200
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Individual differences in sensory responses influence decision making by Drosophila melanogaster larvae on exposure to contradictory cues

, , , , , & show all
Pages 288-296 | Received 26 Oct 2015, Accepted 29 Apr 2016, Published online: 20 Jul 2016

References

  • Ainsley, J.A., Pettus, J.M., Bosenko, D., Gerstein, C.E., Zinkevich, N., Anderson, M.G., … Johnson, W.A. (2003). Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein pickpocket 1. Current Biology, 13, 1557–1563. doi: 10.1016/S0960-9822(03)00596-7.
  • Brand, A.H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • de Bono, M., & Bargmann, C.I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell, 94, 679–689. doi: 10.1016/S0092-8674(00)81609-8
  • de Belle, J.S., Hilliker, A.J., & Sokolowski, M.B. (1989). Genetic localization of foraging (for): a major gene for larval behavior in Drosophila melanogaster. Genetics, 123, 157–163.
  • de Belle, J.S., & Sokolowski, M.B. (1987). Heredity of rover/sitter: Alternative foraging strategies of Drosophila melanogaster larvae. Heredity, 59, 73–83. doi: 10.1038/hdy.1987.98.
  • Kaun, K.R., Riedl, C.A.L., Chakaborty-Chattterjee, M., Belay, A.T., Douglas, S.J., Gibbs, A.G., & Sokolowski, M.B. (2007). Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. Journal of Experimental Biology, 210, 3547–3558. doi: 10.1242/jeb.006924.
  • Krashes, M., DasGupta, S., Vreede, A., White, B., Armstrong, J.D., & Waddell, S. (2009). A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 139, 416–427. doi: 10.1016/j.cell.2009.08.035.
  • Larson, M.C., Domingos, A.I., Joners, W.D., Chiappe, M.E., Amrein, H., & Vosshall, L.B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43, 703–714. doi: 10.1016/j.neuron.2004.08.019.
  • Liu, L., Leonard, A.S., Motto, D.G., Feller, M.A., Price, M.P., Johnson, W.A., & Welsh, M.J. (2003a). Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron, 39, 133–146. doi:10.1016/S0896-6273(03)00394-5.
  • Liu, L., Yermolaieva, O., Johnson, W.A., Abboud, F.M., & Welsh, M.J. (2003b). Identification and function of thermosensory neurons in Drosophila larvae. Nature Neuroscience, 6, 267–273. doi: 10.1038/nn1009.
  • Niewalda, T., Singhai, N., Fiala, A., Saumweber, T., Wegener, S., & Gerber, B. (2008). Salt processing in larval Drosophila: choice, Feeding, and learning shift from appetitive to aversive in a concentration-dependent way. Chemical Senses, 33, 685–692. doi: 10.1093/chemse/bjn037.
  • Osborne, K.A., Robichon, A., Burgess, E., Butland, S., Shaw, R.A., Coulthard, A., … Sokolowski, M.B. (1997). Natural behaviour polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science, 277, 834–836. doi: 10.1126/science.277.5327.834.
  • Ohashi, S., Morimoto, T., Suzuki, Y., Miyakawa, H., & Aonishi, T. (2014). A novel behavioral strategy, continuous biased running, during chemotaxis in Drosophila larvae. Neuroscience Letters, 570, 10–15. doi: 10.1016/j.neulet.2014.04.011.
  • Sawyer, L.A., Hennessy, J.M., Peixoto, A.A., Rosato, E., Parkinson, H., Costa, R., & Kyriacou, C.P. (1997). Natural variation in a Drosophila clock gene and temperature compensation. Science, 278, 2117–2120. doi: 10.1126/science.278.5346.2117.
  • Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Review of Psychology, 57, 87–115. doi: 10.1146/annurev.psych.56.091103.070229.
  • Shinkai, Y., Yamamoto, Y., Fujiwara, M., Tabata, T., Murayama, T., Hirotsu, T., … & Ishihara, T. (2011). Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase, GCY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans. The Journal of Neuroscience, 31, 3007–3015. doi: 10.1523/JNEUROSCI.4691-10.2011.
  • Sokolowski, M.B. (1980). Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behavior Genetics, 10, 291–302. doi: 10.1007/BF01067774.
  • Sokolowski, M.B. (1998). Genes for normal behavioural variation: recent clues from flies and worms. Neuron, 21, 21463–21466. doi: 10.1016/S0896-6273(00)80556-5.
  • Song, W., Onishi, M., Jan, L.Y., & Jan, Y.N. (2007). Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae. Proceedings of National Academy of Sciences, 104, 5199–5204. doi: 10.1073/pnas.0700895104.
  • Su, C.-Y., & Wang, J.W. (2014). Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila. Current Opinion in Neurobiology, 29, 9–16. doi: 10.1016/j.conb.2014.04.008.
  • Sugrue, L.P., Corrado, G.S., & Newsome, W.T. (2005). Choosing the greater of two goods: Neural currencies for valuation and decision making. Nature Review Neuroscience, 6, 363–375. doi:10.1038/nrn1666.
  • Tabuchi, K., Sawamoto, K., Suzuki, E., Ozaki, K., Sone, M., Hama, C., … Okano, H. (2000). GAL4/UAS-WGA system as a powerful tool for tracing drosophila transsynaptic neural pathways. Journal of Neuroscience Research, 59, 94–99. doi: (SICI)1097-4547(20000101)59:1/(SICI)1097-4547(20000101)59:1<94::AID-JNR11>3.0.CO;2-Q.
  • Takahashi, H., Takano, H., Camerer, C.F., Ideno, T., Okubo, S., Matsui, H., … Suhara, T. (2012). Honesty mediates the relationship between serotonin and reaction to unfairness. Proceedings of National Academy of Sciences, 109, 4281–4284. doi: 10.1073/pnas.1118687109.
  • Tang, S., & Guo, A. (2001). Choice behavior of Drosophila facing contradictory visual cues. Science, 294, 1543–1547. DOI: 10.1126/science.1058237.
  • Yang, C.H., Belawat, P., Hafen, E., Jan, L.Y., & Jan, Y.N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science, 19, 1679–1683. doi: 10.1126/science.1151842.
  • Yuan, Q., Song, Y., Yang, C.-H., Jan, L.Y., & Jan, Y.N. (2014). Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nature Neuroscience, 17, 81–88. doi: 10.1038/nn.3581.
  • Zhang, T., Branch, A., & Shen, P. (2013). Octopamine-mediated circuit mechanism underlying controlled appetite for palatable food in Drosophila. Proceedings of National Academy of Sciences, 110, 15431–15436. doi: 10.1073/pnas.1308816110.
  • Zhang, K., Guo, J.Z., Peng, Y., Xi, W., & Guo, A. (2007). Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science, 316, 1901–1904. doi: 10.1126/science.1137357.
  • Zhang, S.W., & Srinlvasan, M.V. (1994). Prior experience enhances pattern discrimination in insect vision. Nature, 368, 330–332. doi: 10.1038/368330a0.
  • Xiang, Y., Yuan, Q., Vogt, N., Looger, L.L., Jan, L.Y., & Jan, Y.N. (2010). Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature, 468, 921–926. doi: 10.1038/nature09576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.