2,429
Views
2
CrossRef citations to date
0
Altmetric
Review

Clinical applications of adipose-derived stromal vascular fraction in veterinary practice

ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon & show all
Pages 151-166 | Received 21 Feb 2022, Accepted 13 Jul 2022, Published online: 08 Aug 2022

References

  • Abdallah AN, Shamaa AA, El-Tookhy OS, Abd EM. 2015. Evaluation of low level laser-activated stromal vascular fraction as a single procedure for treatment of experimental chondral defects. Asian J Anim Sci. 10(1):15–28.
  • Aldaqal SM, Khayat MF, Bokhary RY, Wakka MM, Merdad AA, Merdad LA. 2015. Management of postoperative gastrointestinal leakage with autologous stromal vascular fraction. Int Surg. 100(4):748–754.
  • Al-Ghadban S, Bunnell BA. 2020. Adipose tissue-derived stem cells: immunomodulatory effects and therapeutic potential. Physiology (Bethesda). 35(2):125–133.
  • Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. 2016. Tissue engineering strategies for promoting vascularized bone regeneration. Bone. 83:197–209.
  • Amarpal DK, Chakraborty S, Tiwari R, Natesan S. 2013. Stem cells and their clinical/therapeutic applications in biomedical and veterinary science – the perspectives. Res Opin Anim Vet Sci. 3(9):261–279.
  • Amirkhani MA, Mohseni R, Soleimani M, Shoae-Hassani A, Nilforoushzadeh MA. 2016. A rapid sonication based method for preparation of stromal vascular fraction and mesenchymal stem cells from fat tissue. Bioimpacts. 6(2):99–104.
  • Andia I, Maffulli N, Burgos-Alonso N. 2019. Stromal vascular fraction technologies and clinical applications. Expert Opin Biol Ther. 19(12):1289–1305.
  • Aronowitz JA, Lockhart RA, Hakakian CS. 2015. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 4:713.
  • Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D, Gazit Z. 2006. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells. 24(7):1728–1737.
  • Astor DE, Hoelzler MG, Harman R, Bastian RP. 2013. Patient factors influencing the concentration of stromal vascular fraction (SVF) for adipose-derived stromal cell (ASC) therapy in dogs. Can J Vet Res. 77(3):177–182.
  • Atalay S, Coruh A, Deniz K. 2014. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 40(7):1375–1383.
  • Baer PC, Geiger H. 2012. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. 2012:812693.
  • Balwierz A, Czech U, Polus A, Filipkowski RK, Mioduszewska B, Proszynski T, Kolodziejczyk P, Skrzeczynska-Moncznik J, Dudek W, Kaczmarek L, et al. 2008. Human adipose tissue stromal vascular fraction cells differentiate depending on distinct types of media. Cell Prolif. 41(3):441–459.
  • Baptista LS. 2020. Adipose stromal/stem cells in regenerative medicine: potentials and limitations. World J Stem Cells. 12(1):1–7.
  • Bateman ME, Strong AL, McLachlan JA, Burow ME, Bunnell BA. 2016. The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Front Endocrinol (Lausanne). 7:171.
  • Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, Marmarou C, Dunbar J. 2000. The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl. 76:125–129.
  • Berman S, Uhlendorf TL, Berman M, Lander EB. 2018. Effective treatment of traumatic brain injury in Rowett nude rats with stromal vascular fraction transplantation. Brain Sci. 8(6):112.
  • Bhat S, Viswanathan P, Chandanala S, Prasanna SJ, Seetharam RN. 2021. Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci Rep. 11(1):3403.
  • Bi H, Li H, Zhang C, Mao Y, Nie F, Xing Y, Sha W, Wang X, Irwin DM, Tan H. 2019. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res Ther. 10(1):302.
  • Bora P, Majumdar AS. 2017. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 8(1):145.
  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. 2013. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 15(6):641–648.
  • Brondeel C, Pauwelyn G, de Bakker E, Saunders J, Samoy Y, Spaas JH. 2021. Review: mesenchymal stem cell therapy in canine osteoarthritis research: "Experientia Docet" (Experience will teach us). Front Vet Sci. 8:668881.
  • Brown LL. 2018. Adipose-derived stromal stem cells. In: Diwan S, Deer TR, editors. Advanced procedures for pain management. Cham (Switzerland): Springer; p. 489–507.
  • Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. 2021. Adipose-derived stromal/stem cells from large animal models: from basic to applied science. Stem Cell Rev Rep. 17(3):719–738.
  • Chae DS, Han S, Son M, Kim SW. 2017. Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property. Cytotherapy. 19(4):543–554.
  • Chen G, Deng C, Li YP. 2012. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8(2):272–288.
  • Coelho MB, Cabral JM, Karp JM. 2012. Intraoperative stem cell therapy. Annu Rev Biomed Eng. 14:325–349.
  • Dar ER, Gugjoo MB, Javaid M, Hussain S, Fazili MR, Dhama K, Alqahtani T, Alqahtani AM, Shah RA, Emran TB. 2021. Adipose tissue- and bone marrow-derived mesenchymal stem cells from sheep: culture characteristics. Animals. 11(8):2153.
  • Devireddy LR, Boxer L, Myers MJ, Skasko M, Screven R. 2017. Questions and challenges in the development of mesenchymal stromal/stem cell-based therapies in veterinary medicine. Tissue Eng Part B Rev. 23(5):462–470.
  • Dryden GW, Boland E, Yajnik V, Williams S. 2017. Comparison of stromal vascular fraction with or without a novel bioscaffold to fibrin glue in a porcine model of mechanically induced anorectal fistula. Inflamm Bowel Dis. 23(11):1962–1971.
  • Duan W, Lopez MJ. 2018. Effects of enzyme and cryoprotectant concentrations on yield of equine adipose-derived multipotent stromal cells. Am J Vet Res. 79(10):1100–1112.
  • Evans CH, Palmer GD, Pascher A, Porter R, Kwong FN, Gouze E, Gouze JN, Liu F, Steinert A, Betz O, et al. 2007. Facilitated endogenous repair: making tissue engineering simple, practical, and economical. Tissue Eng. 13(8):1987–1993.
  • Fathi E, Farahzadi R. 2016. Isolation, culturing, characterization and aging of adipose tissue-derived mesenchymal stem cells: a brief overview. Braz Arch Biol Technol. 59:1–9.
  • Folgiero V, Migliano E, Tedesco M, Iacovelli S, Bon G, Torre ML, Sacchi A, Marazzi M, Bucher S, Falcioni R. 2010. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant. 19(10):1225–1235.
  • Franklin SP, Stoker AM, Bozynski CC, Kuroki K, Clarke KM, Johnson JK, Cook JL. 2018. Comparison of platelet-rich plasma, stromal vascular fraction (AdSVF), or with an injectable PLGA nanofiber scaffold for the treatment of osteochondral injury in dogs. J Knee Surg. 31(7):686–697.
  • Fraser JK, Hicok KC, Shanahan R, Zhu M, Miller S, Arm DM. 2014. The Celution® system: automated processing of adipose-derived regenerative cells in a functionally closed system. Adv Wound Care (New Rochelle). 3(1):38–45.
  • Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. 2009. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res. 27(12):1675–1680.
  • Gao F, Zhang SL, Liao S, Ge YZ, Zhou LH, Wu R, Xu Z, Xu LW, Jia RP. 2016. [Effects of autologous adipose-derived stromal vascular fraction on erectile dysfunction of hypertensive rats]. Zhonghua Yi Xue Za Zhi. 96(2):134–137. Chinese.
  • Gentile P, Cervelli V. 2018. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Methods Mol Biol. 1773:107–122.
  • Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Cervelli V. 2012. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl Med. 1(3):230–236.
  • Gimble JM, Katz AJ, Bunnell BA. 2007. Adipose-derived stem cells for regenerative medicine. Circ Res. 100(9):1249–1260.
  • Gimble JM, Ray SP, Zanata F, Wu X, Wade J, Khoobehi K, Ferreira LM, Bunnell BA. 2017. Adipose derived cells and tissues for regenerative medicine. ACS Biomater Sci Eng. 3(8):1477–1482.
  • Gourevitch D, Kossenkov AV, Zhang Y, Clark L, Chang C, Showe LC, Heber-Katz E. 2014. Inflammation and its correlates in regenerative wound healing: an alternate perspective. Adv Wound Care (New Rochelle). 3(9):592–603.
  • Gugjoo MA, Amarpal. 2018. Mesenchymal stem cell research in sheep: current status and future prospects. Small Ruminant Res. 169:46–56.
  • Gugjoo MB, Amarpal, Chandra V, Sharma GT. 2020. Mesenchymal stem cell isolation, culture, characterization and cryopreservation. In: Gugjoo MB, Amarpal, editors. Mesenchymal stem cell in veterinary sciences. Singapore: Springer Nature; p. 27–46.
  • Gugjoo MB, Amarpal A, Sharma GT. 2019a. Mesenchymal stem cell basic research and applications in dog medicine. J Cell Physiol. 234(10):16779–16811.
  • Gugjoo MB, Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT. 2018. Mesenchymal stem cell research in veterinary medicine. Curr Stem Cell Res Ther. 13(8):645–657.
  • Gugjoo MB, Fazili M-UR, Gayas MA, Ahmad RA, Dhama K. 2019. Animal mesenchymal stem cell research in cartilage regenerative medicine – a review. Vet Q. 39(1):95–120.
  • Gugjoo MB, Fazili M-UR, Shah RA, Saleem Mir M, Sharma GT. 2020. Goat mesenchymal stem cell basic research and potential applications. Small Rum Res. 183:106045.
  • Gugjoo MB, Fazili M-UR, Shah RA, Sharma GT. 2018b. Mesenchymal stem cell: basic research and potential applications in cattle and buffalo. J Cell Physiol. 234(6):8618–8635.
  • Gugjoo MB, Makhdoomi DM, Sharma GT. 2019c. Equine mesenchyaml stem cells: properties, sources, characterization and potential therapeutic applications. J Equine Vet Sci. 72:16–27.
  • Han S, Sun HM, Hwang KC, Kim SW. 2015. Adipose-derived stromal vascular fraction cells: update on clinical utility and efficacy. Crit Rev Eukaryot Gene Expr. 25(2):145–152.
  • Hayrapetyan A, Jansen JA, van den Beucken JJ. 2015. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. Tissue Eng Part B Rev. 21(1):75–87.
  • Hendawy H, Uemura A, Ma D, Namiki R, Samir H, Ahmed MF, Elfadadny A, El-Husseiny HM, Chieh-Jen C, Tanaka R. 2021. Tissue harvesting site effect on the canine adipose stromal vascular fraction quantity and quality. Animals (Basel). 11(2):460.
  • Hill ABT, Bressan FF, Murphy BD, Garcia JM. 2019. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther. 10(1):44.
  • Hiwatashi N, Bing R, Kraja I, Branski RC. 2017. Mesenchymal stem cells have antifibrotic effects on transforming growth factor-β1-stimulated vocal fold fibroblasts. Laryngoscope. 127(1):E35–E41.
  • Ho CM, Chen YH, Ho SL, Chen HY, Chien CS, Chen JC, Hsiao CC, Chen HL, Hu RH, Shih DT, et al. 2019. Therapeutic efficacy of adipose-derived stromal vascular fraction cells is associated with CD34 positivity in acute-on-chronic liver failure. Cytotherapy. 21(5):561–565.
  • Hung BP, Hutton DL, Kozielski KL, Bishop CJ, Naved B, Green JJ, CAPLAN AI, Gimble JM, Dorafshar AH, Grayson WL. 2015. Platelet -derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells. 33(9):2773–2784.
  • Ivanovska A, Wang M, Arshaghi TE, Shaw G, Alves J, Byrne A, Butterworth S, Chandler R, Cuddy L, Dunne J, et al. 2022. Manufacturing mesenchymal stromal cells for the treatment of osteoarthritis in canine patients: challenges and recommendations. Front Vet Sci. 9:897150.
  • Jurgens W, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GAP, Smit T, van Milligen FJ, Ritt MJ, Helder MN. 2013. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access. 2(4):315–325.
  • Kang MH, Park HM. 2020. Challenges of stem cell therapies in companion animal practice. J Vet Sci. 21(3):e42.
  • Karagergou E, Dionyssopoulos A, Karayannopoulou M, Psalla D, Theodoridis A, Demiri E, Koliakos G. 2018. Adipose-derived stromal vascular fraction aids epithelialisation and angiogenesis in an animal model. J Wound Care. 27(10):637–644.
  • Kazemi D, Asenjan S, Dehdilani K, Parsa H. 2017. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin. Bone Joint Res. 6(2):98–107.
  • Kemilew J, Sobczyńska-Rak A, Żylińska B, Szponder T, Nowicka B, Urban B. 2019. The use of allogenic stromal vascular fraction () cells in degenerative joint disease of the spine in dogs. In Vivo. 33(4):1109–1117.
  • Kim A, Kim D-H, Song H-R, Kang W-H, Kim H-J, Lim H-C, Cho D-W, Bae J-H. 2012. Repair of rabbit ulna segmental bone defect using freshly isolated adipose-derived stromal vascular fraction. Cytotherapy. 14(3):296–305. Erratum in: Cytotherapy. 2012 Mar;14(3):305.
  • Kim WS, Park BS, Sung JH. 2009. Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res. 301(5):329–336.
  • Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. 2021. Perspectives of pluripotent stem cells in livestock. World J Stem Cells. 13(1):1–29.
  • Laloze J, Fiévet L, Desmoulière A. 2021. Adipose-derived mesenchymal stromal cells in regenerative medicine: state of play, current clinical trials, and future prospects. Adv Wound Care (New Rochelle). 10(1):24–48.
  • Lapuente JP, Dos-Anjos S, Blázquez-Martínez A. 2020. Intra-articular infiltration of adipose-derived stromal vascular fraction cells slows the clinical progression of moderate-severe knee osteoarthritis: hypothesis on the regulatory role of intra-articular adipose tissue. J Orthop Surg Res. 15(1):137.
  • Leblanc AJ, Touroo JS, Hoying JB, Williams SK. 2012. Adipose stromal vascular fraction cell construct sustains coronary microvascular function after acute myocardial infarction. Am J Physiol Heart Circ Physiol. 302(4):H973–H982.
  • Lee KS, Kang HW, Lee HT, Kim HJ, Kim CL, Song JY, Lee KW, Cha SH. 2014. Sequential sub-passage decreases the differentiation potential of canine adipose-derived mesenchymal stem cells. Res Vet Sci. 96(2):267–275.
  • Lee MJ, Wu Y, Fried SK. 2013. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 34(1):1–11.
  • Lee SR, Lee SH, Moon JY, Park JY, Lee D, Lim SJ, Jeong KH, Park JK, Lee TW, Ihm CG. 2010. Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail. 32(7):840–848.
  • Levi B, Kasten SJ, Buchman SR. 2010. Use of cross-bone strut stabilization for barrel stave osteotomies in calvarial reconstruction. J Craniofac Surg. 21(2):491–494.
  • Lopez MJ, Jarazo J. 2015. State of the art: stem cells in equine regenerative medicine. Equine Vet J. 47(2):145–154.
  • Luo H, Li D, Chen Z, Wang B, Chen S. 2021. Manufacturing and banking canine adipose-derived mesenchymal stem cells for veterinary clinical application. BMC Vet Res. 17(1):96.
  • Lv X, He J, Zhang X, Luo X, He N, Sun Z, Xia H, Liu V, Zhang L, Lin X, et al. 2018. Comparative efficacy of autologous stromal vascular fraction and autologous adipose-derived mesenchymal stem cells combined with hyaluronic acid for the treatment of sheep osteoarthritis. Cell Transplant. 27(7):1111–1125.
  • Madonna R, De Caterina R. 2008. In vitro neovasculogenic potential of resident adipose tissue precursors. Am J Physiol Cell Physiol. 295(5):C1271–C1280.
  • Marx C, Silveira MD, Beyer Nardi N. 2015. Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24(7):803–813.
  • Marx C, Silveira MD, Selbach I, da Silva AS, de Macedo Braga LMG, Camassola M, Nardi NB. 2014. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells Int. 2014:391274.
  • Marycz K. 2021. The hepatic stellate cells (HSCs) and adipose derived stem progenitor cells (ASCs): are they critical multitargeted endogenous metabolic modulators in syndrome X and EMS? Letter to editor. Stem Cell Rev Rep. 17(5):1931–1933.
  • Marycz K, Kornicka K, Basinska K, Czyrek A. 2016. Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: new insight into EqASCs isolated from EMS horses in the context of their aging. Oxid Med Cell Longev. 2016:4710326.
  • Marycz K, Kornicka K, Grzesiak J, Śmieszek A, Szłapka J. 2017. Macroautophagy and selective mitophagy ameliorate chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: new findings in the field of progenitor cells differentiation. Oxid Med Cell Longev. 2017:3861790. Erratum in: Oxid Med Cell Longev. 2017;2017:3861790.
  • Marycz K, Kornicka K, Marędziak M, Golonka P, Nicpoń J. 2016. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. J Cell Mol Med. 20(12):2384–2404.
  • Marycz K, Weiss C, Śmieszek A, Kornicka K. 2018. Evaluation of oxidative stress and mitophagy during adipogenic differentiation of adipose-derived stem cells isolated from equine metabolic syndrome (EMS) horses. Stem Cells Int. 2018:5340756.
  • Mattei A, Bertrand B, Jouve E, Blaise T, Philandrianos C, Grimaud F, Giraudo L, Aboudou H, Dumoulin C, Arnaud L, et al. 2020. Feasibility of first injection of autologous adipose tissue-derived stromal vascular fraction in human scarred vocal folds: a nonrandomized controlled trial. JAMA Otolaryngol Head Neck Surg. 146(4):355–363.
  • Mattei A, Magalon J, Bertrand B, Philandrianos C, Veran J, Giovanni A. 2017. Cell therapy and vocal fold scarring. Eur Ann Otorhinolaryngol Head Neck Dis. 134(5):339–345.
  • Mazini L, Rochette L, Amine M, Malka G. 2019. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 20(10):2523.
  • Metcalf GL, McClure SR, Hostetter JM, Martinez RF, Wang C. 2016. Evaluation of adipose-derived stromal vascular fraction from the lateral tailhead, inguinal region, and mesentery of horses. Can J Vet Res. 80(4):294–301.
  • Mizuno H, Tobita M, Uysal AC. 2012. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 30(5):804–810.
  • Mohammadi R, Azizi S, Delirezh N, Hobbenaghi R, Amini K. 2012. Transplantation of uncultured omental adipose-derived stromal vascular fraction improves sciatic nerve regeneration and functional recovery through inside-out vein graft in rats. J Trauma Acute Care Surg. 72(2):390–396.
  • Mohammadi R, Sanaei N, Ahsan S, Masoumi-Verki M, Khadir F, Mokarizadeh A. 2015. Stromal vascular fraction combined with silicone rubber chamber improves sciatic nerve regeneration in diabetes. Chin J Traumatol. 18(4):212–218.
  • Müller AM, Mehrkens A, Schäfer DJ, Jaquiery C, Güven S, Lehmicke M, Martinetti R, Farhadi I, Jakob M, Scherberich A, et al. 2010. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Eur Cell Mater. 19:127–135.
  • Murphy MB, Moncivais K, Caplan AI. 2013. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 45(11):e54.
  • Najman SJ, Cvetković VJ, Najdanović JG, Stojanović S, Vukelić-Nikolić MĐ, Vučković I, Petrović D. 2016. Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: a simulation of intraoperative procedure. J Craniomaxillofac Surg. 44(10):1750–1760.
  • Nakao N, Nakayama T, Yahata T, Muguruma Y, Saito S, Miyata Y, Yamamoto K, Naoe T. 2010. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. Am J Pathol. 177(2):547–554.
  • Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. 2008. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res. 69(7):928–937.
  • Nunes SS, Maijub JG, Krishnan L, Ramakrishnan VM, Clayton LR, Williams SK, Hoying JB, Boyd NL. 2013. Generation of a functional liver tissue mimic using adipose stromal vascular fraction cell-derived vasculatures. Sci Rep. 3:2141.
  • Nyberg E, Farris A, O'Sullivan A, Rodriguez R, Grayson W. 2019. Comparison of stromal vascular fraction and passaged adipose-derived stromal/stem cells as point-of-care agents for bone regeneration. Tissue Eng Part A. 25(21-22):1459–1469.
  • Overman JR, Helder MN, ten Bruggenkate CM, Schulten EA, Klein-Nulend J, Bakker AD. 2013. Growth factor gene expression profiles of bone morphogenetic protein-2-treated human adipose stem cells seeded on calcium phosphate scaffolds in vitro. Biochimie. 95(12):2304–2313.
  • Pak J. 2011. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep. 5:296.
  • Pak J, Lee JH, Park KS, Park M, Kang LW, Lee SH. 2017. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. J Biomed Sci. 24(1):9.
  • Pakzad M, Fouladdel S, Nili-Ahmadabadi A, Pourkhalili N, Baeeri M, Azizi E, Sabzevari O, Ostad SN, Abdollahi M. 2013. Sublethal exposures of diazinon alters glucose homostasis in Wistar rats: biochemical and molecular evidences of oxidative stress in adipose tissues. Pestic Biochem Physiol. 105(1):57–61.
  • Pettitt RA, German AJ. 2015. Investigation and management of canine osteoarthritis. In Pract. 37(S1):1–8.
  • Phipps MC, Clem WC, Catledge SA, Xu Y, Hennessy KM, Thomas V, Jablonsky MJ, Chowdhury S, Stanishevsky AV, Vohra YK, et al. 2011. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS One. 6(2):e16813.
  • Piccionello AP, Riccio V, Senesi L, Volta A, Pennasilico L, Botto R, Rossi G, Tambella AM, Galosi L, Marini C, et al. 2021. M. Adipose micro-grafts enhance tendinopathy healing in ovine model: an in vivo experimental perspective study. STEM CELLS Transl Med. 10(11):1544–1560. .
  • Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF. 2019. Stem cells on regenerative and reproductive science in domestic animals. Vet Res Commun. 43(1):7–16.
  • Polly SS, Nichols AEC, Donnini E, Inman DJ, Scott TJ, Apple SM, Werre SR, Dahlgren LA. 2019. Adipose-derived stromal vascular fraction and cultured stromal cells as trophic mediators for tendon healing. J Orthop Res. 37(6):1429–1439.
  • Prins HJ, Schulten EA, Ten Bruggenkate CM, Klein-Nulend J, Helder MN. 2016. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl Med. 5(10):1362–1374.
  • Prządka P, Buczak K, Frejlich E, Gąsior L, Suliga K, Kiełbowicz Z. 2021. The role of mesenchymal stem cells (MSCs) in veterinary medicine and their use in musculoskeletal disorders. Biomolecules. 11(8):1141.
  • Quimby JM, Borjesson DL. 2018. Mesenchymal stem cell therapy in cats: current knowledge and future potential. J Feline Med Surg. 20(3):208–216.
  • Quimby JM, Webb TL, Gibbons DS, Dow SW. 2011. Evaluation of intrarenal mesenchymal stem cell injection for treatment of chronic kidney disease in cats: a pilot study. J Feline Med Surg. 13(6):418–426.
  • Quimby JM, Webb TL, Randall E, Marolf A, Valdes-Martinez A, Dow SW. 2016. Assessment of intravenous adipose-derived allogeneic mesenchymal stem cells for the treatment of feline chronic kidney disease: a randomized, placebo-controlled clinical trial in eight cats. J Feline Med Surg. 18(2):165–171.
  • Rajabzadeh N, Fathi E, Farahzadi R. 2019. Stem cell-based regenerative medicine. Stem Cell Investig. 6:19.
  • Rasmussen BS, Sørensen CL, Kurbegovic S, Ørholt M, Talman MM, Herly M, Pipper CB, Kølle ST, Rangatchew F, Holmgaard R, et al. 2019. Cell-enriched fat grafting improves graft retention in a porcine model: a dose-response study of adipose-derived stem cells versus stromal vascular fraction. Plast Reconstr Surg. 144(3):397e–408e.
  • Ribitsch I, Burk J, Delling U, Geißler C, Gittel C, Jülke H, Brehm W. 2010. Basic science and clinical application of stem cells in veterinary medicine. Adv Biochem Eng Biotechnol. 123:219–263.
  • Ricciardi M, Malpeli G, Bifari F, Bassi G, Pacelli L, Nwabo Kamdje AH, Chilosi M, Krampera M. 2012. Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow. PLoS One. 7(5):e35639.
  • Riis S, Zachar V, Boucher S, Vemuri MC, Pennisi CP, Fink T. 2015. Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy. Expert Rev Mol Med. 17:e11.
  • Roato I, Belisario DC, Compagno M, Verderio L, Sighinolfi A, Mussano F, Genova T, Veneziano F, Pertici G, Perale G, et al. 2018. Adipose-derived stromal vascular fraction/xenohybrid bone scaffold: an alternative source for bone regeneration. Stem Cells Int. 2018:4126379.
  • Russell KA, Garbin LC, Wong JM, Koch TG. 2020. Mesenchymal stromal cells as potential antimicrobial for veterinary use – a comprehensive review. Front Microbiol. 11:606404.
  • Safford KM, Hicok KC, Safford SD, Halvorsen Y-DC, Wilkison WO, Gimble JM, Rice HE. 2002. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 294(2):371–379.,
  • Samudra MF, Rosadi I, Afini I, Widyastuti T, Sobariah S, Remelia M, Puspitasari RL, Rosliana I, Tunggadewi TI. 2019. Combination of the stromal vascular fraction and platelet-rich plasma accelerates the wound healing process: pre-clinical study in a Sprague-Dawley rat model. Stem Cell Investig. 6:18.
  • Sananta P, Dradjat RS, Rosandi RD, Siahaan LD. 2022. TGF-1 biomarker level evaluation on fracture healing in a murine model with a bone defect after stromal vascular fraction application. Med Glas (Zenica). 19(1):63–67.
  • Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH, Seguro AC, Pacheco-Silva A, Saraiva Camara NO. 2009. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells. 27(12):3063–3073.
  • Senesi L, De Francesco F, Farinelli L, Manzotti S, Gagliardi G, Papalia GF, Riccio M, Gigante A. 2019. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results. Front Cell Dev Biol. 7;7:88.
  • Sharun K, Dhama K, Jambagi K, Pawde, AM, Amarpal. 2021. Cell-free therapy for inflammatory diseases: opportunities and challenges. Recent Adv Inflamm Allergy Drug Discov. 15(1):5–8.
  • Sharun K, Pawde AM, Kumar R, Kalaiselvan E, Kinjavdekar P, Dhama K, Pal A. 2021. Standardization and characterization of adipose-derived stromal vascular fraction from New Zealand white rabbits for bone tissue engineering. Vet World. 14(2):508–514.
  • Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y. 2019. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother. 114:108765.
  • Stefanis AJ, Groh T, Arenbergerova M, Arenberger P, Bauer PO. 2019. Stromal vascular fraction and its role in the management of alopecia: a review. J Clin Aesthet Dermatol. 12(11):35–44.
  • Sun M, He Y, Zhou T, Zhang P, Gao J, Lu F. 2017. Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int. 2017:3105780.
  • Sun Y, Chen S, Zhang X, Pei M. 2019. Significance of cellular cross-talk in stromal vascular fraction of adipose tissue in neovascularization. Arterioscler Thromb Vasc Biol. 39(6):1034–1044.
  • SundarRaj S, Deshmukh A, Priya N, Krishnan VS, Cherat M, Majumdar AS. 2015. Development of a system and method for automated isolation of stromal vascular fraction from adipose tissue lipoaspirate. Stem Cells Int. 2015:109353.
  • Tan SS, Yeo XY, Liang ZC, Sethi SK, Tay SSW. 2018. Stromal vascular fraction promotes fibroblast migration and cellular viability in a hyperglycemic microenvironment through up-regulation of wound healing cytokines. Exp Mol Pathol. 104(3):250–255.
  • Thery A, Bléry P, Malard O, Pilet P, Sourice S, Corre P, Guicheux J, Weiss P, Espitalier F. 2015. Role of the stromal vascular fraction from adipose tissue in association with a phosphocalcic scaffold in bone regeneration in an irradiated area. J Craniomaxillofac Surg. 43(7):1169–1176.
  • Tiryaki KT, Cohen S, Kocak P, Canikyan Turkay S, Hewett S. 2020. In-vitro comparative examination of the effect of stromal vascular fraction isolated by mechanical and enzymatic methods on wound healing. Aesthet Surg J. 40(11):1232–1240.
  • Todorov A, Kreutz M, Haumer A, Scotti C, Barbero A, Bourgine PE, Scherberich A, Jaquiery C, Martin I. 2016. Fat-derived stromal vascular fraction cells enhance the bone-forming capacity of devitalized engineered hypertrophic cartilage matrix. Stem Cells Transl Med. 5(12):1684–1694.
  • Toplu G, Ozcelik D, Serin M, Erdem H, Topacoglu AT. 2017. Adipose tissue-derived stromal vascular fraction increases osteogenesis in an experimental design zygomatic bone defect model. J Craniofac Surg. 28(8):2179–2182.
  • Upchurch DA, Renberg WC, Roush JK, Milliken GA, Weiss ML. 2016. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints. Am J Vet Res. 77(9):940–951.
  • van Dongen JA, Harmsen MC, Stevens HP. 2019. Isolation of stromal vascular fraction by fractionation of adipose tissue. Methods Mol Biol. 1993:91–103.
  • Van Pham P, Hong-Thien Bui K, Quoc Ngo D, Tan Khuat L, Kim Phan N. 2013. Transplantation of nonexpanded adipose stromal vascular fraction and platelet-rich plasma for articular cartilage injury treatment in mice model. J Med Eng. 2013:832396.
  • Villanueva S, Ewertz E, Carrión F, Tapia A, Vergara C, Céspedes C, Sáez PJ, Luz P, Irarrázabal C, Carreño JE, et al. 2011. Mesenchymal stem cell injection ameliorates chronic renal failure in a rat model. Clin Sci (Lond). 121(11):489–499.
  • Voga M, Adamic N, Vengust M, Majdic G. 2020. Stem cells in veterinary medicine-current state and treatment options. Front Vet Sci. 7:278.
  • Wang X, Zhou C, Liu J, Mao L, Yang T, Hong X, Jiang N, Jia R. 2021. Administration of adipose stromal vascular fraction attenuates acute rejection in donation after circulatory death rat renal transplantation. Int J Urol. 29:266–275.
  • Weltz JS, Kienle DF, Schwartz DK, Kaar JL. 2020. Reduced enzyme dynamics upon multipoint covalent immobilization leads to stability-activity trade-off. J Am Chem Soc. 142(7):3463–3471.
  • Wu V, Helder MN, Bravenboer N, Ten Bruggenkate CM, Jin J, Klein-Nulend J, Schulten EAJM. 2019. Bone tissue regeneration in the oral and maxillofacial region: a review on the application of stem cells and new strategies to improve vascularization. Stem Cells Int. 2019:6279721.
  • Zhang Y, Grosfeld EC, Camargo WA, Tang H, Magri AMP, van den Beucken JJJP. 2018. Efficacy of intraoperatively prepared cell-based constructs for bone regeneration. Stem Cell Res Ther. 9(1):283.
  • Zhao F, Zhou L, Liu J, Xu Z, Ping W, Li H, Xu L, Xu Z, Zhou C, Wang M, et al. 2019. Construction of a vascularized bladder with autologous adipose-derived stromal vascular fraction cells combined with bladder acellular matrix via tissue engineering. J Tissue Eng. 10:2041731419891256.
  • Zhou L, Song K, Xu L, Zhao F, Tian H, Zhou C, Xu Z, Ge Y, Wu R, Jia R. 2019. Protective effects of uncultured adipose-derived stromal vascular fraction on testicular injury induced by torsion-detorsion in rats. Stem Cells Transl Med. 8(4):383–391.
  • Zhou L, Song Q, Shen J, Xu L, Xu Z, Wu R, Ge Y, Zhu J, Wu J, Dou Q, et al. 2017. Comparison of human adipose stromal vascular fraction and adipose-derived mesenchymal stem cells for the attenuation of acute renal ischemia/reperfusion injury. Sci Rep. 7:44058.
  • Zhou L, Xu L, Shen J, Song Q, Wu R, Ge Y, Xin H, Zhu J, Wu J, Jia R. 2016. Preischemic administration of nonexpanded adipose stromal vascular fraction attenuates acute renal ischemia/reperfusion injury and fibrosis. Stem Cells Transl Med. 5(9):1277–1288.
  • Zhou L, Yang B, Sun C, Qiu X, Sun Z, Chen Y, Zhang Y, Dai Y. 2013. Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model. Tissue Eng Part A. 19(1-2):264–276.
  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. 2002. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 13(12):4279–4295.
  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2):211–228.