0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extracellular vesicles secreted by equine adipose mesenchymal stem cells preconditioned with transforming growth factor β-1 are enriched in anti-fibrotic miRNAs and inhibit the expression of fibrotic genes in an in vitro system of endometrial stromal cells fibrosis

, , , , , , , & show all
Pages 1-11 | Received 29 Nov 2023, Accepted 19 Jul 2024, Published online: 31 Jul 2024

References

  • Alpoim-Moreira J, Fernandes C, Pimenta J, Bliebernicht M, Rebordão MR, Castelo-Branco P, Szóstek-Mioduchowska A, Skarzynski DJ, Ferreira-Dias G. 2022. Metallopeptidades 2 and 9 genes epigenetically modulate equine endometrial fibrosis. Front Vet Sci. 9:970003. doi: 10.3389/fvets.2022.970003.
  • Alzobaidi N, Rehman S, Naqvi M, Gulati K, Ray A. 2022. Periostin: a potential biomarker and therapeutic target in pulmonary diseases. J Pharm Pharm Sci. 25:137–148. doi: 10.18433/jpps32306.
  • Balaji S, Keswani SG, Crombleholme TM. 2012. Mesenchymal stem cells in the regenerative wound healing phenotype. Adv Wound Care (New Rochelle). 1(4):159–165. doi: 10.1089/wound.2012.0361.
  • Basalova N, Sagaradze G, Arbatskiy M, Evtushenko E, Kulebyakin K, Grigorieva O, Akopyan Z, Kalinina N, Efimenko A. 2020. Secretome of mesenchymal stromal cells prevents myofibroblasts differentiation by transferring fibrosis-associated micrornas within extracellular vesicles. Cells. 9(5):1272. doi: 10.3390/cells9051272.
  • Buczkowska J, Kozdrowski R, Nowak M, Raś A, Mrowiec J. 2014. Endometrosis – significance for horse reproduction, pathogenesis, diagnosis, and proposed therapeutic methods. Pol J Vet Sci. 17(3):547–554. doi: 10.2478/pjvs-2014-0083.
  • Cabezas J, Rojas D, Navarrete F, Ortiz R, Rivera G, Saravia F, Rodriguez-Alvarez L, Castro FO. 2018. Equine mesenchymal stem cells derived from endometrial or adipose ­tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology. 106:93–102. doi: 10.1016/j.theriogenology.2017.09.035.
  • Chung ACK, Huang XR, Meng X, Lan HY. 2010. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J Am Soc Nephrol. 21(8):1317–1325. doi: 10.1681/ASN.2010020134.
  • Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV, Lü J. 2011. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 45(2):287–294. doi: 10.1165/rcmb.2010-0323OC.
  • Domingo-Gonzalez R, Wilke CA, Huang SK, Laouar Y, Brown JP, Freeman CM, Curtis JL, Yanik GA, Moore BB. 2015. Transforming growth factor-β induces microRNA-29b to promote murine alveolar macrophage dysfunction after bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol. 308(1):L86–L95. doi: 10.1152/ajplung.00283.2014.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8(4):315–317. doi: 10.1080/14653240600855905.
  • Douvris A, Viñas J, Burns KD. 2022. miRNA-486-5p: signaling targets and role in non-malignant disease. Cell Mol Life Sci. 79(7):376. doi: 10.1007/s00018-022-04406-y.
  • Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X, Zhu Y. 2012. Epigenetic changes mediated by MicroRNA miR29 activate cyclooxygenase 2 and Lambda-1 interferon production during viral infection. J Virol. 86(2):1010–1020. doi: 10.1128/JVI.06169-11.
  • Fang F, Ooka K, Sun X, Shah R, Bhattacharyya S, Wei J, Varga J. 2013. A synthetic TLR3 ligand mitigates profibrotic fibroblast responses by inducing autocrine IFN signaling. J. Immunol. 191(6):2956–2966. doi: 10.4049/jimmunol.1300376.
  • Fu H, Chu D, Geng X. 2021. Downregulation of miR-17 suppresses TGF-β1-mediated renal fibrosis through targeting Smad7. Mol Cell Biochem. 476(8):3051–3064. doi: 10.1007/s11010-021-04140-2.
  • Gerritzen MJH, Martens DE, Wijffels RH, Stork M. 2017. High throughput nanoparticle tracking analysis for monitoring outer membrane vesicle production. J Extracell Vesicles. 6(1):1333883. doi: 10.1080/20013078.2017.1333883.
  • Gugjoo MB, Makhdoomi DM, Sharma GT. 2019. Equine mesenchymal stem cells: properties, sources, characterization, and potential therapeutic applications. J Equine Vet Sci. 72:16–27. doi: 10.1016/j.jevs.2018.10.007.
  • Hoffmann C, Ellenberger C, Mattos RC, Aupperle H, Dhein S, Stief B, Schoon H-A. 2009. The equine endometrosis: new insights into the pathogenesis. Anim Reprod Sci. 111(2-4):261–278. doi: 10.1016/j.anireprosci.2008.03.019.
  • Hou Y, Li J, Guan S, Witte F. 2021. The therapeutic potential of MSC-EVs as a bioactive material for wound healing. Engineer Regenerat. 2:182–194. doi: 10.1016/j.engreg.2021.11.003.
  • Huang Y, Wu Q, Tam PKH. 2022. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. IJMS. 23(17):10023. doi: 10.3390/ijms231710023.
  • Huang Y, Yang L. 2021. Mesenchymal stem cell-derived extracellular vesicles in therapy against fibrotic diseases. Stem Cell Res Ther. 12(1):435. doi: 10.1186/s13287-021-02524-1.
  • Katila T, Ferreira-Dias G. 2022. Evolution of the concepts of endometrosis, post breeding endometritis, and susceptibility of mares. Animals (Basel). 12(6):779. doi: 10.3390/ani12060779.
  • Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R. 2007. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 104(9):3432–3437. doi: 10.1073/pnas.0611192104.
  • Klingberg F, Hinz B, White ES. 2013. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol. 229(2):298–309. doi: 10.1002/path.4104.
  • Le B, Cressman A, Morales D, Fierro FA. 2024. First clinical experiences using preconditioning approaches to improve MSC-based therapies. Curr Stem Cell Rep. 10(1):1–7. doi: 10.1007/s40778-023-00232-5.
  • Li R, Chung ACK, Dong Y, Yang W, Zhong X, Lan HY. 2013. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 84(6):1129–1144. doi: 10.1038/ki.2013.272.
  • Li Z-J, Wang L-Q, Li Y-Z, Wang C-Y, Huang J-Z, Yu N-Z, Long X. 2021. Application of adipose-derived stem cells in treating fibrosis. World J Stem Cells. 13(11):1747–1761. doi: 10.4252/wjsc.v13.i11.1747.
  • Liu Y-X, Sun J-M, Ho C-K, Gao Y, Wen D-S, Liu Y-D, Huang L, Zhang Y-F. 2023. Advancements in adipose-derived stem cell therapy for skin fibrosis. World J Stem Cells. 15(5):342–353. doi: 10.4252/wjsc.v15.i5.342.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods. 25(4):402–408. doi: 10.1006/meth.2001.1262.
  • Lyu G, Guan Y, Zhang C, Zong L, Sun L, Huang X, Huang L, Zhang L, Tian X-L, Zhou Z, et al. 2018. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun. 9(1):2560. doi: 10.1038/s41467-018-04994-z.
  • Makarova J, Turchinovich A, Shkurnikov M, Tonevitsky A. 2021. Extracellular miRNAs and cell–cell communication: problems and prospects. Trends Biochem Sci. 46(8):640–651. doi: 10.1016/j.tibs.2021.01.007.
  • Megiorni F, Cialfi S, Cimino G, De Biase RV, Dominici C, Quattrucci S, Pizzuti A. 2013. Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros. 12(6):797–802. doi: 10.1016/j.jcf.2013.03.007.
  • Melling GE, Flannery SE, Abidin SA, Clemmens H, Prajapati P, Hinsley EE, Hunt S, Catto JWF, Coletta RD, Mellone M, et al. 2018. Corrigendum: a miRNA-145/TGF-β1 negative feedback loop regulates the cancer-associated fibroblast phenotype. Carcinogenesis. 39(8):1094–1094. doi: 10.1093/carcin/bgy083.
  • Navarrete F, Wong YS, Cabezas J, Riadi G, Manríquez J, Rojas D, Furlanetto Mançanares AC, Rodriguez-Alvarez L, Saravia F, Castro FO. 2020. Distinctive cellular transcriptomic signature and MicroRNA cargo of extracellular vesicles of horse adipose and endometrial mesenchymal stem cells from the same Donors. Cell Reprogram. 22(6):311–327. doi: 10.1089/cell.2020.0026.
  • Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. 2019. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 10(1):131. doi: 10.1186/s13287-019-1224-y.
  • Oglesby IK, Vencken SF, Agrawal R, Gaughan K, Molloy K, Higgins G, McNally P, McElvaney NG, Mall MA, Greene CM. 2015. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J. 46(5):1350–1360. doi: 10.1183/09031936.00163414.
  • Okada Y, Wang T, Kasai K, Suzuki K, Takikawa Y. 2018. Regulation of transforming growth factor is involved in the efficacy of combined 5-fluorouracil and interferon alpha-2b therapy of advanced hepatocellular carcinoma. Cell Death Discov. 4(1):42. doi: 10.1038/s41420-018-0040-y.
  • Perera UE, Derseh HB, Dewage SNV, Stent A, Wijayarathna R, Snibson KJ. 2021. Evaluation of microRNA expression in a sheep model for lung fibrosis. BMC Genomics. 22(1):827. doi: 10.1186/s12864-021-08073-4.
  • Qin L, Liu N, Bao C, Yang D, Ma G, Yi W, Xiao G, Cao H. 2023. Mesenchymal stem cells in fibrotic diseases—the two sides of the same coin. Acta Pharmacol Sin. 44(2):268–287. doi: 10.1038/s41401-022-00952-0.
  • Rebordão MR, Amaral A, Lukasik K, Szóstek-Mioduchowska A, Pinto-Bravo P, Galvão A, Skarzynski DJ, Ferreira-Dias G. 2018. Impairment of anti-fibrotic PGE2 pathway may influence neutrophil extracellular traps-induced fibrosis in the mare endometrium. Domest Anim Endocrinol. 67:1–10. doi: 10.1016/j.domaniend.2018.10.004.
  • Rebordão M, Galvão A, Szóstek A, Amaral A, Mateus L, Skarzynski D, Ferreira-Dias G. 2014. Physiopathologic mechanisms involved in mare endometrosis. Reprod Domest Anim. 49(Suppl. 4):82–87. doi: 10.1111/rda.12397.
  • Salehipour Bavarsad S, Jalali MT, Bijan Nejad D, Alypoor B, Babaahmadi Rezaei H, Mohammadtaghvaei N. 2022. TGFβ1-pretreated exosomes of Wharton jelly mesenchymal stem cell as a therapeutic strategy for improving liver fibrosis. Hepat Mon. 22(1):1–12. doi: 10.5812/hepatmon-123416.
  • Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. 2009. Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 9(4):447–453. doi: 10.1016/j.coph.2009.04.008.
  • Saparov A, Ogay V, Nurgozhin T, Jumabay M, Chen WCW. 2016. Preconditioning of human mesenchymal stem cells to enhance their regulation of the immune response. Stem Cells Int. 2016:3924858–3924810. doi: 10.1155/2016/3924858.
  • Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. 2022. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol. 13:1010399. doi: 10.3389/fimmu.2022.1010399.
  • Schäfer R, Spohn G, Baer PC. 2016. Mesenchymal stem/stromal cells in regenerative medicine: can preconditioning strategies improve therapeutic efficacy. Transfus Med Hemother. 43(4):256–267. doi: 10.1159/000447458.
  • Shelke GV, Lässer C, Gho YS, Lötvall J. 2014. Importance of exosome depletion protocols to eliminate functional and RNA‐containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 3(1):24783. doi: 10.3402/jev.v3.24783.
  • Sun Y-Z, Hu Y-F, Zhang Y, Wei S-Y, Yang B-L, Xu Y-P, Rong Z-L, Wang D, Yang B. 2022. FibROAD: a manually curated resource for multi-omics level evidence integration of fibrosis research. Database (Oxford). 2022:baac015. doi: 10.1093/database/baac015.
  • Szóstek AZ, Lukasik K, Galvão AM, Ferreira-Dias GM, Skarzynski DJ. 2013. Impairment of the interleukin system in equine endometrium during the course of endometrosis. Biol Reprod. 89(4):79. doi: 10.1095/biolreprod.113.109447.
  • Szóstek-Mioduchowska AZ, Baclawska A, Okuda K, Skarzynski DJ. 2019a. Effect of proinflammatory cytokines on endometrial collagen and metallopeptidase expression during the course of equine endometrosis. Cytokine. 123:154767. doi: 10.1016/j.cyto.2019.154767.
  • Szóstek-Mioduchowska AZ, Baclawska A, Rebordão MR, Ferreira-Dias G, Skarzynski DJ. 2020b. Prostaglandins effect on matrix metallopeptidases and collagen in mare endometrial fibroblasts. Theriogenology. 153:74–84. doi: 10.1016/j.theriogenology.2020.04.040.
  • Szóstek-Mioduchowska AZ, Lukasik K, Skarzynski DJ, Okuda K. 2019b. Effect of transforming growth factor-β1 on α-smooth muscle actin and collagen expression in equine endometrial fibroblasts. Theriogenology. 124:9–17. doi: 10.1016/j.theriogenology.2018.10.005.
  • Szóstek-Mioduchowska A, Słowińska M, Pacewicz J, Skarzynski DJ, Okuda K. 2020. Matrix metallopeptidase expression and modulation by transforming growth factor-β1 in equine endometrosis. Sci Rep. 10(1):1119. doi: 10.1038/s41598-020-58109-0.
  • Szóstek-Mioduchowska A, Wójtowicz A, Sadowska A, Moza Jalali B, Słyszewska M, Łukasik K, Gurgul A, Szmatoła T, Bugno-Poniewierska M, Ferreira-Dias G, et al. 2023. Transcriptomic profiling of mare endometrium at different stages of endometrosis. Sci Rep. 13(1):16263. doi: 10.1038/s41598-023-43359-5.
  • Szóstek AZ, Siemieniuch MJ, Lukasik K, Galvão AM, Ferreira-Dias GM, Skarzynski DJ. 2012. mRNA transcription of prostaglandin synthases and their products in the equine endometrium in the course of fibrosis. Theriogenology. 78(4):768–776. doi: 10.1016/j.theriogenology.2012.03.024.
  • Trundell DA. 2022. Endometriosis in mare; what the mare can teach us when dealing with endometriosis in the woman. In: A. P. Gonçalves, editor. Endometriosis – recent advances, new perspectives and treatments [Internet]. [place unknown]: IntechOpen; [accessed 2023 Jul 10]. doi:10.5772/intechopen.100515.
  • Weng H, Mertens PR, Gressner AM, Dooley S. 2007. IFN-γ abrogates profibrogenic TGF-β signaling in liver by targeting expression of inhibitory and receptor SMADS. J Hepatol. 46(2):295–303. doi: 10.1016/j.jhep.2006.09.014.
  • Wójtowicz A, Molcan T, Lukasik K, Żebrowska E, Pawlina-Tyszko K, Gurgul A, Szmatoła T, Bugno-Poniewierska M, Ferreira-Dias G, Skarzynski DJ, et al. 2023. The potential role of miRNAs and regulation of their expression in the development of mare endometrial fibrosis. Sci Rep. 13(1):15938. doi: 10.1038/s41598-023-42149-3.
  • Wong YS, Mançanares AC, Navarrete FI, Poblete PM, Méndez-Pérez L, Ferreira-Dias GML, Rodriguez-Alvarez L, Castro FO. 2023. Mare stromal endometrial cells differentially modulate inflammation depending on Oestrus cycle status: an in vitro study. Front Vet Sci. 10:1271240. doi: 10.3389/fvets.2023.1271240.
  • Yang S, Banerjee S, De Freitas A, Sanders YY, Ding Q, Matalon S, Thannickal VJ, Abraham E, Liu G. 2012. Participation of miR-200 in pulmonary fibrosis. Am J Pathol. 180(2):484–493. doi: 10.1016/j.ajpath.2011.10.005.
  • Yuan Y, Li N, Zeng L, Shen Z, Jiang C. 2019. Pathogenesis investigation of miR‐199‐5p in oral submucous fibrosis based on bioinformatics analysis. Oral Dis. 25(2):456–465. doi: 10.1111/odi.13008.
  • Zhou L, Dong L, Li H, Liu H, Yang J, Huang Z. 2023. Mesenchymal stem cell-derived exosomes ameliorate TGF-β1-induced endometrial fibrosis by altering their miRNA profile. Am J Transl Res. 15(5):3203–3216.