183
Views
1
CrossRef citations to date
0
Altmetric
Articles

Potential worldwide distributions of Neoseiulus californicus and Neoseiulus idaeus (Acari: Phytoseiidae) determined by climatic modelling

, , , &
Pages 494-502 | Received 10 Jul 2022, Accepted 15 Aug 2022, Published online: 19 Sep 2022

References

  • Aidoo OF, da Silva RS, Santana Júnior PA, Souza PGC, Kyerematen R, Owusu‐Bremang F, Owusu-Bremang N, Borgemeister C, da Silva RS. 2022a. Model-based prediction of the potential geographical distribution of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae) based on MaxEnt. Agric For Entomol 24:390–404. doi:10.1111/afe.12502.
  • Aidoo OF, Souza PG, da Silva RS, Santana Júnior PA, Picanço MC, Kyerematen R, Sètamou M, Ekesi S, Borgemeister C. 2022b. Climate‐induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest Management Science. 78:2534–2549. doi:10.1002/ps.6886.
  • Amaro GC, Moraes EGF. 2013. Potential geographical distribution of the red palm mite in South America. Experimental and Applied Acarology. 60:343–355.
  • Baldwin RA. 2009. Use of maximum entropy modelling in wildlife research. Entropy. 11:854–866.
  • Canlas LJ, Amano H, Ochiai N, Takeda M. 2006. Biology and predation of the Japanese strain of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Systematic and Applied Acarology. 11:141–157.
  • Castagnoli M, Simoni S. 1999. Effect of long-term feeding history on numerical and functional response of Neoseiulus californicus (Acari: Phytoseiidae). Systematic and Applied Acarology. 23:217–234.
  • Cédola CV, Botto EM. 1999. Parámetros poblacionales de Neoseiulus idaeus (Acari: Phytoseiidae). Revista de la Sociedad Entomológica Argentina. 58:37–41.
  • Celine B, Cleo B, Paul L, Wilfried T, Franck C. 2012. Impacts of climate change on the future of biodiversity. Ecol Lett. 15:365–377.
  • Collier KFS, Albuquerque GS, Lima JOG, Pallini A, Molina-Rugama AJ. 2007. Neoseiulus idaeus (Acari: Phytoseiidae) as a potential biocontrol agent of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) in papaya: performance on different prey stage-host plant combinations. Experimental and Applied Acarology. 41:27–36.
  • Collier KFS, Lima JOG, Albuquerque GS. 2004. Predacious mites in papaya (Carica papaya L.) orchards: in search of a biological control agent of phytophagous mite pests. Neotropical Entomology. 33:799–803.
  • Crooker A. 1985. Reproduction and development: embryonic and juvenile development. In: Helle W, Sabelis MW, editors. Spider mites: their biology, natural enemies and control. Vol. 1A. Amsterdam: Elsevier; p. 149–163.
  • Dinh NV, Sabelis MW, Janssen AR. 1988. Influence of humidity and water availability on the survival of Amblyseius idaeus and Amblyseius anonymus. Experimental and Applied Acarology. 4:27–40.
  • Domingos CA, Melo JWS, Oliveira JEM, Gondim MGC. 2014. Mites on grapevines in northeast Brazil: occurrence, population dynamics and within-plant distribution. International Journal of Acarology. 40:145–151.
  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29:129–151.
  • El Taj HF, Jung C. 2012. Effect of temperature on the life-history traits of Neoseiulus californicus (Acari: Phytoseiidae) fed on Panonychus ulmi. Experimental and Applied Acarology. 56:247–260.
  • Fadamiro HY, Akotsen-Mensa HC, Xiao Y, Anikwe J. 2013. Field evaluation of predacious mites (Acari: Phytoseiidae) for biological control of citrus red mite, Panonychus citri (Trombidiformes: Tetranychidae). Florida Entomologist. 96:80–91.
  • Fraulo AB, Liburd OE. 2007. Biological control of twospotted spider mite, Tetranychus urticae, with predatory mite, Neoseiulus californicus, in strawberries. Experimental and Applied Acarology. 43:109–119.
  • Friese DD, Gilstrap FE. 1982. Influence of prey availability on reproduction and prey consumption of Phytoseiulus persimilis, Amblyseius californicus and Metaseiulus occidentalis (Acarina: Phytoseiidae). International Journal of Acarology. 8:85–89.
  • GBIF.org. 2020. GBIF Occurrence Download.
  • Ghazy NA, Osakabe M, Negm MW, Schausberger P, Gotoh T, Amano H. 2016. Phytoseiid mites under environmental stress. Biological Control. 96:120–134.
  • Gotoh T, Yamaguchi K, Mori K. 2004. Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Experimental and Applied Acarology. 32:15–30.
  • Hart AJ, Bale JS, Tullett AG, Worland MR, Walters KFA. 2002. Effects of temperature on the establishment potential of the predatory mite Amblyseius californicus McGregor (Acari: Phytoseiidae) in the UK. Journal of Insect Physiology. 48:593–599.
  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 25:1965–1978.
  • Huang J, Liu MX, Zhang Y, Kuang ZY, Li W, Ge CB, Li YY, Liu H. 2019 Dec 13. Response to multiple stressors: enhanced tolerance of Neoseiulus barkeri Hughes (Acari: Phytoseiidae) to heat and desiccation stress through acclimation. Insects. 10:449 PMID: 31847063; PMCID: PMC6956224. doi:10.3390/insects10120449.
  • Huffaker CB, Messenger PS. 1976. Theory and practice of biological control. New York: Academic.
  • Knapp M, Houten YV, Baal EV, Groot T. 2018. Use of predatory mites in commercial biocontrol: current status and future prospects. Acarologia. 58:72–82.
  • Liu C, Berry PM, Dawson TP, Pearson RG. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography. 28:385–393.
  • Liu Y, Shi J. 2020. Predicting the potential global geographical distribution of two Icerya species under climate change. Forests. 11:684.
  • Machi AR, Esteca FCN, Arthur PB, Gava MA, Arthur V. 2014. A review on Mononychellus tanajoa (Bondar, 1938) pest of Cassava in Brazil. Australian Journal of Basic and Applied Science. 8:342–348.
  • McGregor EA. 1954. Two new mites in the genus Typhlodromus (Acarina: Phytoseiidae). Bulletin, Southern California Academy of Sciences. 53:89–92.
  • McMurtry JAM. 1977. Some predaceous mites (Phytoseiidae) on citrus in their Mediterranean region. Entomophaga. 22:19–30.
  • McMurtry JA, Moraes GJ, Sourassou NF. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology. 18:297–320.
  • Migeon A, Dorkeld F 2019. Spider mites web: a comprehensive database for the tetranychidae. http://www1.montpellier.inra.fr/CBGP/spmweb.
  • Monteiro LB. 1994. Manejo Integrado de Panonychys ulmi em Macieira. Primeiras experiências com a introdução de Neoseiulus californicus. Rev Bras de Fruticultura. 16:46–53.
  • Monteiro LB. 2002. Manejo integrado de pragas em macieira no Rio Grande do Sul. Uso de Neoseiulus californicus para o controle de Panonychus ulmi. Revista Brasileira de Fruticultura. 24:395–405.
  • Moraes GJ, Alencar JA, Lima JLS, Yaninek JS, Delalibera IsJr. 1993. Alternative plant habitats for common phytoseiid predators of the cassava green mite (Acari: Phytoseiidae, Tetranychidae) in northeast Brazil. Experimental and Applied Acarology. 17:77–90.
  • Moraes GJ, Silva CAD, Moreira AN. 1994. Biology of a strain of Neoseiulus idaeus (Acari: Phytoseiidae) from Southwest Brazil. Experimental and Applied Acarology. 18:213–220.
  • Mota JDS, Barbosa LR, Marchioro CA. 2022. Suitable areas for invasive insect pests in Brazil and the potential impacts for eucalyptus forestry. Pest Management Science. 6:2596–2606. doi:10.1002/ps.6891.
  • Ning S, Wei J, Feng J, Rebelo H. 2017. Predicting the current potential and future world wide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling. PLOS ONE. 12:e0171190.
  • Pantaleão AASDS, Moreira JOT, Sato ME, Pionório JADA. 2021. Population growth of Tetranychus urticae Koch (Acari: Tetranychidae) and predation rate of the pest mite by Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae) in two grape cultivars. Arquivos do Instituto Biológico. 88. doi:10.1590/1808-1657000752019.
  • Parsa S, Hazzi NA, Chen Q, Lu F, Campo BVH, Yaninek JS, Vásquez-Ordóñez AA. 2015. Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology. 65:195–204.
  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of MaxEnt. Ecography. 40:887–893.
  • Phillips SJ, Anderson RP, Dudík M, Shapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190:231–259.
  • Rabbinge R. 1985. Aspects of damage assessment. In: Helle W, Sabelis MW, editors. Spider mites: their biology, natural enemies and control. Vol. 1A. Amsterdam: Elsevier; p. 261–272.
  • Ramos RS, Kumar L, Shabani F, Picanço MC, Yue B-S. 2018. Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS One. 13:e0198925.
  • Rank A, Ramos RS, da Silva RS, Soares JRS, Picanço MC, Fidelis EG. 2020. Risk of the introduction of Lobesia botrana in suitable areas for Vitis vinifera. Journal of Pest Science. 93:1167–1179.
  • Raworth DA, Fauvel G, Auger P. 1994. Location, reproduction and movement of Neoseiulus californicus (Acari: Phytoseiidae) during the autumn, winter and spring in orchards in the south of France. Experimental and Applied Acarology. 18:593–602.
  • Reichert MB, Toldi M, Ferla NJ. 2016. Feeding preference and predation rate of Neoseiulus idaeus (Acari: Phytotseiidae) feeding on different preys. Systematic and Applied Acarology. 21:1631–1640.
  • Reichert MB, Toldi M, Rode PA, Ferla JJ, Ferla NJ. 2017. Biological performance of the predatory mite Neoseiulus idaeus (Phytoseiidae): a candidate for the control of tetranychid mites in Brazilian soybean crops. Brazilian Journal of Biology. 77:361–366.
  • Rencken IC, Pringle KL. 1998. Developmental biology of Amblyseius californicus (McGregor) (Acarina: Phytoseiidae), a predator of tetranychid mites, at three temperatures. African Entomology. 6:41–45.
  • Sabelis MW. 1985. Development. In: Helle W, Sabelis MW, editors. Spider mites: their biology, natural enemies and control. Vol. 1A. Amsterdam: Elsevier; p. 43–52.
  • Santana PAsJr, Kumar L, da Silva RS, Pereira JL, Picanço MC. 2019. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) Using MaxEnt. Pest Management Science. 10:2706–2715. doi:10.1002/ps.5379.
  • Sato ME, Silva MZ, Silva RB, Sousa Filho MF, Raga A. 2009. Monitoramento da resistência de Tetranychus urticae Koch (Acari: Tetranychidae) a Abamectin e Fenpyroximate em diversas culturas no estado de São Paulo. Arquivos do Instituto Biológico. 76:217–223.
  • Sousa Neto EP, Filgueiras RMC, Mendes JA, Melo JWDS. 2019. Functional and numerical responses of Neoseiulus idaeus and Neoseiulus californicus to eggs of Tetranychus urticae. International Journal of Acarology. 45:1–4.
  • Sousa Neto EP, Filgueiras RMC, Mendes JA, Monteiro NV, Pallini DBL, Melo A, da S JW. 2021. A drought-tolerant Neoseiulus idaeus (Acari: Phytoseiidae) strain as a potential control agent of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Biological Control. 159:104624.
  • Stiling P. 1993. Why do natural enemies fail in classical biological control programs? American Entomologist. 39:31–37.
  • Uddin MN, Alam MZ, Miah MRU, Mian MIH, Mustarin K. 2017. Life table parameters of an indigenous strain of Neoseiulus californicus McGregor (Acari: Phytoseiidae) when fed Tetranychus urticae Koch (Acari: Tetranychidae). Entomological Research. 47:84–93.
  • Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochemistry and Molecular Biology. 40:563–572.
  • Van Lenteren JC. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biological Control. 57:1–20.
  • Vassiliou VA, Kitsis P. 2013. Acaricide resistance in Tetranychus urticae (Acari : Tetranychidae) populations from Cyprus. Entomological Society of America. 106:1848–1854.
  • Wang R, Jiang C, Liu L, Shen Z, Yang J, Wang Y, Hu J, Wang M, Hu J, Lu X, et al. 2021. Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Global Ecology and Conservation. 29:e01733. doi:10.1016/J.GECCO.2021.E01733.
  • Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation. 16:e00477.
  • Wisz MS, Hijmans RJ, J LI, Peterson AT, Graham CH, Guisan A. 2008. Effects of sample size on the performance of species distribution models. Diversity & Distributions. 14:63–773.
  • Yaninek JS, Mégevand B, Moraes GJ, Bakker F, Braun A, Herren HR. 1991. Establishment of the neotropical predator Amblyseius idaeus (Acari: Phytoseiidae) in Benin, West Africa. Biocontrol Science and Technology. 1:323–330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.