5,232
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population—a review

, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , , & show all
Pages 76-94 | Received 07 Oct 2018, Accepted 08 Jul 2019, Published online: 22 Aug 2019

References

  • Abdelmegid S, Murugaiyan J, Abo-Ismail M, Caswell JL, Kelton D, Kirby GM. 2017. Identification of host defense-related proteins using label-free quantitative proteomic analysis of milk whey from cows with Staphylococcus aureus subclinical mastitis. Int J Mol Sci. 19(1):78.
  • Abureema S, Smooker P, Malmo J, Deighton M. 2014. Molecular epidemiology of recurrent clinical mastitis due to Streptococcus uberis: evidence of both an environmental source and recurring infection with the same strain. J Dairy Sci. 97(1):285–290.
  • Addis MF, Tedde V, Dore S, Pisanu S, Puggioni GMG, Roggio AM, Pagnozzi D, Lollai S, Cannas EA, Uzzau S. 2016. Evaluation of milk cathelicidin for detection of dairy sheep mastitis. J Dairy Sci. 99(8):6446–6456.
  • Afaf AMD, El Sheita WAMA, Abdelwahab MG. 2016. Biochemical study of DNA markers for bacterial infection in bovine mastitis. Benha Vet Med J. 31(2):93–100.
  • Ajitkumar P, Barkema HW, De Buck J. 2012. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences. Vet Microbiol. 155(2–4):332–340.
  • Akerstedt M, Persson Waller K, Sternesjö A. 2007. Haptoglobin and serum amyloid A in relation to the somatic cell count in quarter, cow composite and bulk tank milk samples. J Dairy Res. 74(2):198–203.
  • Alnakip ME, Quintela-Baluja M, Böhme K, Fernández-No Caamaño-Antelo S, Calo-Mata P, Barros-Velázquez J. 2014. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med. 2014:659801.
  • Alluwaimi AM. 2004. The cytokines of bovine mammary gland: prospects for diagnosis and therapy. Res Vet Sci. 77(3):211–222.
  • Amin AS, Amouda RHH, Abdel-All AAA. 2011. PCR assays for detecting major pathogens of mastitis in milk samples. World J Dairy Food Sci. 6:199–206.
  • Areo X, Almeida AC, Souza CN, Silva LMV, Ruas AXA, Sanglard DA, Júnior AFM, Oliveira AME, Xavier MAS. 2017. Phenotypic and genotypic characterization of Staphylococcus aureus isolates in milk from flocks diagnosed with subclinical mastitis. Genet Mol Res. 16(2):gmr16029709.
  • Ashraf A, Imran M. 2018. Diagnosis of bovine mastitis: from laboratory to farm. Trop Anim Health Prod. 50(6):1193–1202.
  • Ashraf A, Imran M, Yaqub T, Tayyab M, Shehzad W, Mingala CN, Chang YF. 2018. Development and validation of a loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis in mastitic milk. Folia Microbiol. 63(3):373–380.
  • Ashraf A, Imran M, Yaqub T, Tayyab M, Shehzad W, Thomson PC. 2017. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis. Mol Cell Probes. 33:57–64.
  • Baird SC, Carman J, Dinsmore RP, Walker RL, Collins JK. 1999. Detection and identification of Mycoplasma from bovine mastitis infections using a nested polymerase chain reaction. J Vet Diagn Invest. 11(5):432–435.
  • Barratt K, Leslie K, Bashiri A. 2003. An evaluation of the PortaSCCTM for determining udder health status in dairy cows at drying off. Proceedings NMC 42nd Annual Meeting. p. 280–281.
  • Barreiro JR, Gonçalves JL, Braga PA, Dibbern AG, Eberlin MN, Veiga Dos Santos M. 2017. Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. J Dairy Sci. 100(4):2928–2934.
  • Behera S, Rana R, Gupta PK, Kumar D, Rekha V, Arun TR, Jena D. 2018. Development of real-time PCR assay for the detection of Mycoplasma bovis. Trop Anim Health Prod. 50(4):875–882.
  • Bian Y, Lv Y, Li Q. 2014. Identification of diagnostic protein markers of subclinical mastitis in bovine whey using comparative proteomics. Bull Vet Inst Pulawy. 58(3):385–392.
  • Bizzini A, Greub G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect. 16(11):1614–1619.
  • Bobbo T, Penasa M, Finocchiaro R, Visentin G, Cassandro M. 2018. Alternative somatic cell count traits exploitable in genetic selection for mastitis resistance in Italian Holsteins. J Dairy Sci. 101(11):10001–10010.
  • Bochniarz M, Kocki T, Dąbrowski R, Szczubiał M, Wawron W, Turski WA. 2018. Tryptophan, kynurenine, kynurenic acid concentrations and indoleamine 2,3-dioxygenase activity in serum and milk of dairy cows with subclinical mastitis caused by coagulase-negative staphylococci. Reprod Dom Anim. 53(6):1491–1497.
  • Boehmer JL. 2011. Proteomic analyses of host and pathogen responses during bovine mastitis. J Mammary Gland Biol Neoplasia. 16(4):323–338.
  • Boehmer JL, Bannerman DD, Shefcheck KJ, Ward JL. 2008. Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J Dairy Sci. 91(11):4206–4218.
  • Boehmer JL, DeGrasse JA, McFarland MA, Tall EA, Shefcheck KJ, Ward JL, Bannerman DD. 2010a. The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis. Vet Immunol Immunopathol. 138(4):252–266.
  • Boehmer JL, Ward JL, Peters RR, Shefcheck KJ, McFarland MA, Bannerman DD. 2010b. Proteomic analysis of the temporal expression of bovine milk proteins during coliform mastitis and label-free relative quantification. J Dairy Sci. 93(2):593–603.
  • Bosward KL, House JK, Deveridge A, Mathews K, Sheehy PA. 2016. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk. J Dairy Sci. 99(3):2142–2150.
  • Bu RE, Wang JL, DebRoy C, Wu JH, Xi LG, Liu Y, Shen ZQ. 2015. Development of an indirect ELISA for bovine mastitis using Sip protein of Streptococcus agalactiae. Iran J Vet Res. 16(3):283–287.
  • Cai HY, Bell-Rogers P, Parker L, Prescott JF. 2005. Development of a real-time PCR for detection of Mycoplasma bovis in bovine milk and lung samples. J Vet Diagn Invest. 17(6):537–545.
  • Cameron M, Barkema HW, De Buck J, De Vliegher S, Chaffer M, Lewis J, Keefe GP. 2017. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J Dairy Sci. 100(3):2137–2147.
  • Cantekin Z, Ergün Y, Doğruer G, Saribay MK, Solmaz H. 2015. Comparison of PCR and culture methods for diagnosis of subclinical mastitis in dairy cattle. Kafkas Univ Vet Fak Derg. 21:277–282.
  • Carretto E, Barbarini D, Couto I, De Vitis D, Marone P, Verhoef J, De Lencastre H, Brisse S. 2005. Identification of coagulase-negative staphylococci other than Staphylococcus epidermidis by automated ribotyping. Clin Microbiol Infect. 11(3):177–184.
  • Carvalho-Castro GA, Silva JR, Paiva LV, Custodio DAC, Moreira RO, Mian GF, Prado IA, Chalfun-Junior A, Costa GM. 2017. Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds. Braz J Microbiol. 48(3):551–559.
  • Charaya G, Sharma A, Kumar A, Goel P, Singh M. 2015. Detection of major mastitis pathogens by multiplex polymerase chain reaction assay in buffalo milk. Indian J Anim Sci. 85:122–125.
  • Chinnappan R, Al Attas S, Kaman WE, Bikker FJ, Zourob M. 2017. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk. Anal Biochem. 523:58–64.
  • Choudhary S, Diwakar Bhati T, Kataria AK. 2018. Molecular typing of virulence associated gene (spa) of S. aureus isolated from cattle clinical mastitis. J Entomol Zool Stud. 6(1):1057–1060.
  • Ciftci A, EmekOnuk E, Fındık A, Yıldırım T, UnluSogut M. 2009. Molecular typing of Staphylococcus aureus strains from ovine mastitis by pulsed-field gel electrophoresis and polymerase chain reaction based on coagulase and protein A gene polymorphisms. J Vet Diagn Invest. 21:849–853.
  • Constable PD, Hinchcliff KW, Done SH, Gruenberg W. 2017. A textbook of the diseases of cattle, horses, sheep, pigs and goats. 11th ed. USA: Saunders Ltd.
  • Cornelissen JB, De Greeff A, Heuvelink AE, Swarts M, Smith HE, der Van Wal FJ. 2016. Rapid detection of Streptococcus uberis in raw milk by loop‐mediated isothermal amplification. J Dairy Sci. 99(6):4270–4281.
  • Cremonesi P, Ceccarani C, Curone G, Severgnini M, Pollera C, Bronzo V, Riva F, Addis MF, Filipe J, Amadori M, et al. 2018. Milk microbiome diversity and bacterial group prevalence in a comparison between healthy Holstein Friesian and Rendena cows. PLoS One. 13(10):e0205054.
  • Crowley E, Bird P, Fisher K, Goetz K, Boyle M, Benzinger MJ, Juenger M, Agin J, Goins D, Johnson R. 2012. Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: collaborative study. J AOAC Int. 95(3):778.
  • Danielsen M, Codrea MC, Ingvartsen KL, Friggens NC, Bendixen E, Røntved CM. 2010. Quantitative milk proteomics-host responses to lipopolysaccharide-mediated inflammation of bovine mammary gland. Proteomics. 10(12):2240–2249.
  • Delgado S, Garcia P, Fernandez L, Jimenez E, Rodriguez-Banos M, del Campo R, Rodriguez JM. 2011. Characterization of Staphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol Med Microbiol. 62(2):225–235.
  • Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. 2018. Composition of the teat canal and intramammary microbiota of dairy cows subjected to antimicrobial dry cow therapy and internal teat sealant. J Dairy Sci. 101(11):10191–10205.
  • Dervishi E, Zhang G, Dunn SM, Mandal R, Wishart DS, Ametaj BN. 2017. GC-MS metabolomics identifies metabolite alterations that precede subclinical mastitis in the blood of transition dairy cows. J Proteome Res. 16(2):433–446.
  • Down PM, Bradley AJ, Breen JE, Hudson CD, Green MJ. 2016. Current management practices and interventions prioritized as part of a nationwide mastitis control plan. Vet Rec. 178(18):449.
  • Duarte CM, Carneiro C, Cardoso S, Freitas PP, Bexiga R. 2017. Semi-quantitative method for staphylococci magnetic detection in raw milk. J Dairy Res. 84(1):80–88.
  • Duarte CM, Freitas PP, Bexiga R. 2015. Technological advances in bovine mastitis diagnosis: an overview. J Vet Diagn Invest. 27(6):665–672.
  • Edwards MC, Gibbs RA. 1997. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 3(4):S65–S75.
  • Elbehiry A, Al-Dubaib M, Marzouk E, Osman S, Edrees H. 2016. Performance of MALDI biotyper compared with Vitek™ 2 compact system for fast identification and discrimination of Staphylococcus species isolated from bovine mastitis. Microbiol Open. 5(6):1061–1070.
  • El-Sayed A, Awad W, Abdou NE, Vázquez HC. 2017. Molecular biological tools applied for identification of mastitis causing pathogens. Int J Vet Sci Med. 5(2):89–97.
  • Ferreira JC, Gomes MS, Bonsaglia EC, Canisso IF, Garrett EF, Stewart JL, Zhou Z, Lima FS. 2018. Comparative analysis of four commercial on-farm culture methods to identify bacteria associated with clinical mastitis in dairy cattle. PLoS One. 13(3):e0194211.
  • Ferronatto JA, Ferronatto TC, Schneider M, Pessoa LF, Blagitz MG, Heinemann MB, Della Libera AMMP, Souza FN. 2018. Diagnosing mastitis in early lactation: use of Somaticell®, California mastitis test and somatic cell count. Italian J Anim Sci. 17(3):723–729.
  • Fox LK. 2012. Mycoplasma mastitis: causes, transmission, and control. Vet Clin North Am Food Anim Pract. 28(2):225–237.
  • Fox LK, Adams DS. 2000. The ability of the enzyme-linked immunosorbent assay to detect antibody against Staphylococcus aureus in milk following experimental intramammary infection. J Vet Med B Infect Dis Vet Public Health. 47(7):517–526.
  • Funke G, Kissling PF. 2005. Performance of the new VITEK 2 card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J Clin Microbiol. 43(1):84.
  • Ganda EK, Bisinotto RS, Decter DH, Bicalho RC. 2016. Evaluation of an on-farm culture system (Accumast) for fast identification of milk pathogens associated with clinical mastitis in dairy cows. PLoS One. 11(5):e0155314.
  • Garcia-Cordero JL, Barrett LM, O’Kennedy R, Ricco AJ. 2010. Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomed Microdevices. 12(6):1051–1059.
  • Gillespie B, Oliver S. 2005. Simultaneous detection of mastitis pathogens, Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae by multiplex real-time polymerase chain reaction. J Dairy Sci. 88(10):3510–3518.
  • Godden S, Lago A, Bey R. 2007. Use of on-farm culture systems in mastitis control programmes. Proceedings NMC Regional Meeting. p. 1–9.
  • Godden SM, Royster E, Timmerman J, Rapnicki P, Green H. 2017. Evaluation of an automated milk leukocyte differential test and the California mastitis test for detecting intramammary infection in early- and late-lactation quarters and cows. J Dairy Sci. 100(8):6527–6544.
  • Gonçalves D, Gabriel JE, Madeira HMF, Schnell e Schühli G, Vicente VA. 2010. New method for early detection of two random amplified polymorphic DNA (RAPD) groups of Staphylococcus aureus causing bovine mastitis infection in Parana state. Braz Arch Biol Technol. 53(2):353–360.
  • Gronlund U, Hultén C, Eckersall PD, Hogarth C, Persson Waller K. 2003. Haptoglobin and serum amyloid A in milk and serum during acute and chronic experimentally induced Staphylococcus aureus mastitis. J Dairy Res. 70(4):379–386.
  • Groot MJ, van’t Hooft KE. 2016. The hidden effects of dairy farming on public and environmental health in the Netherlands, India, Ethiopia, and Uganda, Considering the use of antibiotics and other agro-chemicals. Front Public Health. 4:12.
  • Gundelach Y, Kalscheuer E, Hamann H, Hoedemaker M. 2011. Risk factors associated with bacteriological cure, new infection, and incidence of clinical mastitis after dry cow therapy with three different antibiotics. J Vet Sci. 12(3):227–233.
  • Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, Vervoort J. 2011. The host defense proteome of human and bovine milk. PLoS One. 6(4):e19433.
  • Hiss S, Mueller U, Neu-Zahren A, Sauerwein H. 2007. Haptoglobin and lactate dehydrogenase measurements in milk for the identification of subclinically diseased udder quarters. Vet Med. 52(6):245–252.
  • Hogeveen H, Kamphuis C, Steeneveld W, Mollenhorst H. 2010. Sensors and clinical mastitis—the quest for the perfect alert. Sensors (Basel). 10(9):7991–8009.
  • Hoque MN, Das ZC, Rahman A, Haider MG, Islam MA. 2018. Molecular characterization of Staphylococcus aureus strains in bovine mastitis milk in Bangladesh. Int J Vet Sci Med. 6(1):53–60.
  • Hussein HA, Abd El-Razik KA, Gomaa AM, Elbayoumy MK, Abdelrahman KA, Hosein HI. 2018. Milk amyloid A as a biomarker for diagnosis of subclinical mastitis in cattle. Vet World. 11(1):34–41.
  • Jadhav PV, Das DN, Suresh KP, Shome BR. 2018. Threshold somatic cell count for delineation of subclinical mastitis cases. Vet World. 11(6):789–793.
  • Jaeger S, Virchow F, Torgerson PR, Bischoff M, Biner B, Hartnack S, Rüegg SR. 2017. Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis. J Dairy Sci. 100(9):7419–7426.
  • Kalmus P, Simojoki H, Pyörälä S, Taponen S, Holopainen J, Orro T. 2013. Milk haptoglobin, milk amyloid A, and N-acetyl-β-D-glucosaminidase activity in bovines with naturally occurring clinical mastitis diagnosed with a quantitative PCR test. J Dairy Sci. 96(6):3662–3670.
  • Kamphuis C, Sherlock R, Jago J, Mein G, Hogeveen H. 2008. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count. J Dairy Sci. 91(12):4560–4570.
  • Kandeel SA, Megahed AA, Arnaout FK, Constable PD. 2018a. Evaluation and comparison of 2 on-farm tests for estimating somatic cell count in quarter milk samples from lactating dairy cattle. J Vet Intern Med. 32(1):506–515.
  • Kandeel SA, Megahed AA, Ebeid MH, Constable PD. 2018c. Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle. J Dairy Sci. 102(2):1417–1427.
  • Kandeel SA, Morin DE, Calloway CD, Constable PD. 2018b. Association of California mastitis test scores with intramammary infection status in lactating dairy cows admitted to a veterinary teaching hospital. J Vet Intern Med. 32(1):497–505.
  • Kandemir FM, Yüksel M, Ozdemir N, Deveci H. 2013. A different approach to diagnosis of subclinical mastitis: milk arginase activity. Veterinarski Arhiv. 83((6):603–610.
  • Kawai K, Hayashi T, Kiku Y, Chiba T, Nagahata H, Higuchi H, Obayashi T, Itoh S, Onda K, Arai S, et al. 2013. Reliability in somatic cell count measurement of clinical mastitis milk using DeLaval cell counter. Anim Sci J. 84(12):805–807.
  • Kawai K, Inada M, Ito K, Hashimoto K, Nikaido M, Hata E, Katsuda K, Kiku Y, Tagawa Y, Hayashi T. 2017. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip. J Vet Med Sci. 79(12):1973–1977.
  • Keane OM, Budd KE, Flynn J, McCoy F. 2013. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture. Vet Rec. 173(11):268.
  • Keller D, Sundrum A. 2018. Comparative effectiveness of individualised homeopathy and antibiotics in the treatment of bovine clinical mastitis: randomized controlled trial. Vet Rec. 182(14):407.
  • Khatun M, Thomson PC, Kerrisk KL, Lyons NA, Clark CEF, Molfino J, García SC. 2018. Development of a new clinical mastitis detection method for automatic milking systems. J Dairy Sci. 101(10):9385–9395.
  • Kırkan S, Parın U, Tanır T, Yuksel HT. 2018. Identification of the Staphylococcus species which cause cattle mastitis using MALDI-TOF MS. Appro Poult Dairy Vet Sci. 4(2):1–7.
  • Klaas IC, Zadoks RN. 2018. An update on environmental mastitis: challenging perceptions. Transbound Emerg Dis. 65(Suppl. 1):166–185.
  • Kosciuczuk EM, Lisowski P, Jarczak J, Majewska A, Rzewuska M, Zwierzchowski L, Bagnicka E. 2017. Transcriptome profiling of staphylococci-infected cow mammary gland parenchyma. BMC Vet Res. 13(1):161.
  • Koskinen MT, Holopainen J, Pyorala S, Bredbacka P, Pitkala A, Barkema HW, Bexiga R, Roberson J, Solverod L, Piccinini R, et al. 2009. Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J Dairy Sci. 92(3):952–959.
  • Koskinen MT, Holopainen J, Salmikivi L, Lehmusto H, Niskala S, Kurkela J. 2008. Analytic detection limit of the PathoproofTM Mastitis PCR assay determined using two different experimental approaches. In: International Conference on Mastitis Control 2008: Mastitis control—from science to practice. Wageningen (The Netherlands): Wageningen Academic Publishers. p. 183–189.
  • Krömker V, Leimbach S. 2017. Mastitis treatment—reduction in antibiotic usage in dairy cows. Reprod Dom Anim. 52:21–29.
  • Kumar V, Gupta J. 2018. Prevailing practices in the use of antibiotics by dairy farmers in Eastern Haryana region of India. Vet World. 11(3):274–280.
  • Kusebauch U, Hernández-Castellano LE, Bislev SL, Moritz RL, Røntved CM, Bendixen E. 2018. Selected reaction monitoring mass spectrometry of mastitis milk reveals pathogen-specific regulation of bovine host response proteins. J Dairy Sci. 101(7):6532–6541.
  • Lakshmi R. 2016. Bovine mastitis and its diagnosis. Int J Appl Res. 2((6):213–216.
  • Lam TJGM, OldeRiekerink RGM, Sampimon AC, Smith H. 2009. Mastitis diagnostics and performance monitoring: a practical approach. Iran Vet J. 62(Suppl. 4):S34–S39.
  • Larsen LB, Hinz K, Jørgensen ALW, Møller HS, Wellnitz O, Bruckmaier RM, Kelly AL. 2010. Proteomic and peptidomic study of proteolysis in quarter milk after infusion with lipoteichic acid from Staphylococcus aureus. J Dairy Sci. 93(12):5613–5626.
  • Larsen T. 2005. Determination of lactate dehydrogenase (LDH) activity in milk by a fluorometric assay. J Dairy Res. 72(2):209–216.
  • Li R, Zhang CL, Liao XX, Chen D, Wang WQ, Zhu YH, Geng XH, Ji DJ, Mao YJ, Gong YC, Yang ZP. 2015. Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus. Int J Mol Sci. 16(3):4997–5013.
  • Lima SF, de Souza Bicalho ML, Bicalho RC. 2018. Evaluation of milk sample fractions for characterization of milk microbiota from healthy and clinical mastitis cows. PLoS One. 13(3):e0193671.
  • Lippolis JD, Bayles DD, Reinhardt TA. 2009. Proteomic changes in Escherichia coli when grown in fresh milk versus laboratory media. J Proteome Res. 8(1):149–158.
  • Lisowska-Łysiak K, Dudko P, Kosecka-Strojek M, Walczak J, Wójcik P, Międzobrodzki J. 2018. Characteristics of advanced methods used for typing bacterial isolates from mastitis with particular reference to staphylococci. Polish J Vet Sci. 21(1):229–239.
  • Magro M, Zaccarin M, Miotto G, Da Dalt L, Baratella D, Fariselli P, Gabai G, Vianello F. 2018. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Anal Bioanal Chem. 410(12):2949–2959.
  • Mahmmod Y. 2013. The future of PCR technologies in diagnosis of bovine mastitis pathogens. Adv Dairy Res. 2(1):e106.
  • Mahmmod YS, Nonnemann B, Svennesen L, Pedersen K, Klaas IC. 2018. Typeability of MALDI-TOF assay for identification of non-aureus staphylococci associated with bovine intramammary infections and teat apex colonization. J Dairy Sci. 101(10):9430–9438.
  • Mansor R, Mullen W, Albalat A, Zerefos P, Mischak H, Barrett DC, Biggs A, Eckersall PD. 2013. A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics. 85:89–98.
  • Martinez G, Harel J, Gottschalk M. 2001. Specific detection by PCR of Streptococcus agalactiae in milk. Can J Vet Res. 65(1):68–72.
  • Martins RF, do Prado Paim T, de Abreu Cardoso C, Stéfano Lima Dallago B, de Melo CB, Louvandini H, McManus C. 2013. Mastitis detection in sheep by infrared thermography. Res Vet Sci. 94(3):722–724.
  • McCarron JL, Keefe GP, McKenna SL, Dohoo IR, Poole DE. 2009. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. J Dairy Sci. 92(5):2297–2305.
  • Mishra AK, Sharma N, Singh DD, Gururaj K. 2018. Prevalence and bacterial etiology of subclinical mastitis in goats reared in organized farms. Vet World. 11(1):20–24.
  • Moatamedi H, SeyfiabadShapouri M, Ghorbanpoor M, Jamshidian M, Gooraninejad S. 2007. A polymerase chain reaction based study on the subclinical mastitis caused by Streptococcus agalactiae, S. dysagalactiae, and S. uberis in cattle in Ahvaz. Iranian J Vet Res. 8(3):260–265.
  • Mohajeri P, Azizkhani S, Farahani A, Norozi B. 2016. Genotyping of coa and aroAGenes of methicillin-resistant Staphylococcus aureus strains isolated from nasal samples in Western Iran. Jundishapur J Microbiol. 9(1):e26460.
  • Nyman AK, Emanuelson U, Waller KP. 2016a. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-β-D-glucosaminidase for detecting dairy cows with intramammary infection. J Dairy Sci. 99(2):1440–1448.
  • Nyman AK, Fasth C, Waller KP. 2018. Intramammary infections with different non-aureus staphylococci in dairy cows. J Dairy Sci. 101(2):1403–1418.
  • Nyman A-K, Waller KP, Emanuelson U, Frössling J. 2016b. Sensitivity and specificity of PCR analysis and bacteriological culture of milk samples for identification of intramammary infections in dairy cows using latent class analysis. J Prev Vet Med. 135:123–131.
  • Oikonomou G, Machado VS, Santisteban C, Schukken YH, Bicalho RC. 2012. Microbial diversity of bovine mastitic milk as described by pyrosequencing of metagenomic 16S rDNA. PLoS One. 7(10):e47671.
  • Oliszewski R, Núñez De Kairúz M, González S, Oliver G. 2004. Beta-glucuronidase method to determine mastitis levels in goat milk. Methods Mol Biol. 268:475–479.
  • Oliveira ICM, de Mattos MC, Pinto TA, Ferreira-Carvalho BT, Benchetrit LC, Whiting AA, Bohnsack JF, Figueiredo A. 2006. Genetic relatedness between group B streptococci originating from bovine mastitis and a human group B Streptococcus type V cluster displaying an identical pulsed-field gel electrophoresis pattern. Clin Microbiol Infect. 12(9):887–893.
  • Oliver SP, Murinda SE. 2012. Antimicrobial resistance of mastitis pathogens. Vet Clin North Am Food Anim Pract. 28(2):165–185.
  • Ondiek JO, Ogore PB, Kemboi F. 2018. Clinical mastitis gives off-flavor and reduces quality of milk in smallholder goat farms. Int J Curr Microbiol Appl Sci. 7(1):2387–2396.
  • Oultram JW, Ganda EK, Boulding SC, Bicalho RC, Oikonomou G. 2017. A metataxonomic approach could be considered for cattle clinical mastitis diagnostics. Front Vet Sci. 4:36.
  • Parker AM, House JK, Hazelton MS, Bosward KL, Sheehy PA. 2017. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples. PLoS One. 12(3):e0173422.
  • Patil MP, Nagvekar AS, Ingole SD, Bharucha SV, Palve VT. 2015. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo. Vet World. 8(3):363–366.
  • Perreten V, Endimiani A, Thomann A, Wipf J, Rossano A, Bodmer M, Raemy A, Sannes-Lowery KA, Ecker DJ, Sampath R, et al. 2013. Evaluation of PCR electrospray-ionization mass spectrometry for rapid molecular diagnosis of bovine mastitis. J Dairy Sci. 96(6):3611–3620.
  • Persson Y, Larsen T, Nyman A. 2014. Variation in udder health indicators at different stages of lactation in goats with no udder infection. Small Rum Res. 116(1):51–56.
  • Persson Y, Olofsson I. 2011. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats. Acta Vet Scand. 53(1):15.
  • Phuektes P, Mansell PD, Browning GF. 2001. Multiplex polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and streptococcal causes of bovine mastitis. J Dairy Sci. 84(5):1140–1148.
  • Pinho L, Thompson G, Rosenbusch R, Carvalheira J. 2012. Genotyping of Mycoplasma bovis isolates using multiple-locus variable-number tandem-repeat analysis. J Microbiol Methods. 88(3):377–385.
  • Polat B, Colak A, Cengiz M, Yanmaz LE, Oral H, Bastan A, Kaya S, Hayirli A. 2010. Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. J Dairy Sci. 93(8):3525–3532.
  • Preethirani PL, Isloor S, Sundareshan S, Nuthanalakshmi V, Deepthikiran K, Sinha AY, Rathnamma D, Nithin Prabhu K, Sharada R, Mukkur TK, Hegde NR. 2015. Isolation, biochemical and molecular identification, and in vitro antimicrobial resistance patterns of bacteria isolated from bubaline subclinical mastitis in South India. PLoS One. 10(11):e0142717.
  • Pullinger GD, Lopez-Benavides M, Coffey TJ, Williamson JH, Cursons RT, Summers E, Lacy-Hulbert J, Maiden MC, Leigh JA. 2006. Application of Streptococcus uberis multilocus sequence typing: analysis of the population structure detected among environmental and bovine isolates from New Zealand and the United Kingdom. Appl Environ Microbiol. 72(2):1429–1436.
  • Pumipuntu N, Tunyong W, Chantratita N, Diraphat P, Pumirat P, Sookrung N, Chaicumpa W, Indrawattana N. 2019. Staphylococcus spp. associated with subclinical bovine mastitis in Central and Northeastern provinces of Thailand. Peer J. 7:e6587.
  • Pyörälä S. 2003. Indicators of inflammation in the diagnosis of mastitis. Vet Res. 34(5):565–578.
  • Pyörälä S. 2009. Treatment of mastitis during lactation. Irish Vet J. 62(Suppl 4):S40–S44.
  • Qayyum A, Khan JA, Hussain R, Avais M, Ahmad N, Khan MS. 2016. Investigation of milk and blood serum biochemical profile as an indicator of sub-clinical mastitis in Cholistani cattle. Pak Vet J. 36(3):275–279.
  • Raemy A, Meylan M, Casat S, Gaia V, Berchtold B, Boss R, Wyder A, Graber HU. 2013. Phenotypic and genotypic identification of streptococci and related bacteria isolated from bovine intramammary infections. Acta Vet Scand. 55(1):53.
  • Rainard P, Foucras G, Fitzgerald JR, Watts JL, Koop G, Middleton JR. 2018. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis. 65((Suppl 1):149–165.
  • Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagace J. 2001. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol. 39(7):2584–2589.
  • Rosales RS, Churchward CP, Schnee C, Sachse K, Lysnyansky I, Catania S, Iob L, Ayling RD, Nicholas R. 2015. Global multilocus sequence typing analysis of Mycoplasma bovis isolates reveals two main population clusters. J Clin Microbiol. 53(3):789–794.
  • Rossi RS, Amarante AF, Correia LBN, Guerra ST, Nobrega DB, Latosinski GS, Rossi BF, Rall VLM, Pantoja J. 2018. Diagnostic accuracy of Somaticell, California mastitis test, and microbiological examination of composite milk to detect Streptococcus agalactiae intramammary infections. J Dairy Sci. 101(11):10220–10229.
  • Royster E, Godden S, Goulart D, Dahlke A, Rapnicki P, Timmerman J. 2014. Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for identification of common mastitis pathogens in milk. J Dairy Sci. 97(6):3648–3659.
  • Ruegg PL. 2009. The quest for the perfect test: phenotypic versus genotypic identification of coagulase-negative staphylococci associated with bovine mastitis. Vet Microbiol. 134(1–2):15–19.
  • Ryskaliyeva A, Henry C, Miranda G, Faye B, Konuspayeva G, Martin P. 2018. Combining different proteomic approaches to resolve complexity of the milk protein fraction of dromedary, Bactrian camels and hybrids, from different regions of Kazakhstan. PLoS One. 13(5):e0197026.
  • Santos-Sanches I, Chambel L, Tenreiro R. 2015. Pulsed-field gel electrophoresis (PFGE): application in population structure studies of bovine mastitis-causing streptococci. Methods Mol Biol. 1247:323–334.
  • Sarvesha K, Satyanarayana ML, Narayanaswamy HD, Rao S, Yathiraj S, Isloor S, Srikanth M, Mukartal SY. 2017. Multiplex PCR assay for detecting common bacterial pathogens of mastitis in milk and tissue samples of buffaloes. J Cell Tissue Res. 17(1):6055–6061.
  • Sathiyabarathi M, Jeyakumar S, Manimaran A, Jayaprakash G, Pushpadass HA, Sivaram M, Ramesha KP, Das DN, Kataktalware MA, Prakash MA, Kumar RD. 2016a. Infrared thermography: a potential noninvasive tool to monitor udder health status in dairy cows. Vet World. 9(10):1075–1081.
  • Sathiyabarathi M, Jeyakumar S, Manimaran A, Pushpadass HA, Sivaram M, Ramesha KP, Das DN, Kataktalware MA, Jayaprakash G, Patbandha TK. 2016b. Investigation of body and udder skin surface temperature differentials as an early indicator of mastitis in Holstein Friesian crossbred cows using digital infrared thermography technique. Vet World. 9(12):1386–1391.
  • Schabauer L, Wenning M, Huber I, Ehling-Schulz M. 2014. Novel physico-chemical diagnostic tools for high throughput identification of bovine mastitis associated gram-positive, catalase-negative cocci. BMC Vet Res. 10:156.
  • Sears PM, Smith BS, English PB, Herer PS, Gonzalez RN. 1990. Shedding pattern of Staphylococcus aureus from bovine intramammary infections. J Dairy Sci. 73(10):2785–2789.
  • Shaheen M, Tantary HA, Nabi SU. 2016. A treatise on bovine mastitis: disease and disease economics, etiological basis, risk factors, impact on human health, therapeutic management, prevention and control strategy. J Adv Dairy Res. 4:150.
  • Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Fazeli Farsani S, Ebrahimie E. 2018. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One. 13(2):e0191227.
  • Sharma BS, Jansen GB, Karrow NA, Kelton D, Jiang Z. 2006. Detection and characterization of amplified fragment length polymorphism markers for clinical mastitis in Canadian Holsteins. J Dairy Sci. 89(9):3653–3663.
  • Sheet OH, Grabowski NT, Klein G, Abdulmawjood A. 2016. Development and validation of a loop mediated isothermal amplification (LAMP) assay for the detection of Staphylococcus aureus in bovine mastitis milk samples. Mol Cell Probes. 30(5):320–325.
  • Shi D, Hao Y, Zhang A, Wulan B, Fan X. 2010. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis in China. Transbound Emerg Dis. 57(4):221–224.
  • Shibata Y, Tien LHT, Nomoto R, Osawa R. 2014. Development of a multilocus sequence typing scheme for Streptococcus gallolyticus. Microbiol. 160(Pt_1):113–122.
  • Shome BR, Das Mitra S, Bhuvana M, Krithiga N, Velu D, Shome R, Isloor S, Barbuddhe SB, Rahman H. 2011. Multiplex PCR assay for species identification of bovine mastitis pathogens. J Appl Microbiol. 111(6):1349–1356.
  • Shook GE, Kirk RB, Welcome FL, Schukken YH, Ruegg PL. 2017. Relationship between intramammary infection prevalence and somatic cell score in commercial dairy herds. J Dairy Sci. 100(12):9691–9701.
  • Singhal N, Kumar M, Kanaujia PK, Virdi JS. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 6:791.
  • Sinha R, Bhakat M, Mohanty TK, Ranjan A, Kumar R, Lone SA, Rahim A, Paray AR, Khosla K, Danish Z. 2018. Infrared thermography as non-invasive technique for early detection of mastitis in dairy animals-a review. Asian J Dairy Food Res. 37(1):1–6.
  • Souza FN, Cunha AF, Rosa DLSO, Brito MAV, Guimarães AS, Mendonça LC, Souza GN, Lage AP, Blagitz MG, Libera AMMPD, et al. 2016. Somatic cell count and mastitis pathogen detection in composite and single or duplicate quarter milk samples. Pesq Vet Bras. 36(9):811–818.
  • Spittel S, Hoedemaker M. 2012. Mastitis diagnosis in dairy cows using PathoProof real-time polymerase chain reaction assay in comparison with conventional bacterial culture in a Northern German field study. Berl Munch Tierarztl Wochenschr. 125(11–12):494–502.
  • Steele N, Dicke A, Vries AD, Jane Lacy-Hulbert S, White R, Petersson-Wolfe C. 2018. Validation of prediction algorithms for early detection of clinical mastitis caused by Gram-positive and Gram-negative pathogens. 57th NMC Annual Meeting Proceedings. January 30, 2018–February 02, 2018, United Kingdom. http://nmconline.omnibooksonline.com/66260-nmc-1.4019971/t005-1.4020391/f005-1.4020392/a022-1.4020405?qr=1
  • Syring C, Boss R, Reist M, Bodmer M, Hummerjohann J, Gehrig P, Graber HU. 2012. Bovine mastitis: the diagnostic properties of a PCR-based assay to monitor the Staphylococcus aureus genotype B status of a herd, using bulk tank milk. J Dairy Sci. 95(7):3674–3682.
  • Szczubial M, Dabrowski R, Kankofer M, Bochniarz M, Komar M. 2012. Concentration of serum amyloid A and ceruloplasmin activity in milk from cows with subclinical mastitis caused by different pathogens. Polish J Vet Sci. 15(2):291–296.
  • Tan X, Ding SQ, Hu YX, Li JJ, Zhou JY. 2012. Development of an immunosensor assay for detection of haptoglobin in mastitic milk. Vet Clin Pathol. 41(4):575–581.
  • Taverna F, Negri A, Piccinini R, Zecconi A, Nonnis S, Ronchi S, Tedeschi G. 2007. Characterization of cell wall associated proteins of a Staphylococcus aureus isolated from bovine mastitis case by a proteomic approach. Vet Microbiol. 119(2–4):240–247.
  • Tie Z, Chunguang W, Xiaoyuan W, Xinghua Z, Xiuhui Z. 2012. Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis. J Biomed Biotechnol. 2012:435982.
  • Thomas FC, Geraghty T, Simões PBA, Mshelbwala FM, Haining H, Eckersall PD. 2018. A pilot study of acute phase proteins as indicators of bovine mastitis caused by different pathogens. Res Vet Sci. 119:176–181.
  • Tomazi T, de Souza Filho AF, Heinemann MB, Santos M. 2018. Molecular characterization and antimicrobial susceptibility pattern of Streptococcus agalactiae isolated from clinical mastitis in dairy cattle. PLoS One. 13(6):e0199561.
  • Tomita T, Meehan B, Wongkattiya N, Malmo J, Pullinger G, Leigh J, Deighton M. 2008. Identification of Streptococcus uberis multilocus sequence types highly associated with mastitis. Appl Environ Microbiol. 74(1):114–124.
  • Vakkamäki J, Taponen S, Heikkilä AM, Pyörälä S. 2017. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Vet Scand. 59(1):33.
  • Van Altena SE, de Klerk B, Hettinga KA, van Neerven RJ, Boeren S, Savelkoul HF, Tijhaar EJ. 2016. A proteomics-based identification of putative biomarkers for disease in bovine milk. Vet Immunol Immunopathol. 174:11–18.
  • Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N. 2018. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 48(1):11.
  • Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R. 2009. Mastitis detection: current trends and future perspectives. Trends Biotechnol. 27(8):486–493.
  • Wolf C, Kusch H, Monecke S, Albrecht D, Holtfreter S, von Eiff C, Petzl W, Rainard P, Bröker BM, Engelmann S. 2011. Genomic and proteomic characterization of Staphylococcus aureus mastitis isolates of bovine origin. Proteomics. 11(12):2491–2502.
  • Wu X, Lund MS, Sahana G, Guldbrandtsen B, Sun D, Zhang Q, Su G. 2015. Association analysis for udder health based on SNP-panel and sequence data in Danish Holsteins. Genet Sel Evol. 47:50.
  • Xi X, Kwok LY, Wang Y, Ma C, Mi Z, Zhang H. 2017. Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry MSE-based untargeted milk metabolomics in dairy cows with subclinical or clinical mastitis. J Dairy Sci. 100(6):4884–4896.
  • Younis S, Javed Q, Blumenberg M. 2016. Meta-analysis of transcriptional responses to mastitis-causing Escherichia coli. PLoS One. 11(3):e0148562.
  • Zadoks R, van Leeuwen W, Barkema H, Sampimon O, Verbrugh H, Schukken YH, van Belkum A. 2000. Application of pulsed-field gel electrophoresis and binary typing as tools in veterinary clinical microbiology and molecular epidemiologic analysis of bovine and human Staphylococcus aureus isolates. J Clin Microbiol. 38(5):1931–1939.
  • Zadoks RN, Schukken YH. 2006. Use of molecular epidemiology in veterinary practice. Vet Clin North America Food Animl Pract. 2:229–261.
  • Zandkarimi F, Vanegas J, Fern X, Maier CS, Bobe G. 2018. Metabotypes with elevated protein and lipid catabolism and inflammation precede clinical mastitis in prepartal transition dairy cows. J Dairy Sc. 101(6):5531–5548.
  • Zaninelli M, Redaelli V, Luzi F, Bronzo V, Mitchell M, Dell’Orto V, Bontempo V, Cattaneo D, Savoini G. 2018. First evaluation of infrared thermography as a tool for the monitoring of udder health status in farms of dairy cows. Sensors. 18(3):862.
  • Zhao XW, Yang YX, Huang DW, Cheng GL, Zhao HL. 2015. Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected with Escherichia coli mastitis. J Vet Sci. 16(3):253–263.
  • Zoldan K, Schneider J, Moellmer T, Fueldner C, Knauer J, Fuerll M, Starke A, Specht M, Reiche K, Hackermueller J, et al. 2017. Discovery and validation of immunological biomarkers in milk for health monitoring of dairy cows-results from a multiomics approach. J Adv Dairy Res. 5:182.