218
Views
1
CrossRef citations to date
0
Altmetric
Review

Visual Pathway Degeneration in Chemotherapy-Related Neurotoxicity: A Review and Directions for Future Research

, &
Pages 139-147 | Received 04 Sep 2019, Accepted 05 Dec 2019, Published online: 06 Jan 2020

References

  • Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the “Silver Tsunami”: prevalence trajectories and comorbdity burden among older cancer survivors in the United States. Cancer Epidemiol Biomarkers Prev. 2016;25:1029–1036. doi:10.1158/1055-9965.EPI-16-0133.
  • Huang I-C, Hudson MM, Robison LL, Krull KR. Differential impact of symptom prevalence and chronic conditions on quality of life in cancer survivors and non-cancer individuals: a population study. Cancer Epidemiol Biomarkers Prev. 2017;26:1124–1132. doi:10.1158/1055-9965.EPI-16-1007.
  • Taillibert S, Le Rhun E, Chamberlain MC. Chemotherapy-related neurotoxicity. Curr Neurol Neurosci Rep. 2016;16:81. doi:10.1007/s11910-016-0686-x.
  • Kaiser J, Bledowski C, Dietrich J. Neural correlates of chemotherapy-related cognitive impairment. Cortex. 2014;54:33–50. doi:10.1016/j.cortex.2014.01.010.
  • Li M, Caeyenberghs K. Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: a systematic review. Neurosci Biobehav Rev. 2018. doi:10.1016/j.neubiorev.2018.05.019.
  • Janelsins MC, Kesler SR, Ahles TA, Morrow GR. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int Rev Psychiatry. 2014;26:102–113. doi:10.3109/09540261.2013.864260.
  • Wang XM, Walitt B, Saligan L, Tiwari AFY, Cheung CW, Zhang ZJ. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72:86–96. doi:10.1016/j.cyto.2014.12.006.
  • Wardill HR, Mander KA, Van Sebille YZA, et al. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer. 2016;139:2635–2645. doi:10.1002/ijc.30252.
  • McLeary F, Davis A, Rudrawar S, Perkins A, Anoopkumar-Dukie S. Mechanisms underlying select chemotherapeutic-agent-induced neuroinflammation and subsequent neurodegeneration. Eur J Pharmacol. 2019;842:49–56. doi:10.1016/j.ejphar.2018.09.034.
  • Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi:10.1016/S1474-4422(15)70016-5.
  • Mandelblatt JS, Small BJ, Luta G, et al. Cancer-related cognitive outcomes among older breast cancer survivors in the thinking and living with cancer study. J Clin Oncol. 2018;36:3211–3222. doi:10.1200/JCO.18.00140.
  • Kesler SR, Watson CL, Blayney DW. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer. Neurobiol Aging. 2015;36:2429–2442. doi:10.1016/j.neurobiolaging.2015.04.015.
  • Heck JE, Albert SM, Franco R, Gorin SS. Patterns of dementia diagnosis in surveillance, epidemiology, and end results breast cancer survivors who use chemotherapy. J Am Geriatr Soc. 2008;56:1687–1692. doi:10.1111/j.1532-5415.2008.01848.x.
  • Raffa RB, Tallarida RJ. Effects on the visual system might contribute to some of the cognitive deficits of cancer chemotherapy-induced ‘chemo-fog’. J Clin Pharm Ther. 2010;35:249–255. doi:10.1111/j.1365-2710.2009.01086.x.
  • Liu CY, Francis JH, Brodie SE, et al. Retinal toxicities of cancer therapy drugs. Retina. 2014;34:1261–1280. doi:10.1097/IAE.0000000000000242.
  • O’Leary C. Optic and otic side effects of molecular targeted therapies. Semin Oncol Nurs. 2014;30:169–174. doi:10.1016/j.soncn.2014.05.004.
  • Celesia GG, Kaufman D, Cone SB. Simultaneous recording of pattern electroretinography and visual evoked potentials in multiple sclerosis. A method to separate demyelination from axonal damage to the optic nerve. Arch Neurol. 1986;43:1247–1252. doi:10.1001/archneur.1986.00520120031012.
  • Papakostopoulos D, Fotiou F, Dean Hart JC, Banerji NK. The electroretinogram in multiple sclerosis and demyelinating optic neuritis. Electroencephalogr Clin Neurophysiol Potentials Sect. 1989;74:1–10. doi:10.1016/0168-5597(89)90045-2.
  • Mutlu U, Bonnemaijer PWM, Ikram MA, et al. Retinal neurodegeneration and brain MRI markers: the Rotterdam Study. Neurobiol Aging. 2017;60:183–191. doi:10.1016/j.neurobiolaging.2017.09.003.
  • Zivadinov R, Bergsland N, Cappellani R, et al. Retinal nerve fiber layer thickness and thalamus pathology in multiple sclerosis patients. Eur J Neurol. 2014;21:1137–e61. doi:10.1111/ene.12449.
  • Stellmann J-P, Cetin H, Young KL, et al. Pattern of gray matter volumes related to retinal thickness and its association with cognitive function in relapsing-remitting MS. Brain Behav. 2017;7:e00614. doi:10.1002/brb3.2017.7.issue-2.
  • Erskine L, Herrera E. Connecting the retina to the brain. ASN Neuro. 2014;6. doi:10.1177/1759091414562107.
  • Masland RH. The neuronal organization of the retina. Neuron. 2012;76:266–280. doi:10.1016/j.neuron.2012.10.002.
  • Lamin A, Oakley JD, Dubis AM, Russakoff DB, Sivaprasad S. Changes in volume of various retinal layers over time in early and intermediate age-related macular degeneration. Eye. 2019;33:428–434. doi:10.1038/s41433-018-0234-9.
  • Russakoff DB, Lamin A, Oakley JD, Dubis AM, Sivaprasad S. Deep learning for prediction of AMD progression: a pilot study. Investig Opthalmol Vis Sci. 2019;60:712. doi:10.1167/iovs.18-25325.
  • Simó M, Rifà-Ros X, Rodriguez-Fornells A, Bruna J. Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:1311–1321. doi:10.1016/j.neubiorev.2013.04.015.
  • McDonald BC, Saykin AJ. Alterations in brain structure related to breast cancer and its treatment: chemotherapy and other considerations. Brain Imaging Behav. 2013;7:374–387. doi:10.1007/s11682-013-9256-x.
  • Heynen H, van Norren D. Origin of the electroretinogram in the intact macaque eye–I. Principal component analysis. Vision Res. 1985;25:697–707. doi:10.1016/0042-6989(85)90176-2.
  • Heynen H, van Norren D. Origin of the electroretinogram in the intact macaque eye–II. Current source-density analysis. Vision Res. 1985;25:709–715. doi:10.1016/0042-6989(85)90177-4.
  • Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res. 1998;17:485–521. doi:10.1016/S1350-9462(98)00006-8.
  • Stockton RA, Slaughter MM. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989;93:101–122. doi:10.1085/jgp.93.1.101.
  • Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015;141:164–170. doi:10.1016/j.exer.2015.05.008.
  • Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA. Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp. 2002;15:95–111. doi:10.1002/hbm.v15:2.
  • Wilding G, Caruso R, Lawrence TS, et al. Retinal toxicity after high-dose cisplatin therapy. J Clin Oncol. 1985;3:1683–1689. doi:10.1200/JCO.1985.3.12.1683.
  • Dulz S, Asselborn NH, Dieckmann K-P, et al. Retinal toxicity after cisplatin-based chemotherapy in patients with germ cell cancer. J Cancer Res Clin Oncol. 2017;143:1319–1325. doi:10.1007/s00432-017-2384-8.
  • Scaioli V, Caraceni A, Martini C, Curzi S, Capri G, Luca G. Electrophysiological evaluation of visual pathways in paclitaxel-treated patients. J Neurooncol. 2006;77:79–87. doi:10.1007/s11060-005-9008-x.
  • Bakbak B, Gedik S, Koktekir BE, et al. Assessment of ocular neurotoxicity in patients treated with systemic cancer chemotherapeutics. Cutan Ocul Toxicol. 2014;33:7–10. doi:10.3109/15569527.2013.787087.
  • Chelala E, Arej N, Antoun J, et al. Central macular thickness monitoring after a taxane-based therapy in visually asymptomatic patients. Chemotherapy. 2017;62:199–204. doi:10.1159/000456653.
  • Yildiz BK, Ozdek S, Demirci U, et al. Functional and morphological effects of systemic bevacizumab on cancer patients’ eyes. Optom Vis Sci. 2015;92:102–106. doi:10.1097/OPX.0000000000000430.
  • Lam BL. Electrophysiology of Vision : Clinical Testing and Applications. Boca Raton, FL: Taylor & Francis; 2005.
  • Hartmann JT, Lipp H-P. Toxicity of platinum compounds. Expert Opin Pharmacother. 2003;4:889–901. doi:10.1517/14656566.4.6.889.
  • Omoti AE, Omoti CE. Ocular toxicity of systemic anticancer chemotherapy. Pharm Pract. 2006;4:55–59. doi:10.4321/S1885-642X2006000200001.
  • Ishii T, Iwasawa S, Kurimoto R, Maeda A, Takiguchi Y, Kaneda M. Crizotinib-induced abnormal signal processing in the retina. PLoS One. 2015;10:e0135521. doi:10.1371/journal.pone.0135521.
  • Güçlü H, Doganlar ZB, Gürlü VP, et al. Effects of cisplatin-5-fluorouracil combination therapy on oxidative stress, DNA damage, mitochondrial apoptosis, and death receptor signalling in retinal pigment epithelium cells. Cutan Ocul Toxicol. 2018;37:291–304. doi:10.1080/15569527.2018.1456548.
  • Fındık H, Tumkaya L, Yılmaz A, et al. The protective effects of astaxanthin against cisplatin-induced retinal toxicity. Cutan Ocul Toxicol. 2019;38:59–65. doi:10.1080/15569527.2018.1518330.
  • Allocca M, Corrigan JJ, Mazumder A, Fake KR, Samson LD. Inflammation, necrosis, and the kinase RIP3 are key mediators of AAG-dependent alkylation-induced retinal degeneration. Sci Signal. 2019;12:eaau9216. doi:10.1126/scisignal.aau9216.
  • Sergeys J, Etienne I, Van Hove I, et al. Longitudinal in vivo characterization of the streptozotocin-induced diabetic mouse model: focus on early inner retinal responses. Investig Opthalmol Vis Sci. 2019;60:807. doi:10.1167/iovs.18-25372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.