50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal response of a sky island lizard to climate change

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 02 Oct 2023, Accepted 30 Jun 2024, Published online: 24 Jul 2024

References

  • Abadie A. 2002. Bootstrap tests for distributional treatment effects in instrumental variable models. J Am Stat Assoc. 97(457):284–292. doi:10.1198/016214502753479419
  • ArClim. 2023. Atlas de Riesgos Climáticos. Ministerio del Medio Ambiente de Chile; [cited 2023 Jan 15]. Available from:https://arclim.mma.gob.cl
  • Babaeian F, Delavar M, Morid S, Srinivasan R. 2021. Robust climate change adaptation pathways in agricultural water management. Agric Water Manage. 252:106904. doi:10.1016/j.agwat.2021.106904
  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M. 2015. Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Clim Change. 6(2):151–169. doi:10.1002/wcc.316
  • Bonino MF, Moreno Azocar DL, Schulte JA, Cruz FB. 2015. Climate change and lizards: changing species’ geographic ranges in Patagonia. Reg Environ Change. 15(6):1121–1132. doi:10.1007/s10113-014-0693-x
  • Brizio MV, Cabezas-Cartes F, Fernández JB, Gómez Alés R, Avila LJ. 2021. Vulnerability to global warming of the critically endangered Añelo Sand Dunes Lizard (Liolaemus cuyumhue) from the Monte Desert, Patagonia Argentina. Can J Zoolog. 99(9):773–782. doi:10.1139/cjz-2020-0305
  • Bujes CS, Verrastro L. 2006. Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae) in the coastal sand dunes of Rio Grande do sul, Brazil. Braz J Biol. 66(3):945–954. doi:10.1590/S1519-69842006000500021
  • Burger F, Brock B, Montecinos A. 2018. Seasonal and elevational contrasts in temperature trends in Central Chile between 1979 and 2015. Global Planet Change. 162:136–147. doi:10.1016/j.gloplacha.2018.01.005
  • Chardon NI, Cornwell WK, Flint LE, Flint AL, Ackerly DD. 2015. Topographic, latitudinal and climatic distribution of Pinus coulteri: geographic range limits are not at the edge of the climate envelope. Ecography. 38(6):590–601. doi:10.1111/ecog.00780
  • Cianferoni F, Yáñez RP, Palma RE, Garín CF, Torres-Pérez F. 2013. Deep divergences within Liolaemus nigroviridis (Squamata, Liolaemidae) lineages associated with sky islands in central Chile. Zootaxa. 3619(1):59–69. doi:10.11646/zootaxa.3619.1.3
  • Cordero Simões dos Reis N, Boiaski NT, Ferraz SET. 2019. Characterization and spatial coverage of heat waves in subtropical Brazil. Atmosphere. 10(5):284. doi:10.3390/atmos10050284
  • Cortina M, Madeira C. 2023. Exposures to climate change’s physical risks in Chile. Lat Am J Cent Bank. 4(2):100090. doi:10.1016/j.latcb.2023.100090
  • Cruz FB, Moreno Azócar LD, Stellatelli OA, Valdecantos S, Vega LD. 2021. Biología y fisiología térmica en Liolaemidae, un enfoque local y general. In: Abdala C, Laspiur A, Scrocchi G, Semhan V, Lobo F, Valladares P, editors. Las lagartijas de la familia Liolaemidae. Santiago, Chile: Ediciones Universidad de Tarapacá. p. 208–211.
  • Cubillos C, Cáceres JC, Villablanca C, Villarreal P, Baeza M, Cabrera R, Graether SP, Veloso C. 2018. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae). J Therm Biol. 74:133–139. doi:10.1016/j.jtherbio.2018.03.018
  • Freeman BG, Lee‐Yaw JA, Sunday JM, Hargreaves AL. 2018. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Global Ecol Biogeogr. 27(11):1268–1276. doi:10.1111/geb.12774
  • Fuentes ER, Jaksic FM. 1979. Activity temperature of eight Liolaemus (Iguanidae) species in central Chile. Copeia. 1979:546–548. doi:10.2307/1443242.
  • Gygli Urrutia BN. 2014. Riesgo de extinción frente a escenario de cambio climático en L. lemniscatus (Squamata: Liolaemidae): una aproximación basada en atributos térmicos. Seminario de título, Concepción, Universidad de Concepción.
  • Ibargüengoytía NR. 2005. Field, selected body temperature and thermal tolerance of the syntopic lizards Phymaturus patagonicus and Liolaemus elongatus (Iguania: Liolaemidae). J Arid Environ. 62(3):435–448. doi:10.1016/j.jaridenv.2005.01.008
  • Ibargüengoytía NR, Medina M, Laspiur A, Qu YF, Peralta CAR, Sinervo B, Miles DB. 2021. Looking at the past to infer into the future: thermal traits track environmental change in Liolaemidae. Evolution. 118(10):2348–2370. doi:10.1111/evo.14246
  • Labra A, Bozinovic F. 2002. Interplay between pregnancy and physiological thermoregulation in Liolaemus lizards. Ecoscience. 9:421–426. doi:10.1080/11956860.2002.11682729
  • Labra A, Pienaar J, Hansen TF. 2009. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am Nat. 174(2):204–220. doi:10.1086/600088
  • Labra A, Vidal MA. 2003. Termorregulación en reptiles: Un veloz pasado y un futuro lento. In: Bozinovic F, editor. Fisiología ecológica y evolutiva. Teoría y casos de estudio en animales. Santiago, Chile: Ediciones Universidad Católica de Chile. p. 207–224.
  • Laspiur A, Santos JC, Medina SM, Pizarro JE, Sanabria EA, Sinervo B, Ibargüengoytía NR. 2021. Vulnerability to climate change of a microendemic lizard species from the central Andes. Sci Rep-UK. 11(1):1–14. doi:10.1038/s41598-021-91058-w
  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science. 320:1768–1770. doi: 10.1126/science.1156831
  • Marquet P, Abades S, Armesto J, Barria I, Arroyo MTK, Cavieres L, Gajardo R, Garín C, Labra F, Meza F, et al. 2010. Estudio de vulnerabilidad de la biodiversidad terrestre en la eco-región mediterránea, a nivel de ecosistemas y especies, y medidas de adaptación frente a escenarios de cambio climático. Santiago: Ediciones Pontificia Universidad Católica de Chile.
  • Mella-Romero J, Mella J, Véliz D, Simonetti JA. 2023. Análisis de registros históricos y distribución actualizada de Liolaemus nigroviridis Müller & Hellmich 1932 (Squamata, Liolaemidae). Bol Mus Nac Hist Nat. 72(2):1–12. doi:10.54830/bmnhn.v72.n2.2023.516
  • Moreno Azócar DL, Vanhooydonck B, Bonino MF, Perotti MG, Abdala CS, Schulte JA, Cruz FB. 2013. Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards. Oecologia. 171(4):773–788. doi:10.1007/s00442-012-2447-0
  • Moya F, Mella-Romero J and Simonetti JA. 2024. Anthropization in the Andes: habitat use and selectio Liolaemus nigroviridis Müller & Hellmich 1932 (Squamata, Liolaemidae). Studies on Neotropical Fauna and Environment. doi:10.1080/01650521.2024.2356449
  • Obregon RL, Scolaro JA, Ibargüengoytía NR, Medina M. 2021. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change? Integr Zool. 16(1):53–66. doi:10.1111/1749-4877.12481
  • Pedraja F, Herzog H, Engelmann J, Jung SN. 2021. The use of supervised learning models in studying agonistic behavior and communication in weakly electric fish. Front Behav Neurosci. 15:718491. doi:10.3389/fnbeh.2021.718491
  • Pereira TD, Tabris N, Matsliah A, Turner DM, Li J, Ravindranath S, Papadoyannis ES, Normand E, Deutsch DS, Wang ZY, et al. 2022. Sleap: a deep learning system for multi-animal pose tracking. Nat Methods. 19(4):486–495. doi:10.1038/s41592-022-01426-1
  • QGIS Development Core Team. 2021. QGIS: geographic information system. QGIS open-source geospatial foundation project. Available from: http://qgis.osgeo.org.
  • Rahbek C, Borregaard MK, Colwell RK, Dalsgaard BO, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldså J. 2019. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science. 365(6458):1108–1113. doi:10.1126/science.aax0149
  • Rato C, Carretero MA. 2015. Ecophysiology tracks phylogeny and meets ecological models in an Iberian gecko. Physiol Biochem Zool. 88(5):564–575. doi:10.1086/682170
  • R Development Core Team. 2023. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna (Austria): R Foundation for Statistical Computing. Available from: https://www.R-project.org.
  • Robinson MD. 1990. Summer field energetics of the namib desert dune lizard Aporosaura anchietae (Lacertidae), and its relation to reproduction. J Arid Environ. 18(2):207–215. doi:10.1016/S0140-1963(18)30854-1
  • Rusticucci M, Kyselý J, Almeira G, Lhotka O. 2016. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theor Appl Climatol. 124(3–4):679–689. doi:10.1007/s00704-015-1445-7
  • Sáenz-Romero C, Rehfeldt GE, Ortega-Rodríguez JM, Marín-Togo MC, Madrigal-Sánchez X. 2015. Pinus leiophylla suitable habitat for 1961–1990 and future climate. Bot Sci. 93(4):709–718. doi:10.17129/botsci.86
  • Sepúlveda M, Vidal MA, Fariña JM, Sabat P. 2008. Seasonal and geographic variation in thermal biology of the lizard Microlophus atacamensis (Squamata: Tropiduridae). J Ther Biol. 33:141–148. doi: 10.1016/j.jtherbio.2007.07.002
  • Shepard DB, Burbrink FT. 2008. Lineage diversification and historical demography of a sky island salamander, Plethodon ouachitae, from the interior highlands. Mol Ecol. 17(24):5315–5335. doi:10.1111/j.1365-294X.2008.03998.x
  • Sinervo B, Méndez-de-la-Cruz FR, Miles D, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa M, Meza-Lázaro R, et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science. 328(5980):894–899. doi:10.1126/science.1184695
  • Sinervo B, Miles DB, Wu Y, Méndez‐de-la-Cruz FR, Kirchhof S, Qi Y. 2018. Climate change, thermal niches, extinction risk and maternal‐effect rescue of toad‐headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai-Tibetan Plateau. Integr Zool. 13(4):450–470. doi:10.1111/1749-4877.12315
  • Torres RR, Benassi RB, Martins FB, Lapola DM. 2022. Projected impacts of 1.5 and 2°C global warming on temperature and precipitation patterns in South America. Int J Climatol. 42(3):1597–1611. doi:10.1002/joc.7322
  • Villavicencio HJ, Cánovas MG, Acosta JC. 2006. Liolaemus ruibali (NCN). Body temperature. Herpetol Rev. 37(1):89.
  • Wang ZY, McKenzie-Smith GC, Liu W, Cho HJ, Pereira T, Dhanerawala Z, Shaevitz JW, Kocher SD. 2022. Isolation disrupts social interactions and destabilizes brain development in bumblebees. Curr Biol. 32(12):2754–2764. doi:10.1016/j.cub.2022.04.066
  • Winck GR, Almeida-Santos P, Rocha CFD. 2014. Potential distribution of the endangered endemic lizard Liolaemus lutzae Mertens, 1938 (Liolaemidae): are there other suitable areas for a geographically restricted species? Braz J Biol. 74(2):338–348. doi:10.1590/1519-6984.18612
  • Zuur AF, Ieno EN, Smith GMR. 2007. Analysing ecological data. New York (NY): Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.