11
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular Mechanisms of Anticarcinogenic Potential of Hydrocotyle umbellata and Its Major Components

, , , &
Received 01 Apr 2024, Accepted 02 Jul 2024, Published online: 12 Jul 2024

References

  • Baba AI, Catoi C. Comparative oncology. Bucharest (RO): The Publishing House of the Romanian Academy; 2007.
  • Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–1036.
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059.
  • Huerta E, Grey N. Cancer control opportunities in low- and middle-income countries. CA Cancer J Clin. 2007;57(2):72–74. doi: 10.3322/canjclin.57.2.72.
  • Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263. doi: 10.3322/caac.21834.
  • Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28. doi: 10.1038/s41392-020-0134-x.
  • Sun J, Wei Q, Zhou Y, Wang J, Liu Q, Xu H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol. 2017;11(Suppl 5):87. doi: 10.1186/s12918-017-0464-7.
  • Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021;9:1–10. doi: 10.1177/20503121211034366.
  • Gegechkori N, Haines L, Lin JJ. Long-Term and Latent Side Effects of Specific Cancer Types. Med Clin North Am. 2017;101(6):1053–1073. doi: 10.1016/j.mcna.2017.06.003.
  • Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–218. doi: 10.1016/j.tibs.2015.12.001.
  • Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–680. doi: 10.1038/s41568-021-00378-6.
  • Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21(2):141–162. doi: 10.1038/s41573-021-00339-6.
  • Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9–15. doi: 10.1038/nchembio.1712.
  • Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 2022;29(7):1304–1317. doi: 10.1038/s41418-022-01022-y.
  • Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget. 2016;7(23):34084–34099. doi: 10.18632/oncotarget.9122.
  • Ju R, Guo L, Li J, Zhu L, Yu X, Chen C, Chen W, Ye C, Zhang D. Carboxyamidotriazole inhibits oxidative phosphorylation in cancer cells and exerts synergistic anti-cancer effect with glycolysis inhibition. Cancer Lett. 2016;370(2):232–241. doi: 10.1016/j.canlet.2015.10.025.
  • Machado ND, Heather LC, Harris AL, Higgins GS. Targeting mitochondrial oxidative phosphorylation: lessons, advantages, and opportunities. Br J Cancer. 2023;129(6):897–899. doi: 10.1038/s41416-023-02394-9.
  • Bizjak M, Malavašič P, Dolinar K, Pohar J, Pirkmajer S, Pavlin M. Combined treatment with Metformin and 2-deoxy glucose induces detachment of viable MDA-MB-231 breast cancer cells in vitro. Sci Rep. 2017;7(1):1761. doi: 10.1038/s41598-017-01801-5.
  • Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24(9):1161–1180. doi: 10.1016/j.chembiol.2017.08.028.
  • Mathews Samuel S, Satheesh NJ, Ghosh S, Büsselberg D, Majeed Y, Ding H, Triggle CR. Treatment with a combination of metformin and 2-deoxyglucose upregulates thrombospondin-1 in microvascular endothelial cells: implications in anti-angiogenic cancer therapy. Cancers (Basel). 2019;11(11):1737. doi: 10.3390/cancers11111737.
  • Hamdy SA, Menze ET, El Hefnawy HM, Azzam SM, Aboutabl EA. In-vivo anti-inflammatory activity of Hydrocotyle umbellata L. aerial parts and isolation of the main phytochemicals. Iran J Pharm Res. 2020;19(3):34–44. doi: 10.22037/ijpr.2020.1101154.
  • Oliveira TLS, de Morais SR, de Sá S, de Oliveira MG, Florentino IF, da Silva DM, Carvalho VV, da Silva VB, Vaz BG, Sabino JR, et al. Antinociceptive, anti-inflammatory and anxiolytic-like effects of the ethanolic extract, fractions and Hibalactone isolated from Hydrocotyle umbellata L. (Acaricoba) – Araliaceae. Biomed Pharmacother. 2017;95:837–846. doi: 10.1016/j.biopha.2017.08.140.
  • Florentino IF, Nascimento MVM, Galdino PM, De Brito AF, Da Rocha FF, Tonussi CR, De Lima TCM, De Paula JR, Costa EA. Evaluation of analgesic and anti-inflammatory activities of Hydrocotyle umbellata L., Araliaceae (acaricoba) in mice. An Acad Bras Cienc. 2013;85(3):987–997. doi: 10.1590/S0001-37652013000300011.
  • Jang Y, Park TS, Park B-C, Lee YM, Heo T-H, Jun HS. Aberrant glucose metabolism underlies impaired macrophage differentiation in glycogen storage disease type Ib. FASEB J. 2023;37(11):e23216. doi: 10.1096/fj.202300592RR.
  • Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev. 2013;32(3-4):723–761. doi: 10.1007/s10555-013-9447-3.
  • Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P, Intensive Care in Hematological and Oncological Patients (iCHOP) Collaborative Group. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017;21(1):89. doi: 10.1186/s13054-017-1678-1.
  • Bose S, Zhang C, Le A. Glucose metabolism in cancer: the Warburg effect and beyond. Adv Exp Med Biol. 2021;1311:3–15. doi: 10.1007/978-3-030-65768-0_1.
  • Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599(6):1745–1757. doi: 10.1113/JP278810.
  • Sica V, Bravo-San Pedro JM, Stoll G, Kroemer G. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int J Cancer. 2020;146(1):10–17. doi: 10.1002/ijc.32616.
  • Bartman CR, Weilandt DR, Shen Y, Lee WD, Han Y, TeSlaa T, Jankowski CSR, Samarah L, Park NR, da Silva-Diz V, et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature. 2023;614(7947):349–357. doi: 10.1038/s41586-022-05661-6.
  • Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 2018;24(11):2482–90. doi: 10.1158/1078-0432.CCR-17-3070.
  • Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274(6):1393–418. doi: 10.1111/j.1742-4658.2007.05686.x.
  • LeBleu VS, O’Connell JT, Herrera KNG, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Chinen LTD, Rocha RM, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(11):1125. doi: 10.1038/ncb3056.
  • Vaupel P, Mayer A. Availability, not respiratory capacity governs oxygen consumption of solid tumors. Int J Biochem Cell Biol. 2012;44(9):1477–1481. doi: 10.1016/j.biocel.2012.05.019.
  • Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–156. doi: 10.1038/nrendo.2013.256.
  • Yang M, Darwish T, Larraufie P, Rimmington D, Cimino I, Goldspink DA, Jenkins B, Koulman A, Brighton CA, Ma M, et al. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci Rep. 2021;11(1):2529. doi: 10.1038/s41598-021-81349-7.
  • Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 2014;71(14):2577–604. doi: 10.1007/s00018-013-1539-2.
  • Jha MK, Suk K. Pyruvate dehydrogenase kinase as a potential therapeutic target for malignant gliomas. Brain Tumor Res Treat. 2013;1(2):57–63. doi: 10.14791/btrt.2013.1.2.57.
  • Woolbright BL, Rajendran G, Harris RA, Taylor JA3rd. Metabolic flexibility in cancer: targeting the pyruvate dehydrogenase kinase: pyruvate dehydrogenase axis. Mol Cancer Ther. 2019;18(10):1673–81. doi: 10.1158/1535-7163.MCT-19-0079.
  • Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64. doi: 10.1016/j.semcdb.2017.05.023.
  • Jeong CH, Joo SH. Downregulation of reactive oxygen species in apoptosis. J Cancer Prev. 2016;21(1):13–20. doi: 10.15430/JCP.2016.21.1.13.
  • Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi: 10.1038/s12276-020-0384-2.
  • Chaube B, Malvi P, Singh SV, Mohammad N, Meena AS, Bhat MK. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression. Oncotarget. 2015;6(35):37281–99. doi: 10.18632/oncotarget.6134.
  • In JK, Kim JK, Oh JS, Seo DW. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: involvement of p53 in differential regulation of signaling pathways. Int J Oncol. 2016;48(5):1907–12. doi: 10.3892/ijo.2016.3436.
  • Jafari N, Zargar SJ, Delnavazi MR, Yassa N. Cell cycle arrest and apoptosis induction of phloroacetophenone glycosides and caffeoylquinic acid derivatives in gastric adenocarcinoma (AGS) Cells. Anticancer Agents Med Chem. 2018;18(4):610–6. doi: 10.2174/1871520618666171219121449.
  • Nguyen HC, Chen C-C, Lin K-H, Chao P-Y, Lin H-H, Huang M-Y. Bioactive compounds, antioxidants, and health benefits of sweet potato leaves. Molecules. 2021;26(7):1820. doi: 10.3390/molecules26071820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.