263
Views
4
CrossRef citations to date
0
Altmetric
Original Research Article

Generation and characterization of new alleles of quiver (qvr) that encodes an extracellular modulator of the Shaker potassium channel

, , , , , , , , , , , , & show all
Pages 325-336 | Received 31 May 2017, Accepted 12 Oct 2017, Published online: 09 Nov 2017

References

  • Bass, B.L., & Weintraub, H. (1988). An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell, 55, 1089–1098. doi:10.1016/0092-8674(88)90253-X
  • Bhalla, T., Rosenthal, J.J., Holmgren, M., & Reenan, R. (2004). Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nature Structural & Molecular Biology, 11, 950–956. doi:10.1038/nsmb825
  • Budnik, V., Zhong, Y., & Wu, C.-F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. Journal of Neuroscience, 10, 3754–3768.
  • Chen, W.F., Maguire, S., Sowcik, M., Luo, W., Koh, K., & Sehgal, A. (2015). A neuron-glia interaction involving GABA transaminase contributes to sleep loss in sleepless mutants. Molecular Psychiatry, 20, 240–251. doi:10.1038/mp.2014.11
  • Cirelli, C., Bushey, D., Hill, S., Huber, R., Kreber, R., Ganetzky, B., & Tononi, G. (2005). Reduced sleep in Drosophila Shaker mutants. Nature, 434, 1087–1092. doi:10.1038/nature03486
  • Dean, T., Xu, R., Joiner, W., Sehgal, A., & Hoshi, T. (2011). Drosophila QVR/sss modulates the activation and C-type inactivation kinetics of Shaker K+ channels. Journal of Neuroscience, 31, 11387–11395. doi: 10.1523/JNEUROSCI.0502-11.2011
  • Elkins, T., Ganetzky, B., & Wu, C.-F. (1986). A Drosophila mutation that eliminates a calcium-dependent potassium current. Proceedings of the National Academy of Sciences of the United States of America, 83, 8415–8419. doi:10.1073/pnas.83.21.8415
  • Feng, Y., Ueda, A., & Wu, C.-F. (2004). A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. Journal of Neurogenetics, 18, 377–402. doi:10.1080/01677060490894522
  • Ganetzky, B., Robertson, G.A., Wilson, G.F., Trudeau, M.C., & Titus, S.A. (1999). The eag family of K+ channels in Drosophila and mammals. Annals of the New York Academy of Sciences, 868, 356–369.
  • Ganetzky, B., & Wu, C.-F. (1982). Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing. Journal of Neurophysiology, 47, 501–514.
  • Ganetzky, B., & Wu, C.-F. (1983). Neurogenetic analysis of potassium currents in Drosophila: Synergistic effects on neuromuscular transmission in double mutants. Journal of Neurogenetics, 1, 17–28. doi:10.3109/01677068309107069
  • Ganetzky, B., & Wu, C.-F. (1985). Genes and membrane excitability in Drosophila. Trends in Neurosciences, 8, 322–326. doi:10.1016/0166-2236(85)90113-4
  • Garrett, S.C., & Rosenthal, J.J. (2012). A role for A-to-I RNA editing in temperature adaptation. Physiology (Bethesda), 27, 362–369. doi:10.1152/physiol.00029.2012
  • Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., ... Celniker, S.E. (2011). The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479. doi:10.1038/nature09715
  • Hegde, P., Gu, G.G., Chen, D., Free, S.J., & Singh, S. (1999). Mutational analysis of the Shab-encoded delayed rectifier K+ channels in Drosophila. Journal of Biological Chemistry, 274, 22109–22113.
  • Hilliker, A.J. (1976). Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: Deficiency mapping of EMS-induced lethal complementation groups. Genetics, 83, 765–782.
  • Humphreys, J.M., Duyf, B., Joiner, M.L., Phillips, J.P., & Hilliker, A.J. (1996). Genetic analysis of oxygen defense mechanisms in Drosophila melanogaster and identification of a novel behavioral mutant with a Shaker phenotype. Genome, 39, 749–757. doi:10.1139/g96-094
  • Jan, L.Y., & Jan, Y.N. (1976). L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. Journal of Physiology, 262, 215–236. doi:10.1113/jphysiol.1976.sp011593
  • Jan, Y.N., Jan, L.Y., & Dennis, M.J. (1977). Two mutations of synaptic transmission in Drosophila. Proceedings of the Royal Society B: Biological Sciences, 198, 87–108. doi:10.1098/rspb.1977.0087
  • Jepson, J.E., & Reenan, R.A. (2007). Genetic approaches to studying adenosine-to-inosine RNA editing. Methods in Enzymology, 424, 265–287. doi:10.1016/S0076-6879(07)24012-1
  • Kaplan, W.D., & Trout, W.E. III (1969). The behavior of four neurological mutants of Drosophila. Genetics, 61, 399–409.
  • Koh, K., Joiner, W.J., Wu, M.N., Yue, Z., Smith, C.J., & Sehgal, A. (2008). Identification of SLEEPLESS, a sleep-promoting factor. Science, 321, 372–376. doi:10.1126/science.1155942
  • Komatsu, A., Singh, S., Rathe, P., & Wu, C.-F. (1990). Mutational and gene dosage analysis of calcium-activated potassium channels in Drosophila: Correlation of micro- and macroscopic currents. Neuron, 4, 313–321. doi:10.1016/0896-6273(90)90105-O
  • Ochman, H., Gerber, A.S., & Hartl, D.L. (1988). Genetic applications of an inverse polymerase chain reaction. Genetics, 120, 621–623.
  • Peng, I.-F., & Wu, C.-F. (2007). Drosophila cacophony channels: A major mediator of neuronal Ca2+ currents and a trigger for K+ channel homeostatic regulation. Journal of Neuroscience, 27, 1072–1081. doi:10.1523/JNEUROSCI.4746-06.2007
  • Ruan, H. (2008). On Drosophila aging: Lifespan plasticity, social-behavioral influences, and neurophysiological indices (PhD thesis). University of Iowa.
  • Ryan, M.Y., Maloney, R., Fineberg, J.D., Reenan, R.A., & Horn, R. (2012). RNA editing in eag potassium channels: Biophysical consequences of editing a conserved S6 residue. Channels, 6, 443–452. doi:10.4161/chan.22314
  • Salkoff, L., & Wyman, R. (1981). Genetic modification of potassium channels in Drosophila shaker mutants. Nature, 293, 228–230. doi:10.1038/293228a0
  • Singh, A., & Singh, S. (1999). Unmasking of a novel potassium current in Drosophila by a mutation and drugs. Journal of Neuroscience, 19, 6838–6843.
  • Singh, S., & Wu, C.-F. (1989). Complete separation of four potassium currents in Drosophila. Neuron, 2, 1325–1329. doi:10.1016/0896-6273(89)90070-6
  • Tsetlin, V. (1999). Snake venom alpha-neurotoxins and other ‘three-finger’ proteins. European Journal of Biochemistry, 264, 281–286. doi: 10.1046/j.1432-1327.1999.00623.x
  • Ueda, A., Ruan, H., & Wu, C.-F. (2009). The quiver gene encodes a small novel peptide that genetically interacts with several K+ channel subunits and regulates neuron and muscle excitability in Drosophila melanogaster. Society for Neuroscience Abstracts, 2009, 890.9/GG53.
  • Ueda, A., & Wu, C.-F. (2006). Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations. Journal of Neuroscience, 26, 6238–6248. doi:10.1523/JNEUROSCI.0862-06.2006
  • Wang, J.W. (1997). Electrophysiological and genetic analyses of Drosophila behavioral mutants: The functional roles of voltage-gated potassium channel subunits (PhD thesis). University of Iowa.
  • Wang, J.W., Humphreys, J.M., Phillips, J.P., Hilliker, A.J., & Wu, C.F. (2000). A novel leg-shaking Drosophila mutant defective in a voltage-gated K+ current and hypersensitive to reactive oxygen species. Journal of Neuroscience, 20, 5958–5964.
  • Wang, Z., Ueda, A., Ruan, H., & Wu, C.-F. (2010). Quiver (sleepless), a new category of K + channel modulator, affects nerve excitability, synaptic transmission and activity-dependent plasticity. Society for Neuroscience Abstracts, 2010, 47.3/I2.
  • Wang, J.W., & Wu, C.-F. (2010). Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism. Journal of Neurogenetics, 24, 67–74. doi:10.3109/01677061003746341
  • Wu, C.-F., & Haugland, F.-N. (1985). Voltage clamp analysis of membrane currents in larval muscle fibers of Drosophila: Alteration of potassium currents in shaker mutants. Journal of Neuroscience, 5, 2626–2640.
  • Wu, C.-F., & Ganetzky, B. (1992). Neurogenetic studies of ion channels in Drosophila. Ion Channels, 3, 261–314. doi:10.1007/978-1-4615-3328-3_9
  • Wu, C.-F., Ganetzky, B., Haugland, F.N., & Liu, A.X. (1983). Potassium currents in Drosophila: Different components affected by mutations of two genes. Science, 220, 1076–1078. doi:10.1126/science.6302847
  • Wu, C.-T., Budding, M., Griffin, M.S., & Croop, J.M. (1991). Isolation and characterization of Drosophila multidrug resistance gene homologs. Molecular and Cellular Biology, 11, 3940–3948. doi:10.1128/MCB.11.8.3940
  • Wu, M.N., Joiner, W.J., Dean, T., Yue, Z., Smith, C.J., Chen, D., … Koh, K. (2010). SLEEPLESS, a ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nature Neuroscience, 13, 69–75. doi:10.1038/nn.2454
  • Wu, M., Liu, C.Z., & Joiner, W.J. (2016). Structural analysis and deletion mutagenesis define regions of Quiver/sleepless that are responsible for interactions with Shaker-type potassium channels and nicotinic acetylcholine receptors. PLoS One, 11, e0148215. doi:10.1371/journal.pone.0148215
  • Wu, M., Robinson, J.E., & Joiner, W.J. (2014). SLEEPLESS is a bifunctional regulator of excitability and cholinergic synaptic transmission. Current Biology, 24, 621–629. doi:10.1016/j.cub.2014.02.026
  • Xing, X., Ruan, H., Wan, X., Ueda, A., & Wu, C.-F. (2011). Quiver/SLEEPLESS, a putative K channel modulator, affects neuromuscular excitability and growth in Drosophila. Society for Neuroscience Abstracts, 2011, 140.07/D56.
  • Zhong, Y., Budnik, V., & Wu, C.-F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. Journal of Neuroscience, 12, 644–651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.