265
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Immediate-early alcohol-responsive miRNA expression in Drosophila

, , &
Pages 195-204 | Received 15 Sep 2016, Accepted 21 Oct 2016, Published online: 15 Nov 2016

References

  • Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., … Tuschl, T. (2003). The small RNA profile during Drosophila melanogaster development. Developmental Cell, 5, 337–350.
  • Bala, S., & Szabo, G. (2012). MicroRNA signature in alcoholic liver disease. International Journal of Hepatology, 2012, 498232. doi: 10.1155/2012/498232.
  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297. doi: 10.1016/S0092-8674(04)00045-5.
  • Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233. doi: 10.1016/j.cell.2009.01.002.
  • Bejarano, F., Bortolamiol-Becet, D., Dai, Q., Sun, K., Saj, A., Chou, Y.T., … Lai, E.C. (2012). A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development, 139, 2821–2831.
  • Berezikov, E., Robine, N., Samsonova, A., Westholm, J.O., Naqvi, A., Hung, J.H., … Lai, E.C. (2011). Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Research, 21, 203–215.
  • Berger, K.H., Kong, E.C., Dubnau, J., Tully, T., Moore, M.S., & Heberlein, U. (2008). Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcoholism, Clinical and Experimental Research, 32, 895–908. doi: 10.1111/j.1530-0277.2008.00659.x.
  • Bethune, J., Artus-Revel, C.G., & Filipowicz, W. (2012). Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Reports, 13, 716–723. doi: 10.1038/embor.2012.82.
  • Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., … Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics, 29, 365–371.
  • Chang, L., Kreko, T., Davison, H., Cusmano, T., Wu, Y., Rothenfluh, A., & Eaton, B.A. (2013). Normal dynactin complex function during synapse growth in Drosophila requires membrane binding by Arfaptin. Molecular Biology of the Cell, 24, 1749–1764. doi: 10.1091/mbc.E12-09-0697.
  • Çiçek, I., Karaca, S., Brankatschk, M., Eaton, S., Urlaub, H., & Shcherbata, H.R. (2016). Hedgehog signaling strength is orchestrated by the mir-310 cluster of microRNAs in response to diet. Genetics, 202, 1167–1183.
  • Cowmeadow, R.B., Krishnan, H.R., & Atkinson, N.S. (2005). The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcoholism, Clinical and Experimental Research, 29, 1777–1786. doi: 10.1097/01.alc.0000183232.56788.62.
  • Cowmeadow, R.B., Krishnan, H.R., Ghezzi, A., Al’hasan, Y.M., Wang, Y.Z., & Atkinson, N.S. (2006). Ethanol tolerance caused by slowpoke induction in Drosophila. Alcoholism, Clinical and Experimental Research, 30, 745–753.
  • Derst, C., Walther, C., Veh, R.W., Wicher, D., & Heinemann, S.H. (2006). Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE. Biochemical and Biophysical Research Communincation, 339, 939–948. doi: 10.1016/j.bbrc.2005.11.096.
  • Doench, J.G., & Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes and Development, 18, 504–511. doi: 10.1101/gad.1184404.
  • Eisen, M.B., Spellman, P.T., Brown, P.O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science USA, 95, 14863–14868. doi: 10.1073/pnas.95.25.14863.
  • Fang, Z., & Rajewsky, N. (2011). The impact of miRNA target sites in coding sequences and in 3'UTRs. PLoS One, 6, e18067. doi: 10.1371/journal.pone.0018067.
  • Ge, W., Chen, Y.-W., Weng, R., Lim, S.F., Buescher, M., Zhang, R., & Cohen, S.M. (2012). Overlapping functions of microRNAs in control of apoptosis during Drosophila embryogenesis. Cell Death and Differentiation, 19, 839–846. doi: 10.1038/cdd.2011.161.
  • Ghezzi, A., & Atkinson, N.S. (2011). Homeostatic control of neural activity: a Drosophila model for drug tolerance and dependence. International Review of Neurobiology, 99, 23–50.
  • Ghezzi, A., Krishnan, H.R., & Atkinson, N.S. (2014). Susceptibility to ethanol withdrawal seizures is produced by BK channel gene expression. Addiction Biology, 19, 332–337. doi: 10.1111/j.1369-1600.2012.00465.x.
  • Ghezzi, A., Krishnan, H.R., Lew, L., Prado, F.J., Ong, D.S., & Atkinson, N.S. (2013). Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance. PLoS Genetics, 9, e1003986. doi: 10.1371/journal.pgen.1003986.
  • Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., & Zamore, P.D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway.RNA, 16, 43–56.
  • Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., & Eddy, S.R. (2003). Rfam: an RNA family database. Nucleic Acids Research, 31, 439–441. doi: 10.1093/nar/gkg006.
  • Grueber, W.B., Ye, B., Yang, C.-H., Younger, S., Borden, K., Jan, L.Y., & Jan, Y.-N. (2007). Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development, 134, 55–64. doi: 10.1242/dev.02666.
  • Gurtan, A.M., & Sharp, P.A. (2013). The role of miRNAs in regulating gene expression networks. Journal of. Molecular Biology 425, 3582–3600. doi: 10.1016/j.jmb.2013.03.007.
  • Huang da, W., Sherman, B.T., & Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.
  • Ibanez-Ventoso, C., Vora, M., & Driscoll, M. (2008). Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS One, 3, e2818.
  • King, I., & Heberlein, U. (2011). Tao kinases as coordinators of actin and microtubule dynamics in developing neurons. Communicative and Integrative Biology, 4, 554–556. doi: 10.4161/cib.16051.
  • King, I., Tsai, L.T., Pflanz, R., Voigt, A., Lee, S., Jackle, H., … Heberlein, U. (2011). Drosophila tao controls mushroom body development and ethanol-stimulated behavior through par-1. Journal of Neuroscience, 31, 1139–1148.
  • Kluiver, J., Gibcus, J.H., Hettinga, C., Adema, A., Richter, M.K., Halsema, N., … van den Berg, A. (2012). Rapid generation of microRNA sponges for microRNA inhibition. PLoS One, 7, e29275
  • Kong, E.C., Allouche, L., Chapot, P.A., Vranizan, K., Moore, M.S., Heberlein, U., & Wolf, F.W. (2010). Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila. Alcoholism, Clinical and Experimental Research, 34, 302–316. doi: 10.1111/j.1530-0277.2009.01093.x.
  • Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42, D68–D73. doi: 10.1093/nar/gkt1181.
  • Krishnan, H.R., Al-Hasan, Y.M., Pohl, J.B., Ghezzi, A., & Atkinson, N.S. (2012). A role for dynamin in triggering ethanol tolerance. Alcoholism, Clinical and Experimental Research, 36, 24–34. doi: 10.1111/j.1530-0277.2011.01587.x.
  • Krishnan, H.R., Li, X., Ghezzi, A., & Atkinson, N.S. (2016). A DNA element in the slo gene modulates ethanol tolerance. Alcohol, 51, 37–42. doi: 10.1016/j.alcohol.2015.12.003.
  • Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858. doi: 10.1126/science.1064921.
  • Lai, E.C. (2004). Predicting and validating microRNA targets. Genome Biology, 5, 115. doi: 10.1186/gb-2004-5-9-115.
  • Lai, E.C., Tomancak, P., Williams, R.W., & Rubin, G.M. (2003). Computational identification of Drosophila microRNA genes. Genome Biology, 4, R42. doi: 10.1186/gb-2003-4-7-r42.
  • Larson, E.B., Akkentli, F., Edwards, S., Graham, D.L., Simmons, D.L., Alibhai, I.N., … Self, D.W. (2010). Striatal regulation of ΔFosB, FosB, and cFos during cocaine self-administration and withdrawal. Journal of Neurochemistry, 115, 112–122.
  • Li, J., Liu, X., Qin, S., Guan, Y., Liu, Y., Cheng, Y., … Zhang, C. (2013). MicroRNA expression profile and functional analysis reveal that miR-382 is a critical novel gene of alcohol addiction. EMBO Molecular Medicine, 5, 1402–1414.
  • Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967. doi: 10.1093/bioinformatics/btp336.
  • Lloyd, T.E., Verstreken, P., Ostrin, E.J., Phillippi, A., Lichtarge, O., & Bellen, H.J. (2000). A genome-wide search for synaptic vesicle cycle proteins in Drosophila. Neuron, 26, 45–50. doi: 10.1016/S0896-6273(00)81136-8.
  • Loya, C.M., Lu, C.S., Van Vactor, D., & Fulga, T.A. (2009). Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nature Methods, 6, 897–903. doi: 10.1038/nmeth.1402.
  • Maiya, R., Lee, S., Berger, K.H., Kong, E.C., Slawson, J.B., Griffith, L.C., … Heberlein, U. (2012). DlgS97/SAP97, a neuronal isoform of discs large, regulates ethanol tolerance. PLoS One, 7, e48967
  • Meijer, H.A., Smith, E.M., & Bushell, M. (2014). Regulation of miRNA strand selection: follow the leader. Biochemical Society Transactions, 42, 1135–1140. doi: 10.1042/BST20140142.
  • Nunez, Y.O., Truitt, J.M., Gorini, G., Ponomareva, O.N., Blednov, Y.A., Harris, R.A., & Mayfield, R.D. (2013). Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics, 14, 725. doi: 10.1186/1471-2164-14-725.
  • Okamura, K., Phillips, M.D., Tyler, D.M., Duan, H., Chou, Y.T., & Lai, E.C. (2008). The regulatory activity of microRNA* species has substantial influence on microRNA and 3’ UTR evolution. Nat. Struct. Mol. Biol, 15, 354–363.
  • Osterwalder, T., Yoon, K.S., White, B.H., & Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proceedings of National Academy of Science USA, 98, 12596–12601. doi: 10.1073/pnas.221303298.
  • Pancratov, R., Peng, F., Smibert, P., Yang, S., Olson, E.R., Guha-Gilford, C., … DasgGupta, R. (2013). The miR-310/13 cluster antagonizes β-catenin function in the regulation of germ and somatic cell differentiation in the Drosophila testis. Development, 140, 2904–2916.
  • Perkins, K.K., Admon, A., Patel, N., & Tjian, R. (1990). The Drosophila Fos-related AP-1 protein is a developmentally regulated transcription factor. Genes and Development, 4, 822–834. doi: 10.1101/gad.4.5.822.
  • Peru, Y.C.D.P.R.L., Acevedo, S.F., Rodan, A.R., Chang, L.Y., Eaton, B.A., & Rothenfluh, A. (2012). Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. Journal of Neuroscience, 32, 17706–17713. doi: 10.1523/JNEUROSCI.1944-12.2012.
  • Pietrzykowski, A.Z., Friesen, R.M., Martin, G.E., Puig, S.I., Nowak, C.L., Wynne, P.M., … Treistman, S.N. (2008). Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron, 59, 274–287.
  • Roman, G., Endo, K., Zong, L., & Davis, R.L. (2001). P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proceedings of the. National Academy of Sciences USA, 98, 12602–12607. doi: 10.1073/pnas.221303998.
  • Ruby, J.G., Jan, C.H., & Bartel, D.P. (2007a). Intronic microRNA precursors that bypass Drosha processing. Nature, 448, 83–86.
  • Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P., & Lai, E.C. (2007b). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Research, 17, 1850–1864.
  • Ryabinin, A.E., Melia, K.R., Cole, M., Bloom, F.E., & Wilson, M.C. (1995). Alcohol selectively attenuates stress-induced c-fos expression in rat hippocampus. Journal of Neuroscience, 15, 721–730.
  • Saldanha, A.J. (2004). Java treeview-extensible visualization of microarray data. Bioinformatics, 20, 3246–3248. doi: 10.1093/bioinformatics/bth349.
  • Sempere, L.F., Sokol, N.S., Dubrovsky, E.B., Berger, E.M., & Ambros, V. (2003). Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Develomental Biology, 259, 9–18. doi: 10.1016/S0012-1606(03)00208-2.
  • Shahidullah, M., Reddy, S., Fei, H., & Levitan, I.B. (2009). In vivo role of a potassium channel-binding protein in regulating neuronal excitability and behavior. Journal of Neuroscience, 29, 13328–13337. doi: 10.1523/JNEUROSCI.3024-09.2009.
  • Stark, A., Brennecke, J., Russell, R.B., & Cohen, S.M. (2003). Identification of Drosophila microRNA targets. PLoS Biology, 1, E60. doi: 10.1371/journal.pbio.0000060.
  • Stark, A., Kheradpour, P., Parts, L., Brennecke, J., Hodges, E., Hannon, G.J., & Kellis, M. (2007). Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Research, 17, 1865–1879. doi: 10.1101/gr.6593807.
  • Sun, K., Westholm, J.O., Tsurudome, K., Hagen, J.W., Lu, Y., Kohwi, M., … Lai, E.C. (2012). Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genetics, 8, e1002515.
  • Tapocik, J.D., Solomon, M., Flanigan, M., Meinhardt, M., Barbier, E., Schank, J.R., … Heilig, M. (2013). Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence. Pharmacogenomics Journal, 13, 286–296.
  • Tauszig, S., Jouanguy, E., Hoffmann, J.A., & Imler, J.L. (2000). Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proceedings of the National Academy of Science USA, 97, 10520–10525. doi: 10.1073/pnas.180130797.
  • Troutwine, B.R., Ghezzi, A., Pietrzykowski, A.Z., & Atkinson, N.S. (2016). Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway. Genes Brain and Behavior, 15, 382–394. doi: 10.1111/gbb.12288.
  • Tsurudome, K., Tsang, K., Liao, E.H., Ball, R., Penney, J., Yang, J.S., … Haghighi, A.P. (2010). The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron, 68, 879–893.
  • Wang, C., Feng, T., Wan, Q., Kong, Y., & Yuan, L. (2014). miR-124 controls Drosophila behavior and is required for neural development. International Journal of Developmental Neuroscience, 38, 105–112. doi: 10.1016/j.ijdevneu.2014.08.006.
  • Weng, R., & Cohen, S.M. (2012). Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development, 139, 1427–1434. doi: 10.1242/dev.075143.
  • Xu, M. (2008). c-Fos is an intracellular regulator of cocaine-induced long-term changes. Annals of the New York Academy of Science, 1139, 1–9. doi: 10.1196/annals.1432.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.