apoptosis and metastases pathways. Food Sci Hum Wellness. 2020;9(2):136–45. doi:10.1016/j.fshw.2020.02.004
  • Varinska L, Gal P, Mojzisova G, Mirossay L, Mojzis J. Soy and breast cancer: Focus on angiogenesis. Int J Mol Sci. 2015;16(5):11728–49. doi:10.3390/ijms160511728
  • Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targeted therapy of cancer by genistein. Cancer Lett. 2008;269(2):226–42. doi:10.1016/j.canlet.2008.03.052
  • Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, Sharma U, Jain A, Aggarwal V, Bishayee A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front Pharmacol. 2019;10:1336– doi:10.3389/fphar.2019.01336
  • Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - a dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. (1756–4646 (Print)) J Funct Foods. 2017;203–19.
  • Chae H-S, Xu R, Won J-Y, Chin Y-W, Yim H. Molecular targets of genistein and its related flavonoids to exert anticancer effects. IJMS. 2019;20(10):2420. doi:10.3390/ijms20102420
  • Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. Epigenetic activation of brca1 by genistein in vivo and triple negative breast cancer cells linked to antagonism toward aryl hydrocarbon receptor. Nutrients. 2019;11(11):2559. doi:10.3390/nu11112559
  • Chabot GG, Touil YS, Pham MH, Dauzonne D. Flavonoids in cancer prevention and therapy: Chemistry, pharmacology, mechanisms of action, and perspectives for cancer drug discovery. In: Alaoui-Jamali, M. (eds) Alternative and Complementary Therapies for Cancer. Springer, Boston, MA. 2010; 583–612. https://doi.org/10.1007/978-1-4419-0020-3_23
  • Delmas D, Xiao J, Vejux A, Aires V. Silymarin and cancer: A dual strategy in both in chemoprevention and chemosensitivity. Molecules. 2020;25(9):2009. doi:10.3390/molecules25092009
  • Molavi O, Narimani F, Asiaee F, Sharifi S, Tarhriz V, Shayanfar A, Hejazi M, Lai R. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm Biol. 2017;55(1):729–39. doi:10.1080/13880209.2016.1270972
  • Ana Filipa B, Marina R, Ana Margarida A, Ana Salome P, Ricardo Jorge T, JG, TralhaoMaria, Filomena B. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr Med Chem. 2015;22(26):3025–39.
  • Lei C-S, Hou Y-C, Pai M-H, Lin M-T, Yeh S-L. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: In vitro and in vivo studies. J Nutr Biochem. 2018;51:105–13. doi:10.1016/j.jnutbio.2017.09.011
  • Zhang X, Huang J, Yu C, Xiang L, Li L, Shi D, Lin F. Quercetin enhanced paclitaxel therapeutic effects towards pc-3 prostate cancer through er stress induction and ros production. Onco Targets Ther. 2020;13:513–23. doi:10.2147/OTT.S228453
  • Li S, Yuan S, Zhao Q, Wang B, Wang X, Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother. 2018;100:441–7. doi:10.1016/j.biopha.2018.02.055
  • Riahi-Chebbi I, Souid S, Othman H, Haoues M, Karoui H, Morel A, Srairi-Abid N, Essafi M, Essafi-Benkhadir K. The phenolic compound kaempferol overcomes 5-fluorouracil resistance in human resistant ls174 colon cancer cells. Sci Rep. 2019;9(1):195. doi:10.1038/s41598-018-36808-z
  • Luo H, Daddysman MK, Rankin GO, Jiang B-H, Chen YC. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cmyc. Cancer Cell Int. 2010;10(1):16. doi:10.1186/1475-2867-10-16
  • Liu R, Ji P, Liu B, Qiao H, Wang X, Zhou L, Deng T, Ba Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol Lett. 2017;13(2):1024–30. doi:10.3892/ol.2016.5495
  • Hu X-Y, Liang J-Y, Guo X-J, Liu L, Guo Y-B. 5-fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (δψm)-mediated apoptosis in hepatocellular carcinoma. Clin Exp Pharmacol Physiol. 2015;42(2):146–53. doi:10.1111/1440-1681.12333
  • Li K, Li M, Luo Z, Mao Y, Yu Y, He Y, Zhou J, Fei Y, Pei Y, Cai K. Overcoming the hypoxia-induced drug resistance in liver tumor by the concurrent use of apigenin and paclitaxel. Biochem Biophys Res Commun. 2020;526(2):321–7. doi:10.1016/j.bbrc.2020.03.010
  • Kumazoe M, Takai M, Hiroi S, Takeuchi C, Yamanouchi M, Nojiri T, Onda H, Bae J, Huang Y, Takamatsu K, et al. Pde3 inhibitor and egcg combination treatment suppress cancer stem cell properties in pancreatic ductal adenocarcinoma. Sci Rep. 2017;7(1):1917. doi:10.1038/s41598-017-02162-9
  • La X, Zhang L, Li Z, Li H, Yang Y. −)-epigallocatechin gallate (egcg) enhances the sensitivity of colorectal cancer cells to 5-fu by inhibiting grp78/nf-κb/mir-155-5p/mdr1 pathway. J Agric Food Chem. 2019;67(9):2510–8. doi:10.1021/acs.jafc.8b06665
  • Zhang H, Zhong X, Zhang X, Shang D, Zhou YI, Zhang C. Enhanced anticancer effect of abt-737 in combination with naringenin on gastric cancer cells. Exp Ther Med. 2016;11(2):669–73. doi:10.3892/etm.2015.2912
  • Hatkevich T, Ramos J, Santos-Sanchez I, Patel YM. A naringenin–tamoxifen combination impairs cell proliferation and survival of mcf-7 breast cancer cells. Exp Cell Res. 2014;327(2):331–9. doi:10.1016/j.yexcr.2014.05.017
  • Park S-J, Kim M-J, Kim Y-K, Kim S-M, Park J-Y, Myoung H. Combined cetuximab and genistein treatment shows additive anti-cancer effect on oral squamous cell carcinoma. Cancer Letters. 2010;292(1):54–63. doi:10.1016/j.canlet.2009.11.004
  • Sahin K, Tuzcu M, Basak N, Caglayan B, Kilic U, Sahin F, Kucuk O. Sensitization of cervical cancer cells to cisplatin by genistein: The role of nfκb and akt/mtor signaling pathways. Journal of Oncology. 2012;2012:1–6. doi:10.1155/2012/461562
  • Suzuki R, Ya K, Li X, Roife D, Zhang R, Fleming JB. Genistein potentiates the antitumor effect of 5-fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res. 2014;34(9):4685–92.
  • Xue J-P, Wang G, Zhao Z-B, Wang Q, Shi Y. Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer mcf-7/adr cells. Oncol Rep. 2014;32(4):1647–53. doi:10.3892/or.2014.3365
  • Shukla RP, Dewangan J, Urandur S, Banala VT, Diwedi M, Sharma S, Agrawal S, Rath SK, Trivedi R, Mishra PR. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma. Biomater Sci. 2020;8(5):1298–315. doi:10.1039/c9bm01246j
  • Yazdi Rouholamini SE, Moghassemi S, Maharat Z, Hakamivala A, Kashanian S, Omidfar K. Effect of silibinin-loaded nano-niosomal coated with trimethyl chitosan on mirnas expression in 2d and 3d models of t47d breast cancer cell line. Artif Cells Nanomed Biotechnol. 2018;46(3):524–35. doi:10.1080/21691401.2017.1326928
  • Hossainzadeh S, Ranji N, Naderi Sohi A, Najafi F. Silibinin encapsulation in polymersome: A promising anticancer nanoparticle for inducing apoptosis and decreasing the expression level of mir-125b/mir-182 in human breast cancer cells. J Cell Physiol. 2019;234(12):22285–98. doi:10.1002/jcp.28795
  • Mahira S, Kommineni N, Husain GM, Khan W. Cabazitaxel and silibinin co-encapsulated cationic liposomes for cd44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother. 2019;110:803–17. doi:10.1016/j.biopha.2018.11.145
  • Khakinezhad Tehrani F, Ranji N, Kouhkan F, Hosseinzadeh S. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in mia paca-2 cancer cells and deregulation of some mirnas. Iran J Basic Med Sci. 2020;23(4):469–82. doi:10.22038/ijbms.2020.39427.9349
  • Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. In vitro and in vivo anticancer efficacy potential of quercetin loaded polymeric nanoparticles. Biomed Pharmacother. 2018;106:1513–26. doi:10.1016/j.biopha.2018.07.106
  • Rashedi J, Ghorbani Haghjo A, Mesgari Abbasi M, Dastranj Tabrizi A, Yaqoubi S, Sanajou D, Ashrafi Jigheh Z, Namvaran A, Mohammadi A, Mohammadi Khoshraj J, et al. Anti-tumor effect of quercetin loaded chitosan nanoparticles on induced colon cancer in wistar rats. Adv Pharm Bull. 2019;9(3):409–15. doi:10.15171/apb.2019.048
  • Hussain Y, Mirzaei S, Ashrafizadeh M, Zarrabi A, Hushmandi K, Khan H, Daglia M. Quercetin and its nano-scale delivery systems in prostate cancer therapy: Paving the way for cancer elimination and reversing chemoresistance. Cancers. 2021;13(7):1602. doi:10.3390/cancers13071602
  • Simon AT, Dutta D, Chattopadhyay A, Ghosh SS. Quercetin-loaded luminescent hydroxyapatite nanoparticles for theranostic application in monolayer and spheroid cultures of cervical cancer cell line in vitro. ACS Appl Biol Mater. 2021;4(5):4495–506. doi:10.1021/acsabm.1c00255
  • Colombo M, Figueiró F, de Fraga Dias A, Teixeira HF, Battastini AMO, Koester LS. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int J Pharm. 2018;543(1-2):214–23.
  • Bhattacharya S, Mondal L, Mukherjee B, Dutta L, Ehsan I, Debnath MC, Gaonkar RH, Pal MM, Majumdar S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine. 2018;14(6):1905–17. doi:10.1016/j.nano.2018.05.011
  • Ganguly S, Dewanjee S, Sen R, Chattopadhyay D, Ganguly S, Gaonkar R, Debnath MC. Apigenin-loaded galactose tailored plga nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids Surf B Biointerfaces. 2021;204:111778. doi:10.1016/j.colsurfb.2021.111778
  • Liu R, Rong G, Liu Y, Huang W, He D, Lu R. Delivery of apigenin-loaded magnetic fe2o3/fe3o4@msio2 nanocomposites to a549 cells and their antitumor mechanism. Mater Sci Eng C Mater Biol Appl. 2021;120:111719. doi:10.1016/j.msec.2020.111719
  • Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B Biointerfaces. 2019;180:9–22. doi:10.1016/j.colsurfb.2019.04.035
  • Liang K, Chung JE, Gao SJ, Yongvongsoontorn N, Kurisawa M. Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)–green tea catechin conjugate for cancer therapy. Adv Mater. 2018;30(14):1706963. doi:10.1002/adma.201706963
  • Luo S, Wang Y, Shen S, Tang P, Liu Z, Zhang S, Wu D. Ir780-loaded hyaluronic acid@gossypol–fe(iii)–egcg infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy. Adv Funct Mater. 2021;31(24):2100954. doi:10.1002/adfm.202100954
  • Chaurasia S, Patel RR, Vure P, Mishra B. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: In vitro and in vivo investigations. J Pharm Sci. 2018;107(2):706–16. doi:10.1016/j.xphs.2017.10.006
  • Parashar P, Rathor M, Dwivedi M, Saraf SA. Hyaluronic acid decorated naringenin nanoparticles: Appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics. 2018;10(1):33. doi:10.3390/pharmaceutics10010033
  • Wadhwa R, Paudel KR, Chin LH, Hon CM, Madheswaran T, Gupta G, Panneerselvam J, Lakshmi T, Singh SK, Gulati M, et al. Anti-inflammatory and anticancer activities of naringenin-loaded liquid crystalline nanoparticles in vitro. J Food Biochem. 2021;45(1):e13572. doi:10.1111/jfbc.13572
  • Pool H, Campos-Vega R, Herrera-Hernández MG, García-Solis P, García-Gasca T, Sánchez IC, Luna-Bárcenas G, Vergara-Castañeda H. Development of genistein-pegylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on ht29 human colon cancer cells. Am J Transl Res. 2018;10(8):2306–23.
  • Cai L, Yu R, Hao X, Ding X. Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res Lett. 2017;12(1):509. doi:10.1186/s11671-017-2253-z
  • Ghasemi Goorbandi R, Mohammadi MR, Malekzadeh K. Synthesizing efficacious genistein in conjugation with superparamagnetic fe3o4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma. Biomater Res. 2020;24(1):9. doi:10.1186/s40824-020-00187-2
  • Jahanafrooz Z, Motameh N, Bakhshandeh B. Comparative evaluation of silibinin effects on cell cycling and apoptosis in human breast cancer mcf-7 and t47d cell lines. Asian Pac J Cancer Prev. 2016;17(5):2661–5.
  • Si L, Fu J, Liu W, Hayashi T, Nie Y, Mizuno K, Hattori S, Fujisaki H, Onodera S, Ikejima T. Silibinin inhibits migration and invasion of breast cancer mda-mb-231 cells through induction of mitochondrial fusion. Mol Cell Biochem. 2020;463(1-2):189–201. doi:10.1007/s11010-019-03640-6
  • Iqbal MA, Chattopadhyay S, Siddiqui FA, Ur Rehman A, Siddiqui S, Prakasam G, Khan A, Sultana S, Bamezai RNK. Silibinin induces metabolic crisis in triple-negative breast cancer cells by modulating egfr-myc-txnip axis: Potential therapeutic implications. Febs J. 2021;288(2):471–85. doi:10.1111/febs.15353
  • Yu H-C, Chen L-J, Cheng K-C, Li Y-X, Yeh C-H, Cheng J-T. Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog. Phytother Res. 2012;26(5):709–15. doi:10.1002/ptr.3618
  • Zhang X, Liu J, Zhang P, Dai L, Wu Z, Wang L, Cao M, Jiang J. Silibinin induces g1 arrest, apoptosis and jnk/sapk upregulation in sw1990 human pancreatic cancer cells. Oncol Lett. 2018;15(6):9868–76. doi:10.3892/ol.2018.8541
  • Feng J, Song D, Jiang S, Yang X, Ding T, Zhang H, Luo J, Liao J, Yin Q. Quercetin restrains tgf-β1-induced epithelial–mesenchymal transition by inhibiting twist1 and regulating e-cadherin expression. Biochem Biophys Res Commun. 2018;498(1):132–8. doi:10.1016/j.bbrc.2018.02.044
  • Shen X, Si Y, Wang Z, Wang J, Guo Y, Zhang X. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of pi3k/akt signaling. Int J Mol Med. 2016;38(2):619–26. doi:10.3892/ijmm.2016.2625
  • Li H, Chen C. Quercetin has antimetastatic effects on gastric cancer cells via the interruption of upa/upar function by modulating nf-κb, pkc-δ, erk1/2, and ampkα. Integr Cancer Ther. 2018;17(2):511–23. doi:10.1177/1534735417696702
  • Nguyen TTT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H. The role of activated mek-erk pathway in quercetin-induced growth inhibition and apoptosis in a549 lung cancer cells. Carcinogenesis. 2004;25(5):647–59. doi:10.1093/carcin/bgh052
  • Chang J-H, Lai S-L, Chen W-S, Hung W-Y, Chow J-M, Hsiao M, Lee W-J, Chien M-H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting snail-dependent akt activation and snail-independent adam9 expression pathways. Biochimica et. Biophysica Acta (BBA) - Molecular Cell Research. 2017;1864(10):1746–58. doi:10.1016/j.bbamcr.2017.06.017
  • Ren M-X, Deng X-H, Ai F, Yuan G-Y, Song H-Y. Effect of quercetin on the proliferation of the human ovarian cancer cell line skov-3 in vitro. Exp Ther Med. 2015;10(2):579–83. doi:10.3892/etm.2015.2536
  • Teekaraman D, Elayapillai SP, Viswanathan MP, Jagadeesan A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in pa-1 cell line. Chem Biol Interact. 2019;300:91–100. doi:10.1016/j.cbi.2019.01.008
  • Ward AB, Mir H, Kapur N, Gales DN, Carriere PP, Singh S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol. 2018;16(1):108– doi:10.1186/s12957-018-1400-z
  • Tsai P-H, Cheng C-H, Lin C-Y, Huang Y-T, Lee L-T, Kandaswami CC, Lin Y-C, Lee KP-H, Hung C-C, Hwang J-J, et al. Dietary flavonoids luteolin and quercetin suppressed cancer stem cell properties and metastatic potential of isolated prostate cancer cells. Anticancer Res. 2016;36(12):6367–80. doi:10.21873/anticanres.11234
  • Choi EJ, Ahn WS. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer mda-mb-453 cells. Nutr Res Pract. 2008;2(4):322–5. doi:10.4162/nrp.2008.2.4.322
  • Li C, Zhao Y, Yang D, Yu Y, Guo H, Zhao Z, Zhang B, Yin X. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem Cell Biol. 2015;93(1):16–27. doi:10.1139/bcb-2014-0067
  • Kashafi E, Moradzadeh M, Mohamadkhani A, Erfanian S. Kaempferol increases apoptosis in human cervical cancer hela cells via pi3k/akt and telomerase pathways. Biomed Pharmacother. 2017;89:573–7. doi:10.1016/j.biopha.2017.02.061
  • Han X, Liu C-F, Gao N, Zhao J, Xu J. Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microrna-340 in human lung cancer cells. Biomed Pharmacother. 2018;108:809–16. doi:10.1016/j.biopha.2018.09.087
  • Luo H, Rankin GO, Liu L, Daddysman MK, Jiang B-H, Chen YC. Kaempferol inhibits angiogenesis and vegf expression through both hif dependent and independent pathways in human ovarian cancer cells. Nutr Cancer. 2009;61(4):554–63. doi:10.1080/01635580802666281
  • Lee J, Kim JH. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of egfr-related pathway in vitro. PLoS One. 2016;11(5):e0155264-e0155264. doi:10.1371/journal.pone.0155264
  • Scherbakov AM, Andreeva OE. Apigenin inhibits growth of breast cancer cells: The role of erα and her2/neu. Acta Naturae. 2015;7(3):133–9.
  • Hong J, Fristiohady A, Nguyen CH, Milovanovic D, Huttary N, Krieger S, Hong J, Geleff S, Birner P, Jäger W, et al. Apigenin and luteolin attenuate the breaching of mda-mb231 breast cancer spheroids through the lymph endothelial barrier in vitro. Front Pharmacol. 2018;9:220– doi:10.3389/fphar.2018.00220
  • Chen X, Xu H, Yu X, Wang X, Zhu X, Xu X. Apigenin inhibits in vitro and in vivo tumorigenesis in cisplatin-resistant colon cancer cells by inducing autophagy, programmed cell death and targeting m-tor/pi3k/akt signalling pathway. Journal of BUON: official Journal of the Balkan Union of Oncology. 2019;24(2):488–93.
  • Xu M, Wang S, Song YU, Yao J, Huang K, Zhu X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the wnt/β-catenin signaling pathway. Oncol Lett. 2016;11(5):3075–80. doi:10.3892/ol.2016.4331
  • Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT, Gupta S. Apigenin blocks ikkα activation and suppresses prostate cancer progression. Oncotarget. 2015;6(31):31216–32. doi:10.18632/oncotarget.5157
  • Zan L, Chen Q, Zhang L, Li X. Epigallocatechin gallate (egcg) suppresses growth and tumorigenicity in breast cancer cells by downregulation of mir-25. Bioengineered. 2019;10(1):374–82. doi:10.1080/21655979.2019.1657327
  • Wei R, Mao L, Xu P, Zheng X, Hackman RM, Mackenzie GG, Wang Y. Suppressing glucose metabolism with epigallocatechin-3-gallate (egcg) reduces breast cancer cell growth in preclinical models. Food Funct. 2018;9(11):5682–96. doi:10.1039/c8fo01397g
  • Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D, Srisawang P. Epistructured catechins, egcg and ec facilitate apoptosis induction through targeting de novo lipogenesis pathway in hepg2 cells. Cancer Cell Int. 2018;18(1):46. doi:10.1186/s12935-018-0539-6
  • Wei R, CortezPenso NE, Hackman RM, Wang Y, Mackenzie GG. Epigallocatechin-3-gallate (egcg) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of akt pathway and epithelial–mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients. 2019;11(8):1856. doi:10.3390/nu11081856
  • Zhao Z, Jin G, Ge Y, Guo Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology. 2019;27(5):1021–36. doi:10.1007/s10787-018-00556-3
  • Liao ACH, Kuo CC, Huang YC, Yeh CW, Hseu YC, Liu JY, Hsu LS. Naringenin inhibits migration of bladder cancer cells through downregulation of akt and mmp‑2. Mol Med Rep. 2014;10(3):1531–6. doi:10.3892/mmr.2014.2375
  • Song HM, Park GH, Eo HJ, Jeong JB. Naringenin-mediated atf3 expression contributes to apoptosis in human colon cancer. Biomol Ther (Seoul). 2016;24(2):140–6. doi:10.4062/biomolther.2015.109
  • Lim W, Park S, Bazer FW, Song G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the pi3k/akt and mapk signaling pathways. J Cell Biochem. 2017;118(5):1118–31. doi:10.1002/jcb.25729
  • Chen C, Wang Y, Chen S, Ruan X, Liao H, Zhang Y, Sun J, Gao J, Deng G. Genistein inhibits migration and invasion of cervical cancer hela cells by regulating fak-paxillin and mapk signaling pathways. Taiwanese J Obstet Gynecol. 2020;59(3):403–8. doi:10.1016/j.tjog.2020.03.012
  • Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a notch1/nf-κb/slug/e-cadherin pathway. BMC Cancer. 2017;17(1):813. doi:10.1186/s12885-017-3829-9
  • Bi Y-l, Min M, Shen W, Liu Y. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, g0/g1cell cycle arrest and regulation of stat3 signalling pathway. Phytomedicine. 2018;39:10–6. doi:10.1016/j.phymed.2017.12.001
  • Chiyomaru T, Yamamura S, Fukuhara S, Yoshino H, Kinoshita T, Majid S, Saini S, Chang I, Tanaka Y, Enokida H, et al. Genistein inhibits prostate cancer cell growth by targeting mir-34a and oncogenic hotair. PLoS One. 2013;8(8):e70372-e70372. doi:10.1371/journal.pone.0070372
  • Pavese JM, Krishna SN, Bergan RC. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am J Clin Nutr. 2014;100 Suppl 1(1):431S–6S. doi:10.3945/ajcn.113.071290
  • Tyagi AK, Agarwal C, Chan DCF, Agarwal R. Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma mcf-7 and mda-mb468 cells. Oncol Rep. 2004;11(2):493–9. doi:10.3892/or.11.2.493
  • Dhanalakshmi S, Agarwal P, Glode LM, Agarwal R. Silibinin sensitizes human prostate carcinoma du145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. Int J Cancer. 2003;106(5):699–705. doi:10.1002/ijc.11299
  • Li J, Li B, Xu WW, Chan KW, Guan XY, Qin YR, Lee NPY, Chan KT, Law S, Tsao SW, et al. Role of ampk signaling in mediating the anticancer effects of silibinin in esophageal squamous cell carcinoma. Expert Opin Ther Targets. 2016;20(1):7–18. doi:10.1517/14728222.2016.1121236
  • Yang J, Xing Z. 2020. Silibinin sensitizes cd133+ hepatocellular carcinoma cells to cisplatin treatment through suppression of opa1. Research Square.
  • Tyagi AK, Singh RP, Agarwal C, Chan DCF, Agarwal R. Silibinin strongly synergizes human prostate carcinoma du145 cells to doxorubicin-induced growth inhibition, g2-m arrest, and apoptosis. Clin Cancer Res. 2002;8(11):3512–9.
  • Ho B-Y, Lin C-H, Apaya MK, Chao W-W, Shyur L-F. Silibinin and paclitaxel cotreatment significantly suppress the activity and lung metastasis of triple negative 4t1 mammary tumor cell in mice. Journal of Traditional and Complementary Medicine. 2012;2(4):301–11. doi:10.1016/S2225-4110(16)30116-X
  • Zhang Y, Ge Y, Ping X, Yu M, Lou D, Shi W. Synergistic apoptotic effects of silibinin in enhancing paclitaxel toxicity in human gastric cancer cell lines. Mol Med Rep. 2018;18(2):1835–41. doi:10.3892/mmr.2018.9129
  • Pashaei-Asl F, Pashaei-Asl R, Khodadadi K, Akbarzadeh A, Ebrahimie E, Pashaiasl M. Enhancement of anticancer activity by silibinin and paclitaxel combination on the ovarian cancer. Artif Cells Nanomed Biotechnol. 2018;46(7):1483–7. doi:10.1080/21691401.2017.1374281
  • Demiroglu-Zergeroglu A, Basara-Cigerim B, Kilic E, Yanikkaya-Demirel G. The investigation of effects of quercetin and its combination with cisplatin on malignant mesothelioma cells in vitro. J Biomed Biotechnol. 2010;2010:851589. doi:10.1155/2010/851589
  • Demiroglu-Zergeroglu A, Ergene E, Ayvali N, Kuete V, Sivas H. Quercetin and cisplatin combined treatment altered cell cycle and mitogen activated protein kinase expressions in malignant mesotelioma cells. BMC Complement Altern Med. 2016;16(1):281–doi:10.1186/s12906-016-1267-x
  • Daker M, Ahmad M, Khoo ASB. Quercetin-induced inhibition and synergistic activity with cisplatin – a chemotherapeutic strategy for nasopharyngeal carcinoma cells. Cancer Cell Int. 2012;12(1):34. doi:10.1186/1475-2867-12-34
  • Liu H, Lee JI, Ahn T-G. Effect of quercetin on the anti-tumor activity of cisplatin in emt6 breast tumor-bearing mice. Obstet Gynecol Sci. 2019;62(4):242–8. doi:10.5468/ogs.2019.62.4.242
  • Xavier CPR, Lima CF, Rohde M, Pereira-Wilson C. Quercetin enhances 5-fluorouracil-induced apoptosis in msi colorectal cancer cells through p53 modulation. Cancer Chemother Pharmacol. 2011;68(6):1449–57. doi:10.1007/s00280-011-1641-9
  • Lee SH, Lee EJ, Min KH, Hur GY, Lee SH, Lee SY, Kim JH, Shin C, Shim JJ, In KH, et al. Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clin Lung Cancer. 2015;16(6):e235–e243. doi:10.1016/j.cllc.2015.05.006
  • Yang F, Song L, Wang H, Wang J, Xu Z, Xing N. Combination of quercetin and 2-methoxyestradiol enhances inhibition of human prostate cancer lncap and pc-3 cells xenograft tumor growth. PLoS One. 2015;10(5):e0128277-e0128277. doi:10.1371/journal.pone.0128277
  • Taylor MA, Khathayer F, Ray SK. Quercetin and sodium butyrate synergistically increase apoptosis in rat c6 and human t98g glioblastoma cells through inhibition of autophagy. Neurochem Res. 2019;44(7):1715–25. doi:10.1007/s11064-019-02802-8
  • Li Q, Wei L, Lin S, Chen Y, Lin J, Peng J. Synergistic effect of kaempferol and 5‑fluorouracil on the growth of colorectal cancer cells by regulating the pi3k/akt signaling pathway. Mol Med Rep. 2019;20(1):728–34. doi:10.3892/mmr.2019.10296
  • Choi EJ, Kim G-H. 5-fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer mda-mb-453 cells. Oncol Rep. 2009;22(6):1533–7. doi:10.3892/or_00000598
  • Xu Y, Xin Y, Diao Y, Lu C, Fu J, Luo L, Yin Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS One. 2011;6(12):e29169-e29169. doi:10.1371/journal.pone.0029169
  • Kumazoe M, Sugihara K, Tsukamoto S, Huang Y, Tsurudome Y, Suzuki T, Suemasu Y, Ueda N, Yamashita S, Kim Y, et al. 67-kda laminin receptor increases cgmp to induce cancer-selective apoptosis. J Clin Invest. 2013;123(2):787–99. doi:10.1172/JCI64768
  • Zhang L, Xie J, Gan R, Wu Z, Luo H, Chen X, Lu Y, Wu L, Zheng D. Synergistic inhibition of lung cancer cells by egcg and nf-κb inhibitor bay11-7082. J Cancer. 2019;10(26):6543–56. doi:10.7150/jca.34285
  • Kwak TW, Kim DH, Chung C-W, Lee HM, Kim CH, Jeong Y-I, Kang DH. Synergistic anticancer effects of vorinostat and epigallocatechin-3-gallate against hucc-t1 human cholangiocarcinoma cells. Evid Based Complement Alternat Med. 2013;2013:185158–doi:10.1155/2013/185158
  • Mazumder MEH, Beale P, Chan C, Yu JQ, Huq F. Epigallocatechin gallate acts synergistically in combination with cisplatin and designed < em > trans</em>-palladiums in ovarian cancer cells. Anticancer Res. 2012;32(11):4851.
  • Hwang J-T, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of ampk and cox-2 signaling pathways. Biochem Biophys Res Commun. 2005;332(2):433–40. doi:10.1016/j.bbrc.2005.04.143

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.