1,054
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Rationally subdividing the fly nervous system with versatile expression reagents

Pages 185-194 | Received 01 Jun 2016, Accepted 12 Oct 2016, Published online: 15 Nov 2016

References

  • Alekseyenko, O.V., Lee, C., & Kravitz, E.A. (2010). Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One, 5, e10806. doi: 10.1371/journal.pone.0010806.
  • Andrew, D.J., Horner, M.A., Petitt, M.G., Smolik, S.M., & Scott, M.P. (1994). Setting limits on homeotic gene function: Restraint of sex combs reduced activity by teashirt and other homeotic genes. EMBO Journal, 13, 1132–1144.
  • Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., … Rubin, G.M. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. Elife, 3, e04577. doi: 10.7554/eLife.04577.
  • Brand, A.H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • Calleja, M., Moreno, E., Pelaz, S., & Morata, G. (1996). Visualization of gene expression in living adult Drosophila. Science, 274, 252–255. doi: 10.1126/science.274.5285.252.
  • Chou, Y.H., Spletter, M.L., Yaksi, E., Leong, J.C., Wilson, R.I., & Luo, L. (2010). Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, 13, 439–449. doi: nn.2489[pii]10.1038/nn.248910.1038/nn.2489.
  • Clyne, J.D., & Miesenbock, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell, 133, 354–363. doi: 10.1016/j.cell.2008.01.050.
  • Connolly, J.B., Roberts, I.J., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T., & O'kane, C.J. (1996). Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science, 274, 2104–2107. doi: 10.1126/science.274.5295.2104.
  • Daniels, R.W., Collins, C.A., Gelfand, M.V., Dant, J., Brooks, E.S., Krantz, D.E., & DiAntonio, A. (2004). Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. Journal of Neuroscience, 24, 10466–10474. doi: 10.1523/JNEUROSCI.3001-04.2004.
  • Demir, E., & Dickson, B.J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell, 121, 785–794. doi: 10.1016/j.cell.2005.04.027.
  • de Navas, L., Foronda, D., Suzanne, M., & Sanchez-Herrero, E. (2006). A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mechanisms of Development, 123, 860–867. doi: 10.1016/j.mod.2006.07.010.
  • Diao, F., Ironfield, H., Luan, H., Diao, F., Shropshire, W.C., Ewer, J., … White, B.H. (2015). Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes. Cell Reports, 10, 1410–1421. doi: 10.1016/j.celrep.2015.01.059.
  • Diao, F., & White, B.H. (2012). A novel approach for directing transgene expression in Drosophila: T2A-Gal4 in-frame fusion. Genetics, 190, 1139–1144. doi: 10.1534/genetics.111.136291.
  • Dietzl, G., Chen, D., Schnorrer, F., Su, K.C., Barinova, Y., Fellner, M., … Dickson, B.J. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448, 151–156. doi: 10.1038/nature05954.
  • Fasano, L., Roder, L., Core, N., Alexandre, E., Vola, C., Jacq, B., & Kerridge, S. (1991). The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell, 64, 63–79. doi: 10.1016/0092-8674(91)90209-H.
  • Featherstone, D.E., Rushton, E.M., Hilderbrand-Chae, M., Phillips, A.M., Jackson, F.R., & Broadie, K. (2000). Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron, 27, 71–84. doi: 10.1016/S0896-6273(00)00010-6.
  • Fei, H., Chow, D.M., Chen, A., Romero-Calderon, R., Ong, W.S., Ackerson, L.C., … Krantz, D.E. (2010). Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection. Journal of Experimental Biology, 213, 1717–1730. doi: 213/10/1717 [pii]10.1242/jeb.036053
  • Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., & Birman, S. (2003). Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. Journal of Neurobiology, 54, 618–627. doi: 10.1002/neu.10185.
  • Gailey, D.A., & Hall, J.C. (1989). Behavior and cytogenetics of fruitless in Drosophila melanogaster: Different courtship defects caused by separate, closely linked lesions. Genetics, 121, 773–785.
  • Gao, G., McMahon, C., Chen, J., & Rong, Y.S. (2008). A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 13999–14004. doi: 10.1073/pnas.0805843105.
  • Gao, S., Takemura, S.Y., Ting, C.Y., Huang, S., Lu, Z., Luan, H., … Lee, C.H. (2008). The neural substrate of spectral preference in Drosophila. Neuron, 60, 328–342. doi: 10.1016/j.neuron.2008.08.010.
  • Gnerer, J.P., Venken, K.J., & Dierick, H.A. (2015). Gene-specific cell labeling using MiMIC transposons. Nucleic Acids Research, 43, e56. doi: 10.1093/nar/gkv113.
  • Gohl, D.M., Silies, M.A., Gao, X.J., Bhalerao, S., Luongo, F.J., Lin, C.C., … Clandinin, T.R. (2011). A versatile in vivo system for directed dissection of gene expression patterns. Nature Methods, 8, 231–237. doi: 10.1038/Nmeth.1561.
  • Gong, W.J., & Golic, K.G. (2003). Ends-out, or replacement, gene targeting in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 100, 2556–2561. doi: 10.1073/pnas.0535280100.
  • Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Harrison, M.M., … O'connor-Giles, K.M. (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194, 1029–1035. doi: 10.1534/genetics.113.152710.
  • Hampel, S., Chung, P., McKellar, C.E., Hall, D., Looger, L.L., & Simpson, J.H. (2011). Drosophila Brainbow: A recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nature Methods, 8, 253–259. doi: nmeth.1566[pii]10.1038/nmeth.156610.1038/nmeth.1566.
  • Hampel, S., Franconville, R., Simpson, J.H., & Seeds, A.M. (2015). A neural command circuit for grooming movement control. Elife, 4, e08758. doi: 10.7554/eLife.08758.
  • Harris, R.M., Pfeiffer, B.D., Rubin, G.M., & Truman, J.W. (2015). Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. Elife, 4, e04493. doi: 10.7554/eLife.04493.
  • Hudry, B., Viala, S., Graba, Y., & Merabet, S. (2011). Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biology, 9, 5. doi: 10.1186/1741-7007-9-5.
  • Jackson, F.R., Newby, L.M., & Kulkarni, S.J. (1990). Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxylase. J. Neurochem, 54, 1068–1078. doi: 10.1111/j.1471-4159.1990.tb02359.x.
  • Jarvis, E., Bruce, H.S., & Patel, N.H. (2012). Evolving specialization of the arthropod nervous system. Proceedings of the National Academy of Sciences of the United States of America, 109 Suppl 1, 10634–10639. doi: 10.1073/pnas.1201876109.
  • Kitamoto, T. (2002). Conditional disruption of synaptic transmission induces male–male courtship behavior in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 99, 13232–13237. doi: 10.1073/pnas.202489099.
  • Kitamoto, T., Wang, W., & Salvaterra, P.M. (1998). Structure and organization of the Drosophila cholinergic locus. Journal of Biological Chemistry, 273, 2706–2713. doi: 10.1074/jbc.273.5.2706.
  • Knapp, J.M., Chung, P., & Simpson, J.H. (2015). Generating customized transgene landing sites and multi-transgene arrays in Drosophila using phiC31 integrase. Genetics, 199, 919–934. doi: 10.1534/genetics.114.173187.
  • Kolodziejczyk, A., Sun, X., Meinertzhagen, I.A., & Nassel, D.R. (2008). Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS ONE, 3, e2110. doi: 10.1371/journal.pone.0002110.
  • Li, H., Chaney, S., Roberts, I.J., Forte, M., & Hirsh, J. (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Current Biology, 10, 211–214. doi: 10.1016/S0960-9822(00)00340-7.
  • Luan, H., Peabody, N.C., Vinson, C.R., & White, B.H. (2006). Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron, 52, 425–436. doi: 10.1016/j.neuron.2006.08.028.
  • Mahr, A., & Aberle, H. (2006). The expression pattern of the Drosophila vesicular glutamate transporter: A marker protein for motoneurons and glutamatergic centers in the brain. Gene Expression Patterns, 6, 299–309. doi: 10.1016/j.modgep.2005.07.006.
  • Manoli, D.S., Foss, M., Villella, A., Taylor, B.J., Hall, J.C., & Baker, B.S. (2005). Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature, 436, 395–400. doi: 10.1038/nature03859.
  • Manseau, L., Baradaran, A., Brower, D., Budhu, A., Elefant, F., Phan, H., … Selleck, S. (1997). GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Developmental Dynamics, 209, 310–322. doi: 10.1002/(Sici)1097-0177(199707)209:3<310::Aid-Aja6>3.0.Co;2-L.
  • Nern, A., Pfeiffer, B.D., Svoboda, K., & Rubin, G.M. (2011). Multiple new site-specific recombinases for use in manipulating animal genomes. Proceedings of the National Academy of Sciences of the United States of America, 108, 14198–14203. doi: 10.1073/pnas.1111704108.
  • Ng, M., Roorda, R.D., Lima, S.Q., Zemelman, B.V., Morcillo, P., & Miesenbock, G. (2002). Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron, 36, 463–474. doi: 10.1016/S0896-6273(02)00975-3.
  • O'Kane, C.J. (2011). Drosophila as a model organism for the study of neuropsychiatric disorders. Current Topics in Behavioral Neurosciences, 7, 37–60. doi: 10.1007/7854_2010_110.
  • Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., … Chung, J. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441, 1157–1161. doi: 10.1038/nature04788.
  • Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.T., Misra, S., Murphy, C., … Rubin, G.M. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 9715–9720. doi: 10.1073/pnas.0803697105.
  • Pfeiffer, B.D., Ngo, T.T., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., & Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 735–755. doi: 10.1534/genetics.110.119917.
  • Rao, S., Lang, C., Levitan, E.S., & Deitcher, D.L. (2001). Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. Journal of Neurobiology, 49, 159–172. doi: 10.1002/neu.1072.
  • Robinett, C.C., Vaughan, A.G., Knapp, J.M., & Baker, B.S. (2010). Sex and the single cell. II. There is a time and place for sex. PLoS Biology, 8, e1000365. doi: 10.1371/journal.pbio.1000365.
  • Salvaterra, P.M., & Kitamoto, T. (2001). Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Brain Research: Gene Expression Patterns, 1, 73–82. doi: 10.1016/S1567-133X(01)00011-4.
  • Schneider, A., Ruppert, M., Hendrich, O., Giang, T., Ogueta, M., Hampel, S., … Scholz, H. (2012). Neuronal basis of innate olfactory attraction to ethanol in Drosophila. PLoS One, 7, e52007. doi: 10.1371/journal.pone.0052007.
  • Sepp, K.J., & Auld, V.J. (1999). Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Genetics, 151, 1093–1101.
  • Sharma, Y., Cheung, U., Larsen, E.W., & Eberl, D.F. (2002). PPTGAL, a convenient Gal4 P-element vector for testing expression of enhancer fragments in drosophila. Genesis, 34, 115–118. doi: 10.1002/gene.10127.
  • Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L., & Dickson, B.J. (2005). Neural circuitry that governs Drosophila male courtship behavior. Cell, 121, 795–807. doi: 10.1016/j.cell.2005.04.026.
  • Stowers, R.S. (2011). An efficient method for recombineering GAL4 and QF drivers. Fly (Austin), 5, 371–378. doi: 10.4161/fly.5.4.17560.
  • Venken, K.J., Simpson, J.H., & Bellen, H.J. (2011). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron, 72, 202–230. doi: 10.1016/j.neuron.2011.09.021.
  • Yoshihara, M., & Ito, K. (2000). Improved GAL4 screening kit for large-scale generation of enhancer-trap strains. Drosophila Information Service, 83, 199–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.