208
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Effects of Dietary Phytochemicals on DNA Damage in Cancer Cells

, , , , &
Pages 761-775 | Received 12 Sep 2022, Accepted 05 Dec 2022, Published online: 23 Dec 2022

References

  • Ma L, Zhang M, Zhao R, Wang D, Ma Y, Ai L. Plant natural products: promising resources for cancer chemoprevention. Molecules. 2021;26(4):933.
  • Chen JT. Phytochemical omics in medicinal plants. Biomolecules. 2020;10(6):936.
  • Lee J, Han Y, Wang W, Jo H, Kim H, Kim S, Yang K-M, Kim S-J, Dhanasekaran DN, Song YS, et al. Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomolecules. 2021;11(8):1107.
  • Ranjan A, et al. Role of phytochemicals in cancer prevention. Int J Mol Sci. 2019;20(20).
  • Zhang Y, Liu X, Ruan J, Zhuang X, Zhang X, Li Z. Phytochemicals of garlic: promising candidates for cancer therapy. Biomed Pharmacother. 2020;123:109730.
  • Baby B, Antony P, Vijayan R. Antioxidant and anticancer properties of berries. Crit Rev Food Sci Nutr. 2018;58(15):2491–507.
  • Chien C-M, Yang J-C, Wu P-H, Wu C-Y, Chen G-Y, Wu Y-C, Chou C-K, Tseng C-H, Chen Y-L, Wang L-F, et al. Phytochemical naphtho[1,2-b] furan-4,5‑dione induced topoisomerase II-mediated DNA damage response in human non-small-cell lung cancer. Phytomedicine. 2019;54:109–19.
  • Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16(2):81–104.
  • Bacanlı M, Aydın S, Başaran AA, Başaran N. Are all phytochemicals useful in the preventing of DNA damage? Food Chem Toxicol. 2017;109(Pt 1):210–7.
  • Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302(2):71–83.
  • Lu L, Jiang M, Zhu C, He J, Fan S. Amelioration of whole abdominal irradiation-induced intestinal injury in mice with 3,3’-diindolylmethane (DIM). Free Radic Biol Med. 2019;130:244–55.
  • Bonnesen C, Eggleston IM, Hayes JD. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 2001;61(16):6120–30.
  • Li H, Gao A, Jiang N, Liu Q, Liang B, Li R, Zhang E, Li Z, Zhu H. Protective effect of curcumin against acute ultraviolet B irradiation-induced photo-damage. Photochem Photobiol. 2016;92(6):808–15.
  • Farhan M, Rizvi A, Ahmad A, Aatif M, Alam MW, Hadi SM. Structure of some green tea catechins and the availability of intracellular copper influence their ability to cause selective oxidative DNA damage in malignant cells. Biomedicines. 2022;10(3):664.
  • Wu W, Dong J, Gou H, Geng R, Yang X, Chen D, Xiang B, Zhang Z, Ren S, Chen L, et al. EGCG synergizes the therapeutic effect of irinotecan through enhanced DNA damage in human colorectal cancer cells. J Cell Mol Med. 2021;25(16):7913–21.
  • La X, Zhang L, Li Z, Li H, Yang Y. (-)-Epigallocatechin gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by Inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway. J Agric Food Chem. 2019;67(9):2510–8.
  • Udroiu I, Marinaccio J, Sgura A. Epigallocatechin-3-gallate induces telomere shortening and clastogenic damage in glioblastoma cells. Environ Mol Mutagen. 2019;60(8):683–92.
  • Rao SD, Pagidas K. Epigallocatechin-3-gallate, a natural polyphenol, inhibits cell proliferation and induces apoptosis in human ovarian cancer cells. Anticancer Res. 2010;30(7):2519–23.
  • Singh B, Shoulson R, Chatterjee A, Ronghe A, Bhat NK, Dim DC, Bhat HK. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis. 2014;35(8):1872–80.
  • Sui X, Zhang C, Zhou J, Cao S, Xu C, Tang F, Zhi X, Chen B, Wang S, Yin L, et al. Resveratrol inhibits Extranodal NK/T cell lymphoma through activation of DNA damage response pathway. J Exp Clin Cancer Res. 2017;36(1):133.
  • Fu X, Li M, Tang C, Huang Z, Najafi M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis. 2021;26(11-12):561–73.
  • Demoulin B, Hermant M, Castrogiovanni C, Staudt C, Dumont P. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase II and activates the ATM kinase to trigger p53-dependent apoptosis. Toxicol in Vitro. 2015;29(5):1156–65.
  • Yeh Y-T, Hsu Y-N, Huang S-Y, Lin J-S, Chen Z-F, Chow N-H, Su S-H, Shyu H-W, Lin C-C, Huang W-T, et al. Benzyl isothiocyanate promotes apoptosis of oral cancer cells via an acute redox stress-mediated DNA damage response. Food Chem Toxicol. 2016;97:336–45.
  • Zhang R, Loganathan S, Humphreys I, Srivastava SK. Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. J Nutr. 2006;136(11):2728–34.
  • Huang Y-P, Jiang Y-W, Chen H-Y, Hsiao Y-T, Peng S-F, Chou Y-C, Yang J-L, Hsia T-C, Chung J-G. Benzyl isothiocyanate induces apoptotic cell death through mitochondria-dependent pathway in gefitinib-resistant NCI-H460 human lung cancer cells in vitro. Anticancer Res. 2018;38(9):5165–76.
  • Günes-Bayir A, Kiziltan HS, Kocyigit A, Güler EM, Karataş E, Toprak A. Effects of natural phenolic compound carvacrol on the human gastric adenocarcinoma (AGS) cells in vitro. Anticancer Drugs. 2017;28(5):522–30.
  • Ozkan A, Erdogan A. A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Nat Prod Commun. 2012;7(12):1557–60.
  • Guha Majumdar A, Subramanian M. Hydroxychavicol from piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Pharmacol. 2019;166:274–91.
  • Gundala SR, Yang C, Mukkavilli R, Paranjpe R, Brahmbhatt M, Pannu V, Cheng A, Reid MD, Aneja R. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol Appl Pharmacol. 2014;280(1):86–96.
  • Dos Santos PWdS, Machado ART, De Grandis RA, Ribeiro DL, Tuttis K, Morselli M, Aissa AF, Pellegrini M, Antunes LMG. Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020;136:111047.
  • Naumann P, Liermann J, Fortunato F, Schmid TE, Weber K-J, Debus J, Combs SE. Sulforaphane enhances irradiation effects in terms of perturbed cell cycle progression and increased DNA damage in pancreatic cancer cells. PLoS One. 2017;12(7):e0180940.
  • Russo M, Spagnuolo C, Russo GL, Skalicka-Woźniak K, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Nrf2 targeting by sulforaphane: a potential therapy for cancer treatment. Crit Rev Food Sci Nutr. 2018;58(8):1391–405.
  • Tong R, Wu X, Liu Y, Liu Y, Zhou J, Jiang X, Zhang L, He X, Ma L. Curcumin-induced DNA demethylation in human gastric cancer cells is mediated by the DNA-damage response pathway. Oxid Med Cell Longev. 2020;2020:2543504.
  • Guney Eskiler G, Sahin E, Deveci Ozkan A, Cilingir Kaya OT, Kaleli S. Curcumin induces DNA damage by mediating homologous recombination mechanism in triple negative breast cancer. Nutr Cancer. 2020;72(6):1057–66.
  • Li K, Zhao S, Long J, Su J, Wu L, Tao J, Zhou J, Zhang J, Chen X, Peng C, et al. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int. 2020;20:36.
  • Gil HN, Jung E, Koh D, Lim Y, Lee YH, Shin SY. A synthetic chalcone derivative, 2-hydroxy-3’,5,5’-trimethoxychalcone (DK-139), triggers reactive oxygen species-induced apoptosis independently of p53 in A549 lung cancer cells. Chem Biol Interact. 2019;298:72–9.
  • WalyEldeen AA, El-Shorbagy HM, Hassaneen HM, Abdelhamid IA, Sabet S, Ibrahim SA. [1,2,4] Triazolo [3,4-a]isoquinoline chalcone derivative exhibits anticancer activity via induction of oxidative stress, DNA damage, and apoptosis in Ehrlich solid carcinoma-bearing mice. Naunyn-Schmiedeberg’s Arch Pharmacol. 2022;395(10):1225–38.
  • Utama K, Khamto N, Meepowpan P, Aobchey P, Kantapan J, Sringarm K, Roytrakul S, Sangthong P. Effects of 2’,4’-dihydroxy-6’-methoxy-3’,5’-dimethylchalcone from Syzygium nervosum seeds on antiproliferative, DNA damage, cell cycle arrest, and apoptosis in human cervical cancer cell lines. Molecules. 2022;27(4):1154.
  • Sameni S, Hande MP. Plumbagin triggers DNA damage response, telomere dysfunction and genome instability of human breast cancer cells. Biomed Pharmacother. 2016;82:256–68.
  • Panda M, Tripathi SK, Biswal BK. Plumbagin promotes mitochondrial mediated apoptosis in gefitinib sensitive and resistant A549 lung cancer cell line through enhancing reactive oxygen species generation. Mol Biol Rep. 2020;47(6):4155–68.
  • Pandey K, Tripathi SK, Panda M, Biswal BK. Prooxidative activity of plumbagin induces apoptosis in human pancreatic ductal adenocarcinoma cells via intrinsic apoptotic pathway. Toxicol in Vitro. 2020;65:104788.
  • Park H, et al. Oridonin enhances radiation-induced cell death by promoting DNA damage in non-small cell lung cancer cells. Int J Mol Sci. 2018;19(8):2378.
  • Yang I-H, Shin J-A, Lee K-E, Kim J, Cho N-P, Cho S-D. Oridonin induces apoptosis in human oral cancer cells via phosphorylation of histone H2AX. Eur J Oral Sci. 2017;125(6):438–43.
  • Xu B, Shen W, Liu X, Zhang T, Ren J, Fan Y, Xu J. Oridonin inhibits BxPC-3 cell growth through cell apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):164–73.
  • Palomera-Sanchez Z, Watson GW, Wong CP, Beaver LM, Williams DE, Dashwood RH, Ho E. The phytochemical 3,3’-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells. J Nutr Biochem. 2017;47:113–9.
  • Li Y, Li X, Guo B. Chemopreventive agent 3,3’-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res. 2010;70(2):646–54.
  • Kandala PK, Srivastava SK. Activation of checkpoint kinase 2 by 3,3’-diindolylmethane is required for causing G2/M cell cycle arrest in human ovarian cancer cells. Mol Pharmacol. 2010;78(2):297–309.
  • Shendge AK, Chaudhuri D, Basu T, Mandal N. A natural flavonoid, apigenin isolated from Clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Clin Transl Oncol. 2021;23(4):718–30.
  • Lee Y-J, Park K-S, Nam H-S, Cho M-K, Lee S-H. Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells. Korean J Physiol Pharmacol. 2020;24(6):493–502.
  • Jia C, Zhao Y, Huang H, Fan K, Xie T, Xie M. Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem. 2022;107:109038.
  • Liu W-J, Yin Y-B, Sun J-Y, Feng S, Ma J-K, Fu X-Y, Hou Y-J, Yang M-F, Sun B-L, Fan C-D, et al. Natural borneol is a novel chemosensitizer that enhances temozolomide-induced anticancer efficiency against human glioma by triggering mitochondrial dysfunction and reactive oxide species-mediated oxidative damage. Onco Targets Ther. 2018;11:5429–39.
  • Chen J, Li L, Su J, Chen T. Natural borneol enhances bisdemethoxycurcumin-induced cell cycle arrest in the G2/M phase through up-regulation of intracellular ROS in HepG2 cells. Food Funct. 2015;6(3):740–8.
  • Guo J, Wu G, Bao J, Hao W, Lu J, Chen X. Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner. PLoS One. 2014;9(2):e88140.
  • Niu Y, Sun W, Lu J-J, Ma D-L, Leung C-H, Pei L, Chen X. PTEN activation by DNA damage induces protective autophagy in response to cucurbitacin B in hepatocellular carcinoma cells. Oxid Med Cell Longev. 2016;2016:4313204.
  • Ren G, Sha T, Guo J, Li W, Lu J, Chen X. Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat Med. 2015;69(4):522–30.
  • Chueh F-S, Chen Y-L, Hsu S-C, Yang J-S, Hsueh S-C, Ji B-C, Lu H-F, Chung J-G. Triptolide induced DNA damage in A375.S2 human malignant melanoma cells is mediated via reduction of DNA repair genes. Oncol Rep. 2013;29(2):613–8.
  • Qiao Z, He M, He MU, Li W, Wang X, Wang Y, Kuai Q, Li C, Ren S, Yu Q, et al. Synergistic antitumor activity of gemcitabine combined with triptolide in pancreatic cancer cells. Oncol Lett. 2016;11(5):3527–33.
  • Tang J-Y, Huang H-W, Wang H-R, Chan Y-C, Haung J-W, Shu C-W, Wu Y-C, Chang H-W. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. Environ Toxicol. 2018;33(3):295–304.
  • You B-J, Wu Y-C, Lee C-L, Lee H-Z. Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells. Food Chem Toxicol. 2014;65:205–12.
  • Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12(12):801–17.
  • Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–15.
  • Carusillo A, Mussolino C. DNA damage: from threat to treatment. Cells. 2020;9(7):1665.
  • Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer. Cancer Sci. 2020;111(5):1443–51.
  • Ma A, Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response. Cell Cycle. 2018;17(1):73–9.
  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.
  • Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21(2):251–9.
  • Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020;30(6):440–51.
  • Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao H-L, Liu H-X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021;11(10):4839–57.
  • Aggarwal V, Tuli H, Varol A, Thakral F, Yerer M, Sak K, Varol M, Jain A, Khan M, Sethi G, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735.
  • Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: a marker of DNA damage and repair. DNA Repair (Amst). 2021;108:103243.
  • Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146(5):905–16.
  • Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434(7035):864–70.
  • Li J, Zhang D, Ramos KS, Baks L, Wiersma M, Lanters EAH, Bogers AJJC, de Groot NMS, Brundel BJJM. Blood-based 8-hydroxy-2’-deoxyguanosine level: a potential diagnostic biomarker for atrial fibrillation. Heart Rhythm. 2021;18(2):271–7.
  • Urbaniak SK, Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. 8-Oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) as a potential biomarker for gestational diabetes mellitus (GDM) development. Molecules. 2020;25(1):202.
  • Mazlumoglu MR, Ozkan O, Alp HH, Ozyildirim E, Bingol F, Yoruk O, Kuduban O. Measuring oxidative DNA damage with 8-hydroxy-2’-deoxyguanosine levels in patients with laryngeal cancer. Ann Otol Rhinol Laryngol. 2017;126(2):103–9.
  • Carrier F, Smith ML, Bae I, Kilpatrick KE, Lansing TJ, Chen CY, Engelstein M, Friend SH, Henner WD, Gilmer TM, et al. Characterization of human Gadd45, a p53-regulated protein. J Biol Chem. 1994;269(51):32672–7.
  • Reddy SP, Britto R, Vinnakota K, Aparna H, Sreepathi HK, Thota B, Kumari A, Shilpa BM, Vrinda M, Umesh S, et al. Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res. 2008;14(10):2978–87.
  • Liu J, Jiang G, Mao P, Zhang J, Zhang L, Liu L, Wang J, Owusu L, Ren B, Tang Y, et al. Down-regulation of GADD45A enhances chemosensitivity in melanoma. Sci Rep. 2018;8(1):4111.
  • Ehmsen JT, Kawaguchi R, Kaval D, Johnson AE, Nachun D, Coppola G, Höke A. GADD45A is a protective modifier of neurogenic skeletal muscle atrophy. JCI Insight. 2021;6(13):e149381.
  • Tront JS, Willis A, Huang Y, Hoffman B, Liebermann DA. Gadd45a levels in human breast cancer are hormone receptor dependent. J Transl Med. 2013;11:131.
  • Su M-Q, Zhou Y-R, Rao X, Yang H, Zhuang X-H, Ke X-J, Peng G-Y, Zhou C-L, Shen B-Y, Dou J, et al. Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. Int J Oncol. 2018;53(2):750–60.
  • Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, Mazzacurati L, Li X, Petrik KL, Rajasekaran B, et al. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002;21(57):8696–704.
  • Asuthkar S, Nalla AK, Gondi CS, Dinh DH, Gujrati M, Mohanam S, Rao JS. Gadd45a sensitizes medulloblastoma cells to irradiation and suppresses MMP-9-mediated EMT. Neuro Oncol. 2011;13(10):1059–73.
  • Yang F, Zhang W, Li D, Zhan Q. Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J Biol Chem. 2013;288(9):6552–60.
  • Wang X, Wang R-H, Li W, Xu X, Hollander MC, Fornace AJ, Deng C-X. Genetic interactions between Brca1 and Gadd45a in centrosome duplication, genetic stability, and neural tube closure. J Biol Chem. 2004;279(28):29606–14.
  • Dutt R, Garg V, Khatri N, Madan AK. Phytochemicals in Anticancer Drug Development. ACAMC. 2019;19(2):172–83.
  • Ye Y, Li X, Wang Z, Ye F, Xu W, Lu R, Shen H, Miao S. 3,3’-Diindolylmethane induces gastric cancer cells death via STIM1 mediated store-operated calcium entry. Int J Biol Sci. 2021;17(5):1217–33.
  • Chen CY, Kao CL, Liu CM. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci. 2018;19(9):2729.
  • Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H. Green tea and its anti-angiogenesis effects. Biomed Pharmacother. 2017;89:949–56.
  • Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett. 2018;413:122–34.
  • Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2018;11(1):39.
  • Chen K, et al. Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGF‑β1/Smad3 signaling pathway. Mol Med Rep. 2018;17(6):7652–60.
  • Ng CY, et al. Phytochemicals in skin cancer prevention and treatment: an updated review. Int J Mol Sci. 2018;19(4):941.
  • Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem. 2011;53:155–77.
  • Oya Y, Mondal A, Rawangkan A, Umsumarng S, Iida K, Watanabe T, Kanno M, Suzuki K, Li Z, Kagechika H, et al. Down-regulation of histone deacetylase 4, -5 and -6 as a mechanism of synergistic enhancement of apoptosis in human lung cancer cells treated with the combination of a synthetic retinoid, Am80 and green tea catechin. J Nutr Biochem. 2017;42:7–16.
  • Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol. 2019;66(1):13–21.
  • Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci. 2019;20(7):1523.
  • Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules. 2021;26(1):229.
  • Vervandier-Fasseur D, Latruffe N. The potential use of resveratrol for cancer prevention. Molecules. 2019;24(24):4506.
  • Tyagi A, Gu M, Takahata T, Frederick B, Agarwal C, Siriwardana S, Agarwal R, Sclafani RA. Resveratrol selectively induces DNA Damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17(16):5402–11.
  • Singh V, Singh R, Kujur PK, Singh RP. Combination of resveratrol and quercetin causes cell growth inhibition, DNA damage, cell cycle arrest, and apoptosis in oral cancer cells. Assay Drug Dev Technol. 2020;18(5):226–38.
  • Dinh TN, Parat M-O, Ong YS, Khaw KY. Anticancer activities of dietary benzyl isothiocyanate: a comprehensive review. Pharmacol Res. 2021;169:105666.
  • Tang N-Y, Chueh F-S, Yu C-C, Liao C-L, Lin J-J, Hsia T-C, Wu K-C, Liu H-C, Lu K-W, Chung J-G, et al. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells. Oncol Rep. 2016;35(4):2089–96.
  • Silva ER, de Carvalho FO, Teixeira LGB, Santos NGL, Felipe FA, Santana HSR, Shanmugam S, Quintans Júnior LJ, de Souza Araújo AA, Nunes PS, et al. Pharmacological effects of carvacrol in in vitro studies: a review. Curr Pharm Des. 2018;24(29):3454–65.
  • Ahmad A, Saeed M, Ansari IA. Molecular insights on chemopreventive and anticancer potential of carvacrol: implications from solid carcinomas. J Food Biochem. 2021;45(12):e14010.
  • Ferguson LR. Role of plant polyphenols in genomic stability. Mutat Res. 2001;475(1-2):89–111.
  • Sekar VD, Ramasamy GD, Ravikumar C. In silico molecular docking for assessing anti-fungal competency of hydroxychavicol, a phenolic compound of betel leaf (Piper betle L.) against COVID-19 associated maiming mycotic infections. Drug Dev Ind Pharm. 2022;48(5):1–43.
  • Rajedadram A, Pin KY, Ling SK, Yan SW, Looi ML. Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells. J Zhejiang Univ Sci B. 2021;22(2):112–22.
  • Li J, Xie S, Teng W. Sulforaphane attenuates nonalcoholic fatty liver disease by inhibiting hepatic steatosis and apoptosis. Nutrients. 2021;14(1):76.
  • Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev. 2021;79(11):1204–24.
  • Schepici G, Bramanti P, Mazzon E. Efficacy of sulforaphane in neurodegenerative diseases. Int J Mol Sci. 2020;21(22):8637.
  • Zheng K, Ma J, Wang Y, He Z, Deng K. Sulforaphane inhibits autophagy and induces exosome-mediated paracrine senescence via regulating mTOR/TFE3. Mol Nutr Food Res. 2020;64(14):e1901231.
  • Peixoto P, Castronovo V, Matheus N, Polese C, Peulen O, Gonzalez A, Boxus M, Verdin E, Thiry M, Dequiedt F, et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell Death Differ. 2012;19(7):1239–52.
  • Rudolf E, Cervinka M. Sulforaphane induces cytotoxicity and lysosome- and mitochondria-dependent cell death in colon cancer cells with deleted p53. Toxicol in Vitro. 2011;25(7):1302–9.
  • Ferreira de Oliveira JMP, Remédios C, Oliveira H, Pinto P, Pinho F, Pinho S, Costa M, Santos C. Sulforaphane induces DNA damage and mitotic abnormalities in human osteosarcoma MG-63 cells: correlation with cell cycle arrest and apoptosis. Nutr Cancer. 2014;66(2):325–34.
  • Topè AM, Rogers PF. Evaluation of protective effects of sulforaphane on DNA damage caused by exposure to low levels of pesticide mixture using comet assay. J Environ Sci Health B. 2009;44(7):657–62.
  • Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. Aaps J. 2013;15(1):195–218.
  • Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:186864.
  • Liczbiński P, Michałowicz J, Bukowska B. Molecular mechanism of curcumin action in signaling pathways: review of the latest research. Phytother Res. 2020;34(8):1992–2005.
  • Momtazi AA, et al. Curcumin as a microRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol. 2016;171:1–38.
  • Zhao Q, Guan J, Qin Y, Ren P, Zhang Z, Lv J, Sun S, Zhang C, Mao W. Curcumin sensitizes lymphoma cells to DNA damage agents through regulating Rad51-dependent homologous recombination. Biomed Pharmacother. 2018;97:115–9.
  • Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone derivatives: role in anticancer therapy. Biomolecules. 2021;11(6):894.
  • Helmy MT, Sroor FM, Mahrous KF, Mahmoud K, Hassaneen HM, Saleh FM, Abdelhamid IA, Mohamed Teleb MA. Anticancer activity of novel 3-(furan-2-yl)pyrazolyl and 3-(thiophen-2-yl)pyrazolyl hybrid chalcones: synthesis and in vitro studies. Arch Pharm (Weinheim). 2022;355(3):e2100381.
  • Tripathi SK, Panda M, Biswal BK. Emerging role of plumbagin: cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food Chem Toxicol. 2019;125:566–82.
  • Yuan J-H, Pan F, Chen J, Chen C-E, Xie D-P, Jiang X-Z, Guo S-J, Zhou J. Neuroprotection by plumbagin involves BDNF-TrkB-PI3K/Akt and ERK1/2/JNK pathways in isoflurane-induced neonatal rats. J Pharm Pharmacol. 2017;69(7):896–906.
  • Li X, Zhang C-T, Ma W, Xie X, Huang Q. Oridonin: a review of its pharmacology, pharmacokinetics and toxicity. Front Pharmacol. 2021;12:645824.
  • Xu Z-Z, Fu W-B, Jin Z, Guo P, Wang W-F, Li J-M. Reactive oxygen species mediate oridonin-induced apoptosis through DNA damage response and activation of JNK pathway in diffuse large B cell lymphoma. Leuk Lymphoma. 2016;57(4):888–98.
  • Wang S, Zhong Z, Wan J, Tan W, Wu G, Chen M, Wang Y. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med. 2013;41(1):177–96.
  • Ge X, Yannai S, Rennert G, Gruener N, Fares FA. 3,3’-Diindolylmethane induces apoptosis in human cancer cells. Biochem Biophys Res Commun. 1996;228(1):153–8.
  • Salehi B, et al. The therapeutic potential of apigenin. Int J Mol Sci. 2019;20(6):1305.
  • Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res. 2020;34(8):1812–28.
  • Vrhovac Madunić I, Madunić J, Antunović M, Paradžik M, Garaj-Vrhovac V, Breljak D, Marijanović I, Gajski G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(5):537–50.
  • Masuelli L, Benvenuto M, Mattera R, Di Stefano E, Zago E, Taffera G, Tresoldi I, Giganti MG, Frajese GV, Berardi G, et al. In vitro and in vivo anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma. Front Pharmacol. 2017;8:373.
  • Zhang L, Cheng X, Gao Y, Zheng J, Xu Q, Sun Y, Guan H, Yu H, Sun Z. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct. 2015;6(11):3464–72.
  • Cao W-Q, Zhai X-Q, Ma J-W, Fu X-Q, Zhao B-S, Zhang P, Fu X-Y. Natural borneol sensitizes human glioma cells to cisplatin-induced apoptosis by triggering ROS-mediated oxidative damage and regulation of MAPKs and PI3K/AKT pathway. Pharm Biol. 2020;58(1):72–9.
  • Cao W-Q, Li Y, Hou Y-J, Yang M-X, Fu X-Q, Zhao B-S, Jiang H-M, Fu X-Y. Enhanced anticancer efficiency of doxorubicin against human glioma by natural borneol through triggering ROS-mediated signal. Biomed Pharmacother. 2019;118:109261.
  • Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, et al. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med. 2019;14:48.
  • Ma W, Xiang Y, Yang R, Zhang T, Xu J, Wu Y, Liu X, Xiang K, Zhao H, Liu Y, et al. Cucurbitacin B induces inhibitory effects via the CIP2A/PP2A/C-KIT signaling axis in t(8;21) acute myeloid leukemia. J Pharmacol Sci. 2019;139(4):304–10.
  • Touihri-Barakati I, Kallech-Ziri O, Ayadi W, Kovacic H, Hanchi B, Hosni K, Luis J. Cucurbitacin B purified from Ecballium elaterium (L.) A. Rich from Tunisia inhibits α5β1 integrin-mediated adhesion, migration, proliferation of human glioblastoma cell line and angiogenesis. Eur J Pharmacol. 2017;797:153–61.
  • Yuan R, Zhao W, Wang Q-Q, He J, Han S, Gao H, Feng Y, Yang S. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res. 2021;170:105748.
  • Lin Y, Kotakeyama Y, Li J, Pan Y, Matsuura A, Ohya Y, Yoshida M, Xiang L, Qi J. Cucurbitacin B exerts antiaging effects in yeast by regulating autophagy and oxidative stress. Oxid Med Cell Longev. 2019;2019:1–15.
  • Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019;40(5):327–41.
  • Xi C, Peng S, Wu Z, Zhou Q, Zhou J. Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother. 2017;90:531–41.
  • Zhao F, Huang W, Ousman T, Zhang B, Han Y, Clotaire DZJ, Wang C, Chang H, Luo H, Ren X, et al. Triptolide induces growth inhibition and apoptosis of human laryngocarcinoma cells by enhancing p53 activities and suppressing E6-mediated p53 degradation. PLoS One. 2013;8(11):e80784.
  • Deng Y, Li F, He P, Yang Y, Yang J, Zhang Y, Liu J, Tong Y, Li Q, Mei X, et al. Triptolide sensitizes breast cancer cells to Doxorubicin through the DNA damage response inhibition. Mol Carcinog. 2018;57(6):807–14.
  • Zhang Z, Sun C, Zhang L, Chi X, Ji J, Gao X, Wang Y, Zhao Z, Liu L, Cao X, et al. Triptolide interferes with XRCC1/PARP1-mediated DNA repair and confers sensitization of triple-negative breast cancer cells to cisplatin. Biomed Pharmacother. 2019;109:1541–6.
  • Takimoto T, Kanbayashi Y, Toyoda T, Adachi Y, Furuta C, Suzuki K, Miwa T, Bannai M. 4β-Hydroxywithanolide E isolated from Physalis pruinosa calyx decreases ­inflammatory responses by inhibiting the NF-κB ­signaling in diabetic mouse adipose tissue. Int J Obes (Lond). 2014;38(11):1432–9.
  • Hsieh K-Y, Tsai J-Y, Lin Y-H, Chang F-R, Wang H-C, Wu C-C. Golden berry 4β-hydroxywithanolide E prevents tumor necrosis factor α-induced procoagulant activity with enhanced cytotoxicity against human lung cancer cells. Sci Rep. 2021;11(1):4610.
  • Ye Z-N, Yuan F, Liu J-Q, Peng X-R, An T, Li X, Kong L-M, Qiu M-H, Li Y. Physalis peruviana-derived 4β-hydroxywithanolide E, a novel antagonist of Wnt signaling, inhibits colorectal cancer in vitro and in vivo. Molecules. 2019;24(6):1146.
  • Yang W-J, Chen X-M, Wang S-Q, Hu H-X, Cheng X-P, Xu L-T, Ren D-M, Wang X-N, Zhao B-B, Lou H-X, et al. 4β-hydroxywithanolide E from Goldenberry (whole fruits of Physalis peruviana L.) as a promising agent against chronic obstructive pulmonary disease. J Nat Prod. 2020;83(4):1217–28.
  • Chiu C-C, Haung J-W, Chang F-R, Huang K-J, Huang H-M, Huang H-W, Chou C-K, Wu Y-C, Chang H-W. Golden berry-derived 4β-hydroxywithanolide E for selectively killing oral cancer cells by generating ROS, DNA damage, and apoptotic pathways. PLoS One. 2013;8(5):e64739.
  • Yen C-Y, Chiu C-C, Chang F-R, Chen JY-F, Hwang C-C, Hseu Y-C, Yang H-L, Lee AY-L, Tsai M-T, Guo Z-L, et al. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest. BMC Cancer. 2010;10:46.
  • Lee SH, Lee YJ. Synergistic anticancer activity of resveratrol in combination with docetaxel in prostate carcinoma cells. Nutr Res Pract. 2021;15(1):12–25.
  • Aumeeruddy MZ, Mahomoodally MF. Combating breast cancer using combination therapy with 3 phytochemicals: piperine, sulforaphane, and thymoquinone. Cancer. 2019;125(10):1600–11.
  • Bley K, Boorman G, Mohammad B, McKenzie D, Babbar S. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin. Toxicol Pathol. 2012;40(6):847–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.