461
Views
15
CrossRef citations to date
0
Altmetric
Original Article

The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy

, , &
Pages 247-258 | Received 28 Sep 2016, Accepted 21 Oct 2016, Published online: 21 Nov 2016

References

  • Ashcroft, F.M. (2007). The Walter B. Cannon Physiology in Perspective Lecture, 2007. ATP-sensitive K + channels and disease: From molecule to malady. American Journal of Physiology, Endocrinology and Metabolism, 293, E880–E889. doi:10.1152/ajpendo.00348.2007.
  • Ashcroft, F.M., & Kakei, M. (1989). ATP-sensitive K + channels in rat pancreatic beta-cells: Modulation by ATP and Mg2+ ions. Journal of Physiology (London), 416, 349–367.
  • Bellen, H.J., Levis, R.W., He, Y., Carlson, J.W., Evans-Holm, M., Bae, E., … Spradling, A.C. (2011). The Drosophila gene disruption project: Progress using transposons with distinctive site specificities. Genetics, 188, 731–743. doi:10.1534/genetics.111.126995.
  • Benzer, S. (1971). From the gene to behavior. JAMA, 218, 1015–1022. doi:10.1001/jama.218.7.1015.
  • Bough, K.J., Wetherington, J., Hassel, B., Pare, J.F., Gawryluk, J.W., Greene, J.G., … Dingledine, R.J. (2006). Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Annals of Neurology, 60, 223–235. doi:10.1002/ana.20899.
  • Canafoglia, L., Franceschetti, S., Antozzi, C., Carrara, F., Farina, L., Granata, T., … Avanzini, G. (2001). Epileptic phenotypes associated with mitochondrial disorders. Neurology, 56, 1340–1346. doi:10.1212/WNL.56.10.1340.
  • Celotto, A.M., Chiu, W.K., Van Voorhies, W., & Palladino, M.J. (2011). Modes of metabolic compensation during mitochondrial disease using the Drosophila model of ATP6 dysfunction. PLoS One, 6, e25823. doi:10.1371/journal.pone.0025823.
  • Celotto, A.M., Frank, A.C., McGrath, S.W., Fergestad, T., Van Voorhies, W.A., Buttle, K.F., … Palladino, M.J. (2006). Mitochondrial encephalomyopathy in Drosophila. Journal of Neuroscience, 26, 810–820. doi:10.1523/JNEUROSCI.4162-05.2006.
  • Coetzee, W.A. (2013). Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacology & Therapeutics, 140, 167–175. doi:10.1016/j.pharmthera.2013.06.007.
  • Comelli, M., Metelli, G., & Mavelli, I. (2007). Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: A dual effect of the drug. American Journal of Physiology: Heart and Circulatory Physiology, 292, H820–H829. doi:10.1152/ajpheart.00366.2006.
  • Danial, N.N., Hartman, A.L., Stafstrom, C.E., & Thio, L.L. (2013). How does the ketogenic diet work? Four potential mechanisms. Journal of Child Neurology, 28, 1027–1033. doi:10.1177/0883073813487598.
  • Dhar-Chowdhury, P., Harrell, M.D., Han, S.Y., Jankowska, D., Parachuru, L., Morrissey, A., … Coetzee, W.A. (2005). The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the K(ATP) channel macromolecular complex and regulate its function. The Journal of Biological Chemistry, 280, 38464–38470. doi:10.1074/jbc.M508744200.
  • Dhar-Chowdhury, P., Malester, B., Rajacic, P., & Coetzee, W.A. (2007). The regulation of ion channels and transporters by glycolytically derived ATP. Cellular and Molecular Life Sciences, 64, 3069–3083. doi:10.1007/s00018-007-7332-3.
  • Di Donato, S. (2009). Multisystem manifestations of mitochondrial disorders. Journal of Neurology, 256, 693–710. doi:10.1007/s00415-009-5028-3.
  • DiMauro, S., & Schon, E.A. (2003). Mitochondrial respiratory-chain diseases. New England Journal of Medicine, 348, 2656–2668. doi:10.1056/NEJMra022567.
  • DiMauro, S., & Schon, E.A. (2008). Mitochondrial disorders in the nervous system. Annual Review of Neuroscience Journal, 31, 91–123. doi:10.1146/annurev.neuro.30.051606.094302.
  • DiMauro, S., Schon, E.A., Carelli, V., & Hirano, M. (2013). The clinical maze of mitochondrial neurology. Nature Reviews Neurology, 9, 429–444. doi:10.1038/nrneurol.2013.126.
  • DiMauro, S., Zeviani, M., Moraes, C.T., Nakase, H., Rizzuto, R., Lombes, A., … Schon, E.A. (1989). Mitochondrial encephalomyopathies. Progress in Clinical and Biological Research, 306, 117–128.
  • Dunne, M.J., Cosgrove, K.E., Shepherd, R.M., Aynsley-Green, A., & Lindley, K.J. (2004). Hyperinsulinism in infancy: From basic science to clinical disease. Physiological Reviews, 84, 239–275. doi:10.1152/physrev.00022.2003.
  • Dunne, M.J., & Petersen, O.H. (1986). Intracellular ADP activates K + channels that are inhibited by ATP in an insulin-secreting cell line. FEBS Letters, 208, 59–62. doi:10.1016/0014-5793(86)81532-0.
  • Dzeja, P.P., Bast, P., Ozcan, C., Valverde, A., Holmuhamedov, E.L., Van Wylen, D.G., & Terzic, A. (2003). Targeting nucleotide-requiring enzymes: Implications for diazoxide-induced cardioprotection. American Journal of Physiology: Heart and Circulatory Physiology, 284, H1048–H1056. doi:10.1152/ajpheart.00847.2002.
  • Elkins, T., & Ganetzky, B. (1990). Conduction in the giant nerve fiber pathway in temperature-sensitive paralytic mutants of Drosophila. Journal of Neurogenetics, 6, 207–219. doi:10.3109/01677069009107111.
  • Engel, J.E., & Wu, C.-F. (1992). Interactions of membrane excitability mutations affecting potassium and sodium currents in the flight and giant fiber escape systems of Drosophila. Journal of Comparative Physiology A, 171, 93–104. doi:10.1007/BF00195964.
  • Finsterer, J. (2004). Mitochondriopathies. European Journal of Neurology, 11, 163–186. doi:10.1046/j.1351-5101.2003.00728.x.
  • Fogle, K.J., Baik, L.S., Houl, J.H., Tran, T.T., Roberts, L., Dahm, N.A., … Holmes, T.C. (2015). CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor. Proceedings of the National Academy of Sciences of the United States of America, 112, 2245–2250. doi:10.1073/pnas.1416586112.
  • Fogle, K.J., Parson, K.G., Dahm, N.A., & Holmes, T.C. (2011). CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science, 331, 1409–1413. doi:10.1126/science.1199702.
  • Freeman, J.M., & Vining, E.P. (1998). Ketogenic diet: A time-tested, effective, and safe method for treatment of intractable childhood epilepsy. Epilepsia, 39, 450–451. doi:10.1111/j.1528-1157.1998.tb01400.x.
  • Ganetzky, B., & Wu, C.-F. (1982). Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics, 100, 597–614.
  • Gano, L.B., Patel, M., & Rho, J.M. (2014). Ketogenic diets, mitochondria, and neurological diseases. The Journal of Lipid Research, 55, 2211–2228. doi:10.1194/jlr.R048975.
  • Gasior, M., French, A., Joy, M.T., Tang, R.S., Hartman, A.L., & Rogawski, M.A. (2007). The anticonvulsant activity of acetone, the major ketone body in the ketogenic diet, is not dependent on its metabolites acetol, 1,2-propanediol, methylglyoxal, or pyruvic acid. Epilepsia, 48, 793–800. doi:10.1111/j.1528-1167.2007.01026.x.
  • Greene, R.W. (2011). Adenosine: Front and center in linking nutrition and metabolism to neuronal activity. The Journal of Clinical Investigation, 121, 2548–2550. doi:10.1172/JCI58391.
  • Gribble, F.M., Proks, P., Corkey, B.E., & Ashcroft, F.M. (1998). Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. Journal of Biological Chemistry, 273, 26383–26387. doi:10.1074/jbc.273.41.26383.
  • Gribble, F.M., Tucker, S.J., & Ashcroft, F.M. (1997). The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO Journal, 16, 1145–1152. doi:10.1093/emboj/16.6.1145.
  • Hartman, A.L., Gasior, M., Vining, E.P., & Rogawski, M.A. (2007). The neuropharmacology of the ketogenic diet. Pediatric Neurology, 36, 281–292. doi:10.1016/j.pediatrneurol.2007.02.008.
  • Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I., & Kurachi, Y. (2010). Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiological Reviews, 90, 291–366. doi:10.1152/physrev.00021.2009.
  • Hong, M., Kefaloyianni, E., Bao, L., Malester, B., Delaroche, D., Neubert, T.A., & Coetzee, W.A. (2011). Cardiac ATP-sensitive K + channel associates with the glycolytic enzyme complex. FASEB Journal, 25, 2456–2467. doi:10.1096/fj.10-176669.
  • Howlett, I.C., Rusan, Z.M., Parker, L., & Tanouye, M.A. (2013). Drosophila as a model for intractable epilepsy: Gilgamesh suppresses seizures in para(bss1) heterozygote flies. G3 (Bethesda), 3, 1399–1407. doi:10.1534/g3.113.006130.
  • Inagaki, N., Gonoi, T., Clement, J.P. 4th, Namba, N., Inazawa, J., Gonzalez, G., … Bryan, J. (1995). Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science, 270, 1166–1170.
  • Inagaki, N., Gonoi, T., & Seino, S. (1997). Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K + channel. FEBS Letters, 409, 232–236. doi:10.1016/S0014-5793(97)00488-2.
  • Jarrett, S.G., Milder, J.B., Liang, L.P., & Patel, M. (2008). The ketogenic diet increases mitochondrial glutathione levels. Journal of Neurochemistry, 106, 1044–1051. doi:10.1111/j.1471-4159.2008.05460.x.
  • Jasova, M., Kancirova, I., Murarikova, M., Farkasova, V., Waczulikova, I., Ravingerova, T., … Ferko, M. (2016). Stimulation of mitochondrial ATP synthase activity – A new diazoxide-mediated mechanism of cardioprotection. Physiological Research, 65, S119–S127.
  • Juge, N., Gray, J.A., Omote, H., Miyaji, T., Inoue, T., Hara, C., … Moriyama, Y. (2010). Metabolic control of vesicular glutamate transport and release. Neuron, 68, 99–112. doi:10.1016/j.neuron.2010.09.002.
  • Jung, J., Mauguiere, F., Clerc-Renaud, P., Ollagnon, E., Mousson de Camaret, B., & Ryvlin, P. (2007). NARP mitochondriopathy: An unusual cause of progressive myoclonic epilepsy. Neurology, 68, 1429–1430. doi:10.1212/01.wnl.0000264019.53959.10.
  • Kang, H.C., Lee, Y.M., Kim, H.D., Lee, J.S., & Slama, A. (2007). Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia, 48, 82–88. doi:10.1111/j.1528-1167.2006.00906.x.
  • Kawamura, M., Jr., Ruskin, D.N., Geiger, J.D., Boison, D., & Masino, S.A. (2014). Ketogenic diet sensitizes glucose control of hippocampal excitability. The Journal of Lipid Research, 55, 2254–2260. doi:10.1194/jlr.M046755.
  • Kim, D.Y., Abdelwahab, M.G., Lee, S.H., O'neill, D., Thompson, R.J., Duff, H.J., … Rho, J.M. (2015). Ketones prevent oxidative impairment of hippocampal synaptic integrity through KATP channels. PLoS One, 10, e0119316. doi:10.1371/journal.pone.0119316.
  • Kossoff, E.H., Zupec-Kania, B.A., Amark, P.E., Ballaban-Gil, K.R., Christina Bergqvist, A.G., Blackford, R., … International Ketogenic Diet Study Group. (2009). Optimal clinical management of children receiving the ketogenic diet: Recommendations of the International Ketogenic Diet Study Group. Epilepsia, 50, 304–317. doi:10.1111/j.1528-1167.2008.01765.x.
  • Kuebler, D., & Tanouye, M.A. (2000). Modifications of seizure susceptibility in Drosophila. Journal of Neurophysiology, 83, 998–1009.
  • Larsson, O., Deeney, J.T., Branstrom, R., Berggren, P.O., & Corkey, B.E. (1996). Activation of the ATP-sensitive K + channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. Journal of Biological Chemistry, 271, 10623–10626.
  • Lee, J., & Wu, C.-F. (2002). Electroconvulsive seizure behavior in Drosophila: Analysis of the physiological repertoire underlying a stereotyped action pattern in bang-sensitive mutants. Journal of Neuroscience, 22, 11065–11079.
  • Leonard, J.V., & Schapira, A.H. (2000). Mitochondrial respiratory chain disorders I: Mitochondrial DNA defects. Lancet, 355, 299–304. doi:10.1016/S0140-6736(99)05225-3.
  • Lutas, A., Birnbaumer, L., & Yellen, G. (2014). Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels. Journal of Neuroscience, 34, 16336–16347. doi:10.1523/JNEUROSCI.1357-14.2014.
  • Ma, H., & O’Farrell, P.H. (2015). Selections that isolate recombinant mitochondrial genomes in animals. Elife, 4, e07247. doi:10.7554/eLife.07247.
  • Ma, H., & O’Farrell, P.H. (2016). Selfish drive can trump function when animal mitochondrial genomes compete. Nature Genetics, 48, 798–802. doi:10.1038/ng.3587.
  • Ma, W., Berg, J., & Yellen, G. (2007). Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. Journal of Neuroscience, 27, 3618–3625. doi:10.1523/JNEUROSCI.0132-07.2007.
  • Masino, S.A., Kawamura, M., Jr., & Ruskin, D.N. (2014). Adenosine receptors and epilepsy: Current evidence and future potential. International Review of Neurobiology, 119, 233–255. doi:10.1016/B978-0-12-801022-8.00011-8.
  • Masino, S.A., Li, T., Theofilas, P., Sandau, U.S., Ruskin, D.N., Fredholm, B.B., … Boison, D. (2011). A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. Journal of Clinical Investigation, 121, 2679–2683. doi:10.1172/JCI57813.
  • McCarthy, E.V., Wu, Y., Decarvalho, T., Brandt, C., Cao, G., & Nitabach, M.N. (2011). Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. Journal of Neuroscience, 31, 8181–8193. doi:10.1523/JNEUROSCI.2017-10.2011.
  • Metaxakis, A., Oehler, S., Klinakis, A., & Savakis, C. (2005). Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics, 171, 571–581. doi:10.1534/genetics.105.041848.
  • Neal, E.G., Chaffe, H., Schwartz, R.H., Lawson, M.S., Edwards, N., Fitzsimmons, G., … Cross, J.H. (2008). The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurology, 7, 500–506. doi:10.1016/S1474-4422(08)70092-9.
  • Nichols, C.G., Shyng, S.L., Nestorowicz, A., Glaser, B., Clement, J. P t., Gonzalez, G., … Bryan, J. (1996). Adenosine diphosphate as an intracellular regulator of insulin secretion. Science, 272, 1785–1787.
  • Palladino, M.J. (2010). Modeling mitochondrial encephalomyopathy in Drosophila. Neurobiology of Disease, 40, 40–45. doi:10.1016/j.nbd.2010.05.009.
  • Parker, L., Howlett, I.C., Rusan, Z.M., & Tanouye, M.A. (2011). Seizure and epilepsy: Studies of seizure disorders in Drosophila. International Review of Neurobiology, 99, 1–21. doi:10.1016/B978-0-12-387003-2.00001-X.
  • Parker, L., Padilla, M., Du, Y., Dong, K., & Tanouye, M.A. (2011). Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics, 187, 523–534. doi:10.1534/genetics.110.123299.
  • Pavlidis, P., Ramaswami, M., & Tanouye, M.A. (1994). The Drosophila easily shocked gene: A mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell, 79, 23–33. doi:10.1016/0092-8674(94)90397-2.
  • Pavlidis, P., & Tanouye, M.A. (1995). Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. Journal of Neuroscience, 15, 5810–5819.
  • Sakura, H., Ammala, C., Smith, P.A., Gribble, F.M., & Ashcroft, F.M. (1995). Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Letters, 377, 338–344. doi:10.1016/0014-5793(95)01369-5.
  • Santorelli, F.M., Tanji, K., Shanske, S., & DiMauro, S. (1997). Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology, 49, 270–273. doi:10.1212/WNL.49.1.270.
  • Schapira, A.H., & Cock, H.R. (1999). Mitochondrial myopathies and encephalomyopathies. European Journal of Clinical Investigation, 29, 886–898. doi:10.1046/j.1365-2362.1999.00540.x.
  • Schutte, R.J., Schutte, S.S., Algara, J., Barragan, E.V., Gilligan, J., Staber, C., … O’Dowd, D.K. (2014). Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current. Journal of Neurophysiology, 112, 903–912. doi:10.1152/jn.00135.2014.
  • Seino, S. (1999). ATP-sensitive potassium channels: A model of heteromultimeric potassium channel/receptor assemblies. Annual Review of Physiology, 61, 337–362. doi:10.1146/annurev.physiol.61.1.337.
  • Sheeba, V., Gu, H., Sharma, V.K., O’Dowd, D.K., & Holmes, T.C. (2008). Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. Journal of Neurophysiology, 99, 976–988.
  • Shyng, S.L., & Nichols, C.G. (1998). Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science, 282, 1138–1141. doi:10.1126/science.282.5391.1138.
  • Stafstrom, C.E., & Rho, J.M. (2012). The ketogenic diet as a treatment paradigm for diverse neurological disorders. Frontiers in Pharmacology, 3, 59. doi:10.3389/fphar.2012.00059.
  • Stone, B., Evans, L., Coleman, J., & Kuebler, D. (2013). Genetic and pharmacological manipulations that alter metabolism suppress seizure-like activity in Drosophila. Brain Research, 1496, 94–103. doi:10.1016/j.brainres.2012.12.007.
  • Sun, H.-S., & Feng, Z.-P. (2013). Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacologica Sinica, 34, 24–32. doi:10.1038/aps.2012.138.
  • Sun, H.-S., Feng, Z.-P., Miki, T., Seino, S., & French, R.J. (2006). Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K + channels. Journal of Neurophysiology, 95, 2590–2601. doi:10.1152/jn.00970.2005.
  • Sun, L., Gilligan, J., Staber, C., Schutte, R.J., Nguyen, V., O’Dowd, D.K., & Reenan, R. (2012). A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. Journal of Neuroscience, 32, 14145–14155. doi:10.1523/JNEUROSCI.2932-12.2012.
  • Tanouye, M.A., & Wyman, R.J. (1980). Motor outputs of giant nerve fiber in Drosophila. Journal of Neurophysiology, 44, 405–421.
  • Tinker, A., Aziz, Q., & Thomas, A. (2014). The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. British Journal of Pharmacology, 171, 12–23. doi:10.1111/bph.12407.
  • Trimarchi, J.R., & Murphey, R.K. (1997). The shaking-B2 mutation disrupts electrical synapses in a flight circuit in adult Drosophila. Journal of Neuroscience, 17, 4700–4710.
  • Tucker, S.J., Gribble, F.M., Zhao, C., Trapp, S., & Ashcroft, F.M. (1997). Truncation of Kir6.2 produces ATP-sensitive K + channels in the absence of the sulphonylurea receptor. Nature, 387, 179–183. doi:10.1038/387179a0.
  • Vining, E.P., Freeman, J.M., Ballaban-Gil, K., Camfield, C.S., Camfield, P.R., Holmes, G.L., … Wheless, J.W. (1998). A multicenter study of the efficacy of the ketogenic diet. Archives of Neurology, 55, 1433–1437. doi:10.1001/archneur.55.11.1433.
  • Yang, H., Guo, R., Wu, J., Peng, Y., Xie, D., Zheng, W., … Song, Z. (2013). The antiepileptic effect of the glycolytic inhibitor 2-deoxy-d-glucose is mediated by upregulation of K(ATP) channel subunits Kir6.1 and Kir6.2. Neurochemical Research, 38, 677–685. doi:10.1007/s11064-012-0958-z.
  • Yellen, G. (2008). Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet. Epilepsia, 49, 80–82. doi:10.1111/j.1528-1167.2008.01843.x.
  • Zerangue, N., Schwappach, B., Jan, Y.N., & Jan, L.Y. (1999). A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron, 22, 537–548. doi:10.1016/S0896-6273(00)80708-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.