2,213
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Characterization of axonal transport defects in Drosophila Huntingtin mutants

&
Pages 212-221 | Received 25 Feb 2016, Accepted 28 Apr 2016, Published online: 22 Jul 2016

References

  • Caviston, J.P., Zajac, A.L., Tokito, M., & Holzbaur, E.L. (2011). Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Molecular Biology of the Cell, 22, 478–492.
  • Choi, Y.B., Kadakkuzha, B.M., Liu, X.A., Akhmedov, K., Kandel, E.R., & Puthanveettil, S.V. (2014). Huntingtin is critical both pre- and postsynaptically for long-term learning-related synaptic plasticity in aplysia. PLoS One, 9, e103004.
  • Colin, E., Zala, D., Liot, G., Rangone, H., Borrell-Pagès, M., Li, X.J. … Saudou, F. (2008). Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. The EMBO Journal, 27, 2124–2134.
  • Dietz, K.N., Di Stefano, L., Maher, R.C., Zhu, H., Macdonald, M.E., Gusella, J.F., & Walker, J.A. (2015). The Drosophila Huntington’s disease gene ortholog dhtt influences chromatin regulation during development. Human Molecular Genetics, 24, 330–345.
  • Dragatsis, I., Efstratiadis, A., & Zeitlin, S. (1998). Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development, 125, 1529–1539.
  • Engelender, S., Sharp, A.H., Colomer, V., Tokito, M.K., Lanahan, A., Worley, P. … Holzbaur, E. L. (1997). Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Human Molecular Genetics, 6, 2205–2212.
  • Finley, K.D., Edeen, P.T., Cumming, R.C., Mardahl-Dumesnil, M.D., Taylor, B.J., Rodriguez, M.H. … Hwang, C.E. (2003). blue cheese mutations define a novel, conserved gene involved in progressive neural degeneration. The Journal of Neuroscience, 23, 1254–1264.
  • Fu, M.M., & Holzbaur, E.L. (2014). Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends in Cell Biology, 24, 564–574.
  • Fuger, P., Behrends, L.B., Mertel, S., Sigrist, S.J., & Rasse, T.M. (2007). Live imaging of synapse development and measuring protein dynamics using two-color fluorescence recovery after photo-bleaching at Drosophila synapses. Nature Protocols, 2, 3285–3298.
  • Gauthier, L.R., Charrin, B.C., Borrell-Pagès, M., Dompierre, J. P., Rangone, H., Cordelières, F.P. … De Mey, J. (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118, 127–138.
  • Godin, J.D., Colombo, K., Molina-Calavita, M., Keryer, G., Zala, D., Charrin, B.C. … Dietrich, P. (2010). Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron, 67, 392–406.
  • Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B. … Sintasath, L. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron, 40, 25–40.
  • Guo, X., Macleod, G.T., Wellington, A., Hu, F., Panchumarthi, S., Schoenfield, M. … Marin, L. (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron, 47, 379–393.
  • Haghnia, M., Cavalli, V., Shah, S.B., Schimmelpfeng, K., Brusch, R., Yang, G. … Herrera, C. (2007). Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Molecular Biology of the Cell, 18, 2081–2089.
  • Hollenbeck, P.J., & Saxton, W.M. (2005). The axonal transport of mitochondria. Journal of Cell Science, 118, 5411–5419.
  • Kratter, I.H., & Finkbeiner, S. (2010). PolyQ disease: Too many Qs, too much function? Neuron, 67, 897–899.
  • Lee, W.C., Yoshihara, M., & Littleton, J.T. (2004). Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 3224–3229.
  • Li, J.Y., & Conforti, L. (2013). Axonopathy in Huntington’s disease. Experimental Neurology, 246, 62–71.
  • Li, X.J., Li, S.H., Sharp, A.H., Nucifora, F.C., Schilling, G., Lanahan, A. … Worley, P. (1995). A huntingtin-associated protein enriched in brain with implications for pathology. Nature, 378, 398–402.
  • Li, Z., Karlovich, C.A., Fish, M.P., Scott, M.P., & Myers, R.M. (1999). A putative Drosophila homolog of the Huntington’s disease gene. Human Molecular Genetics, 8, 1807–1815.
  • Ligon, L.A., Tokito, M., Finklestein, J.M., Grossman, F.E., & Holzbaur, E.L. (2004). A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. The Journal of Biological Chemistry, 279, 19201–19208.
  • Lim, A., & Kraut, R. (2009). The Drosophila BEACH family protein, blue cheese, links lysosomal axon transport with motor neuron degeneration. The Journal of Neuroscience, 29, 951–963.
  • Liot, G., Zala, D., Pla, P., Mottet, G., Piel, M., & Saudou, F. (2013). Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. The Journal of Neuroscience, 33, 6298–6309.
  • Louie, K., Russo, G.J., Salkoff, D.B., Wellington, A., & Zinsmaier, K.E. (2008). Effects of imaging conditions on mitochondrial transport and length in larval motor axons of Drosophila. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 151, 159–172.
  • Lumsden, A.L., Henshall, T.L., Dayan, S., Lardelli, M.T., & Richards, R.I. (2007). Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Human Molecular Genetics, 16, 1905–1920.
  • Ben M’Barek, K., Pla, P., Orvoen, S., Benstaali, C., Godin, J.D., Gardier, A.M. … Saudou, F. (2013). Huntingtin mediates anxiety/depression-related behaviors and hippocampal neurogenesis. The Journal of Neuroscience, 33, 8608–8620.
  • McGuire, J.R., Rong, J., Li, S.H., & Li, X.J. (2006). Interaction of Huntingtin-associated protein-1 with kinesin light chain: Implications in intracellular trafficking in neurons. The Journal of Biological Chemistry, 281, 3552–3559.
  • Morfini, G.A., You, Y.M., Pollema, S.L., Kaminska, A., Liu, K., Yoshioka, K. … Brady, S.T. (2009). Pathogenic huntingtin inhibits faxt axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neuroscience, 12, 864–871.
  • Nasir, J., Floresco, S.B., O’Kusky, J.R., Diewert, V.M., Richman, J.M., Zeisler, J. … Borowski, A. (1995). Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell, 81, 811–823.
  • Orr, H.T. (2012). Polyglutamine neurodegeneration: Expanded glutamines enhance native functions. Current Opinion in Genetics & Development, 22, 251–255.
  • Pardo, R., Molina-Calavita, M., Poizat, G., Keryer, G., Humbert, S., & Saudou, F. (2010). pARIS-htt: An optimised expression platform to study huntingtin reveals functional domains required for vesicular trafficking. Molecular Brain, 3, 17.
  • Perlson, E., Maday, S., Fu, M.M., Moughamian, A.J., & Holzbaur, E.L. (2010). Retrograde axonal transport: Pathways to cell death? Trends in Neurosciences, 33, 335–344.
  • Pilling, A.D., Horiuchi, D., Lively, C.M., & Saxton, W.M. (2006). Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Molecular Biology of the Cell, 17, 2057–2068.
  • Reddy, P.H., & Shirendeb, U.P. (2012). Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. Biochimica et Biophysica Acta, 1822, 101–110.
  • Rockabrand, E., Slepko, N., Pantalone, A., Nukala, V.N., Kazantsev, A., Marsh, J.L. … Sullivan, P.G. (2007). The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Human Molecular Genetics, 16, 61–77.
  • Romero, E., Cha, G.H., Verstreken, P., Ly, C.V., Hughes, R.E., Bellen, H.J., & Botas, J. (2008). Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm. Neuron, 57, 27–40.
  • Roux, J.C., Zala, D., Panayotis, N., Borges-Correia, A., Saudou, F., & Villard, L. (2012). Modification of Mecp2 dosage alters axonal transport through the Huntingtin/Hap1 pathway. Neurobiology of Disease, 45, 786–795.
  • Rui, Y.N., Xu, Z., Patel, B., Chen, Z., Chen, D., Tito, A. … David, G. (2015). Huntingtin functions as a scaffold for selective macroautophagy. Nature Cell Biology, 17, 262–275.
  • Schulte, J., & Littleton, J.T. (2011). The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Current Trends in Neurology, 5, 65–78.
  • Seong, I.S., Woda, J.M., Song, J.J., Lloret, A., Abeyrathne, P.D., Woo, C.J. … Gregory, G. (2010). Huntingtin facilitates polycomb repressive complex 2. Human Molecular Genetics, 19, 573–583.
  • Smith, G.A., Rocha, E.M., McLean, J.R., Hayes, M.A., Izen, S.C., Isacson, O., & Hallett, P.J. (2014). Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington’s disease. Human Molecular Genetics, 23, 4510–4527.
  • Stowers, R.S., Megeath, L.J., Górska-Andrzejak, J., Meinertzhagen, I.A., & Schwarz, T.L. (2002). Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron, 36, 1063–1077.
  • Trushina, E., Dyer, R.B., Badger, J.D., Ure, D., Eide, L., Tran, D.D. … Vrieze, B. T. (2004). Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Molecular and Cellular Biology, 24, 8195–8209.
  • De Vos, K.J., Sable, J., Miller, K.E., & Sheetz, M.P. (2003). Expression of phosphatidylinositol (4,5) bisphosphate-specific pleckstrin homology domains alters direction but not the level of axonal transport of mitochondria. Molecular Biology of the Cell, 14, 3636–3649.
  • Weiss, K.R., Kimura, Y., Lee, W.C., & Littleton, J.T. (2012). Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington’s disease model. Genetics, 190, 581–600.
  • Wong, Y.C., & Holzbaur, E.L. (2014). The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. The Journal of Neuroscience, 34, 1293–1305.
  • Zala, D., Hinckelmann, M.V., & Saudou, F. (2013). Huntingtin’s function in axonal transport is conserved in Drosophila melanogaster. PLoS One, 8, e60162.
  • Zhang, S., Feany, M.B., Saraswati, S., Littleton, J.T., & Perrimon, N. (2009). Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington’s disease model. Disease Models & Mechanisms, 2, 247–266.
  • Zuccato, C., & Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease. Progress in Neurobiology, 81, 294–330.