178
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Computational prediction of the phenotypic effects of genetic variants: basic concepts and some application examples in Drosophila nervous system genes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 307-319 | Received 24 Sep 2017, Accepted 25 Oct 2017, Published online: 23 Nov 2017

References

  • Almeida, F.C., Sánchez-Gracia, A., Campos, J.L., & Rozas, J. (2014). Family size evolution in drosophila chemosensory gene families: A comparative analysis with a critical appraisal of methods. Genome Biology and Evolution, 6, 1669–1682.
  • Andolfatto, P. (2005). Adaptive evolution of non-coding DNA in Drosophila. Nature, 437, 1149–1152. doi:10.1038/nature04107
  • Araya, C.L., & Fowler, D.M. (2011). Deep mutational scanning: Assessing protein function on a massive scale. Trends in Biotechnology, 29, 435–442. doi:10.1016/j.tibtech.2011.04.003
  • Arguello, J.R., Cardoso-Moreira, M., Grenier, J.K., Gottipati, S., Clark, A.G., & Benton, R. (2016). Extensive local adaptation within the chemosensory system following Drosophila melanogaster’s global expansion. Nature Communications, 7, ncomms11855. doi:10.1038/ncomms11855
  • Ayub, Q., Yngvadottir, B., Chen, Y., Xue, Y., Hu, M., Vernes, S.C., … Tyler-Smith, C. (2013). FOXP2 Targets show evidence of positive selection in European populations. American Journal of Human Genetics, 92, 696–670.
  • Brandt, B.W., Feenstra, K.A., & Heringa J. (2010). Multi-Harmony: Detecting functional specificity from sequence alignment. Nucleic Acids Research, 38, W35–W40. doi:10.1093/nar/gkq415
  • Bataillon, T., & Bailey, S.F. (2014). Effects of new mutations on fitness: Insights from models and data. Annals of the New York Academy of Sciences, 1320, 76–92. doi:10.1111/nyas.12460
  • Blasiole, B., Kabbani, N., Boehmler, W., Thisse, B., Thisse, C., Canfield, V., & Levenson, R. (2005). Neuronal calcium sensor‐1 gene ncs‐1a is essential for semicircular canal formation in zebrafish inner ear. Developmental Neurobiology, 64, 285–297. doi:10.1002/neu.20138
  • Bollback, J.P., York, T.L., & Nielsen, R. (2008). Estimation of 2N e s from temporal allele frequency data. Genetics, 179, 497–502. doi:10.1534/genetics.107.085019
  • Burgoyne, R.D., & Weiss, J.L. (2001). The neuronal calcium sensor family of Ca2+-binding proteins. Biochemical Journal, 353, 1–12.
  • Cagan, A., Theunert, C., Laayouni, H., Santpere, G., Pybus, M., Casals, F., … Andrés, A.M. (2016). Natural selection in the great apes. Molecular Biology and Evolution, 33, 3268–3283.
  • Cannavò, E., Khoueiry, P., Garfield, D.A., Geeleher, P., Zichner, T., Gustafson, E.H., … Furlong, E.E. (2016). Shadow enhancers are pervasive features of developmental regulatory networks. Current Biology, 26, 38–51. doi:10.1016/j.cub.2015.11.034
  • Capra, J.A., & Singh, M. (2008). Characterization and prediction of residues determining protein functional specificity. Bioinformatics, 24, 1473–1480. doi:10.1093/bioinformatics/btn214
  • Capy, P., Pla, E., & David, J.R. (1993). Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D simulans. I. Geographic variations. Genetics Selection Evolution, 25, 517. doi:10.1186/1297-9686-25-6-517
  • Cannarozzi, G.M., & Schneider, A. (Eds.). (2012). Codon evolution: Mechanisms and models. Oxford: Oxford University Press.
  • Chakraborty, A., & Chakrabarti, S. (2015). A survey on prediction of specificity-determining sites in proteins. Briefings in Bioinformatics, 16, 71–88. doi:10.1093/bib/bbt092
  • Chakraborty, A., Mandloi, S., Lanczycki, C.J., Panchenko, A.R., & Chakrabarti, S. (2012). SPEER-SERVER: A web server for prediction of protein specificity determining sites. Nucleic Acids Research, 40, W242–W248. doi:10.1093/nar/gks559
  • Charlesworth, B. (1996). The good fairy godmother of evolutionary genetics. Current Biology, 6, 220. doi:10.1016/S0960-9822(02)00457-8
  • Charlesworth, B. (2009). Fundamental concepts in genetics: Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10, 195–205. doi:10.1038/nrg2526
  • Chou, K.C., & Shen, H.B. (2007). Signal-CF: A subsite-coupled and window-fusing approach for predicting signal peptides. Biochemical and Biophysical Research Communications, 357, 633–640. doi:10.1016/j.bbrc.2007.03.162
  • Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B.C., & Steiner, F.M. (2017). Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Molecular Phylogenetics and Evolution, 112, 230–243. doi:10.1016/j.ympev.2017.04.023
  • Choi, J.Y., & Aquadro, C.F. (2015). Molecular evolution of Drosophila Germline stem cell and neural stem cell regulating genes. Genome Biology and Evolution, 7, 3097–3114. doi:10.1093/gbe/evv207
  • David, J.R., & Capy, P. (1988). Genetic variation of Drosophila melanogaster natural populations. Trends Genet, 4, 106–111. doi:10.1016/0168-9525(88)90098-4
  • Dayhoff, M.O., Schwartz, R.M., & Orcutt, B.C. (1978). 22 a model of evolutionary change in proteins. In Atlas of protein sequence and structure (Vol. 5, pp. 345–352). Silver Spring, MD: National Biomedical Research Foundation.
  • de Juan, D., Pazos, F., & Valencia, A. (2013). Emerging methods in protein co-evolution. Nature Reviews Genetics, 14, 249–261. doi:10.1038/nrg3414
  • de Melo-Minardi, R.C., Bastard, K., & Artiguenave, F. (2010). Identification of subfamily-specific sites based on active sites modeling and clustering. Bioinformatics, 26, 3075–3082. doi:10.1093/bioinformatics/btq595
  • Delport, W., Scheffler, K., & Seoighe, C. (2009). Models of coding sequence evolution. Brief Bioinformatics, 10, 97–109. doi:10.1093/bib/bbn049
  • Delport, W., Poon, A.F., Frost, S.D., & Kosakovsky Pond, S.L. (2010). Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26, 2455–2457. doi:10.1093/bioinformatics/btq429
  • Dou, J.T., Chen, M., Dufour, F., Alkon, D.L., & Zhao, W.Q. (2005). Insulin receptor signaling in long-term memory consolidation following spatial learning. Learning & Memory, 12, 646–655. doi:10.1101/lm.88005
  • Echave, J., Spielman, S.J., & Wilke, C.O. (2016). Causes of evolutionary rate variation among protein sites. Nature Reviews Genetics, 17, 109–121. doi:10.1038/nrg.2015.18
  • Erdin, S., Venner, E., Lisewski, A.M., & Lichtarge, O. (2013). Function prediction from networks of local evolutionary similarity in protein structure. BMC Bioinformatics, 14 Suppl 3, S6. doi:10.1186/1471-2105-14-S3-S6
  • Eyre-Walker, A., & Keightley, P.D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8, 610–618. doi:10.1038/nrg2146
  • Eyre-Walker, A., & Keightley, P.D. (2009). Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Molecular Biology and Evolution, 26, 2097–2108. doi:10.1093/molbev/msp119
  • Fowler, D.M., Stephany, J.J., & Fields, S. (2014). Measuring the activity of protein variants on a large scale using deep mutational scanning. Nature Protocols, 9, 2267–2284. doi:10.1038/nprot.2014.153
  • Gayà-Vidal, M., & Albà, M.M. (2014). Uncovering adaptive evolution in the human lineage. BMC Genomics, 15, 599.
  • Gilchrist, A.S., & Partridge, L. (1999). A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster. Genetics, 153, 1775–1787.
  • Gribskov, M. (1994). Profile analysis. Methods in Molecular Biology, 25, 247–266. doi:10.1385/0-89603-276-0:247
  • Gronau, I., Arbiza, L., Mohammed, J., & Siepel, A. (2013). Inference of natural selection from interspersed genomic elements based on polymorphism and divergence. Molecular Biology and Evolution, 30, 1159–1171. doi:10.1093/molbev/mst019
  • Gu, X., Zou, Y., Su, Z., Huang, W., Zhou, Z., Arendsee, Z., & Zeng, Y. (2013). An update of DIVERGE software for functional divergence analysis of protein family. Molecular Biology and Evolution, 30, 1713–1719. doi:10.1093/molbev/mst069
  • Guirao-Rico, S., & Aguadé, M. (2009). Positive selection has driven the evolution of the Drosophila insulin-like receptor (InR) at different timescales. Molecular Biology and Evolution, 26, 1723–1732. doi:10.1093/molbev/msp088
  • Gulko, B., Hubisz, M.J., Gronau, I., & Siepel, A. (2015). A method for calculating probabilities of fitness consequences for point mutations across the human genome. Nature Genetics, 47, 276–283. doi:10.1038/ng.3196
  • Hecht, M., Bromberg, Y., & Rost, B. (2015). Better prediction of functional effects for sequence variants. BMC Genomics, 16 Suppl 8, S1. doi:10.1186/1471-2164-16-S8-S1
  • Henikoff, S., & Henikoff, J.G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89, 10915–10919. doi:10.1073/pnas.89.22.10915
  • Hernández, R.D. (2008). A flexible forward simulator for populations subject to selection and demography. Bioinformatics, 24, 2786–2787.
  • Hopf, T.A., Ingraham, J.B., Poelwijk, F.J., Schärfe, C.P., Springer, M., Sander, C., & Marks, D.S. (2017). Mutation effects predicted from sequence co-variation. Nature Biotechnology, 35, 128–135. doi:10.1038/nbt.3769
  • Huang, C.C., You, J.L., Lee, C.C., & Hsu, K.S. (2003). Insulin induces a novel form of postsynaptic mossy fiber long-term depression in the hippocampus. Molecular and Cellular Neuroscience, 24, 831–841. doi:10.1016/S1044-7431(03)00238-0
  • Huang, Y.F., & Golding, G.B. (2012). Inferring sequence regions under functional divergence in duplicate genes. Bioinformatics, 28, 176–183. doi:10.1093/bioinformatics/btr635
  • Hudson, R.R., Kreitman, M., & Aguadé, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics, 116, 153–159.
  • Hurst, L.D. (2002). Detecting recent selection. Trends in Genetics, 18, 617–618. doi:10.1016/S0168-9525(02)02835-4
  • Katsonis P., Koire A., Wilson, S.J., Hsu, T.K., Lua, R.C., Wilkins, A.D., & Lichtarge, O. (2014). Single nucleotide variations: biological impact and theoretical interpretation. Protein Science, 23, 1650–1666. doi:10.1002/pro.2552
  • Katju, V., & Bergthorsson, U. (2013). Copy-number changes in evolution: Rates, fitness effects and adaptive significance. Frontiers in Genetics, 4, 273. doi:10.3389/fgene.2013.00273
  • Keightley, P.D., & Eyre-Walker, A. (2007). Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics, 177, 2251–2261. doi:10.1534/genetics.107.080663
  • Kim, B.Y., Huber, C.D., & Lohmueller, K.E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. Genetics, 206, 345–361. doi:10.1534/genetics.116.197145
  • Kopp, A., Barmina, O., Hamilton, A.M., Higgins, L., McIntyre, L.M., & Jones, C.D. (2008). Evolution of gene expression in the Drosophila olfactory system. Molecular Biology and Evolution, 25, 1081–1092. doi:10.1093/molbev/msn055
  • Korneliussen, T.S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics, 15, 356. doi:10.1186/s12859-014-0356-4
  • Kosakovsky Pond, S.L., Murrell, B., Fourment, M., Frost, S.D., Delport, W., & Scheffler, K. (2011). A random effects branch-site model for detecting episodic diversifying selection. Molecular Biology and Evolution, 28, 3033–3043. doi:10.1093/molbev/msr125
  • Kousathanas, A., & Keightley, P.D. (2013). A comparison of models to infer the distribution of fitness effects of new mutations. Genetics, 193, 1197–1208. doi:10.1534/genetics.112.14803
  • Kryazhimskiy, S., & Plotkin, J.B. (2008). The population genetics of dN/dS. PLoS Genetics, 4, e1000304. doi:10.1371/journal.pgen.1000304
  • Kumar, P., Henikoff, S., & Ng, P.C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4, 1073–1081. doi:10.1038/nprot.2009.86
  • Lachaise, D., Cariou, M.L., David, J.R., Lemeunier, F., Tsacas, L., & Ashburner, M. (1988). Historical biogeography of the Drosophila melanogaster species subgroup. In M.K. Hecht, B. Wallace, & G.T. Prance (Eds.), Evolutionary biology (Vol. 22, pp. 159–225). Boston, MA: Springer.
  • Lartillot, N., Lepage, T., & Blanquart, S. (2009). PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics, 25, 2286–2288. doi:10.1093/bioinformatics/btp368
  • Lawrie, D.S., & Petrov, D.A. (2014). Comparative population genomics: Power and principles for the inference of functionality. Trends Genetics, 30, 133–139. doi:10.1016/j.tig.2014.02.002
  • Li, M., Huang, L., Li, K., Huo, Y., Chen, C., Wang, J., … Luo, X.J. (2016). Adaptive evolution of interleukin-3 (IL3), a gene associated with brain volume variation in general human populations. Human Genetics, 135, 377–392. doi:10.1007/s00439-016-1644-z
  • Librado, P., & Rozas, J. (2013). Uncovering the functional constraints underlying the genomic organization of the odorant-binding protein genes. Genome Biology and Evolution, 5, 2096–2108. doi:10.1093/gbe/evt158
  • Librado, P., & Rozas, J. (2016). Weak polygenic selection drives the rapid adaptation of the chemosensory system: lessons from the upstream regions of the major gene families. Genome Biology and Evolution, 8, 2493–2504. doi:10.1093/gbe/evw191
  • Linz, J., Baschwitz, A., Strutz, A., Dweck, H.K., Sachse, S., Hansson, B.S., & Stensmyr, M.C. (2013). Host plant-driven sensory specialization in Drosophila erecta. Proceedings of Biological Sciences, 280, 20130626. doi:10.1098/rspb.2013.0626
  • Livingstone, C.D., & Barton, G.J. (1996). Identification of functional residues and secondary structure from protein multiple sequence alignment. Methods Enzymology, 266, 497–512.
  • Loewe, L. (2009). A framework for evolutionary systems biology. BMC Systems Biology, 3, 27. doi:10.1186/1752-0509-3-27
  • Loewe, L., & Hill, W.G. (2010). The population genetics of mutations: Good, bad and indifferent. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 365, 1153–1167. doi:10.1098/rstb.2009.0317
  • Lopes, M.C., Joyce, C., Ritchie, G.R., John, S.L., Cunningham, F., Asimit, J., & Zeggini, E. (2012). A combined functional annotation score for non-synonymous variants. Human Heredity, 73, 47–51. doi:10.1159/000334984
  • Ma, X.H., Zhong, P., Gu, Z., Feng, J., & Yan, Z. (2003). Muscarinic potentiation of GABAA receptor currents is gated by insulin signaling in the prefrontal cortex. Journal of Neuroscience, 23, 1159–1168.
  • Mackay, T.F., Richards, S., Stone, E.A., Barbadilla, A., Ayroles, J.F., Zhu, D., … Gibbs, R.A. (2012). The Drosophila melanogaster genetic reference panel. Nature, 482, 173–178. doi:10.1038/nature10811
  • Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A., & Jabado, N. (2011). What can exome sequencing do for you? Journal of Medical Genetics, 48, 580–589. doi:10.1136/jmedgenet-2011-100223
  • Malaspinas, A.S., Malaspinas, O., Evans, S.N., & Slatkin, M. (2012). Estimating allele age and selection coefficient from time-serial data. Genetics, 192, 599–607. doi:10.1534/genetics.112.140939
  • Mazin, P.V., Gelfand, M.S., Mironov, A.A., Rakhmaninova, A.B., Rubinov, A.R., Russell, R.B., & Kalinina, O.V. (2010). An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies. Algorithms for Molecular Biology, 5, 29. doi:10.1186/1748-7188-5-29
  • McCandlish, D.M., & Stoltzfus, A. (2014). Modeling evolution using the probability of fixation: history and applications. Quarterly Review of Biology, 89, 225–252. doi:10.1086/677571
  • McDonald, J.H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652–654. doi:10.1038/351652a0
  • Messer, P.W., & Petrov, D.A. (2013). Frequent adaptation and the McDonald–Kreitman test. Proceedings of the National Academy of Sciences of the United States of America, 110, 8615–8620. doi:10.1073/pnas.1220835110
  • Mielke, J.G., Taghibiglou, C., & Wang, Y.T. (2006). Endogenous insulin signaling protects cultured neurons from oxygen–glucose deprivation-induced cell death. Neuroscience, 143, 165–173. doi:10.1016/j.neuroscience.2006.07.055
  • Murrell, B., Weaver, S., Smith, M.D., Wertheim, J.O., Murrell, S., Aylward, A., … Kosakovsky Pond, S.L. (2015). Gene-wide identification of episodic selection. Molecular Biology and Evolution, 32, 1365–1371. doi:10.1093/molbev/msv035
  • Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K., & Kosakovsky Pond, S.L. (2012). Detecting individual sites subject to episodic diversifying selection. PLoS Genetics, 8, e1002764. doi:10.1371/journal.pgen.1002764
  • Nei, M., Suzuki, Y., & Nozawa, M. (2010). The neutral theory of molecular evolution in the genomic era. Annual Review of Genomics and Human Genetics, 11, 265–289. doi:10.1146/annurev-genom-082908-150129
  • Ng, P.C., & Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Research, 11, 863–874. doi:10.1101/gr.176601
  • Ng, P.C., & Henikoff, S. (2006). Predicting the effects of amino acid substitutions on protein function. Annual Review of Genomics and Human Genetics, 7, 61–80. doi:10.1146/annurev.genom.7.080505.115630
  • Nielsen, R. (2001). Statistical tests of selective neutrality in the age of genomics. Heredity (Edinb), 86(Pt 6), 641–647. doi:10.1046/j.1365-2540.2001.00895.x
  • Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C., & Clark, A.G. (2007). Recent and ongoing selection in the human genome. Nature Review Genetics, 8, 857–868. doi:10.1038/nrg2187
  • Nielsen, R., Williamson, S., Kim, Y., Hubisz, M.J., Clark, A.G., & Bustamante, C. (2005). Genomic scans for selective sweeps using SNP data. Genome Research, 15, 1566–1575. doi:10.1101/gr.4252305
  • Niroula, A., Urolagin, S., & Vihinen, M. (2015). PON-P2: Prediction method for fast and reliable identification of harmful variants. PLoS One, 10, e0117380. doi:10.1371/journal.pone.0117380
  • Olson-Manning, C.F., Wagner, M.R., & Mitchell-Olds, T. (2012). Adaptive evolution: Evaluating empirical support for theoretical predictions. Nature Reviews Genetics, 13, 867–877. doi:10.1038/nrg3322
  • Orr, H.A. (2010). The population genetics of beneficial mutations. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 365, 1195–1201. doi:10.1098/rstb.2009.0282
  • Parsch, J., Novozhilov, S., Saminadin-Peter, S.S., Wong, K.M., & Andolfatto, P. (2010). On the utility of short intron sequences as a reference for the detection of positive and negative selection in Drosophila. Molecular Biology and Evolution, 27, 1226–1234. doi:10.1093/molbev/msq046
  • Parto, S., & Lartillot, N. (2017). Detecting consistent patterns of directional adaptation using differential selection codon models. BMC Evolutionary Biology, 17, 147. doi:10.1186/s12862-017-0979-y
  • Pei, J., Cai, W., Kinch, L.N., & Grishin, N.V. (2006). Prediction of functional specificity determinants from protein sequences using log-likelihood ratios. Bioinformatics, 22, 164–171. doi:10.1093/bioinformatics/bti766
  • Pessia, A., Grad, Y., Cobey, S., Puranen, J.S., & Corander, J. (2015). K-Pax2: Bayesian identification of cluster-defining amino acid positions in large sequence datasets. Microbial Genomes, 1, e000025. doi:10.1099/mgen.0.000025
  • Petersen, L., & Bebb, D.G. (2017). P1. 02-086 ATM mutations in lung cancer correlate to higher mutation rates. Journal of Thoracic Oncology, 12, S541.
  • Pirovano, W., Feenstra, K.A., & Heringa, J. (2006). Sequence comparison by sequence harmony identifies subtype-specific functional sites. Nucleic Acids Research, 34, 6540–6548. doi:10.1093/nar/gkl901
  • Pitnick, S., Markow, T.A., & Spicer, G.S. (1995). Delayed male maturity is a cost of producing large sperm in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 92, 10614–10618. doi:10.1073/pnas.92.23.10614
  • Pond, S.L., Frost, S.D., & Muse, S.V. (2005). HyPhy: Hypothesis testing using phylogenies. Bioinformatics, 21, 676–679. doi:10.1093/bioinformatics/bti079
  • Pongs, O., Lindemeier, J., Zhu, X.R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Koch, K.W., … Ferrús, A. (1993). Frequenin—a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron, 11, 15–28.
  • Ramensky, V., Bork, P., & Sunyaev, S. (2002). Human non-synonymous SNPs: Server and survey. Nucleic Acids Research, 30, 3894–3900.
  • Rausell, A., Juan, D., Pazos, F., & Valencia, A. (2010). Protein interactions and ligand binding: From protein subfamilies to functional specificity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1995–2000. doi:10.1073/pnas.0908044107
  • Reva, B., Antipin, Y., & Sander, C. (2007). Determinants of protein function revealed by combinatorial entropy optimization. Genome Biology, 8, R232. doi:10.1186/gb-2007-8-11-r232
  • Rodrigue, N., & Lartillot, N. (2017). Detecting adaptation in protein-coding genes using a Bayesian site-heterogeneous mutation-selection codon substitution model. Molecular Biology and Evolution, 34, 204–214. doi:10.1093/molbev/msw220
  • Rodrigue, N., Philippe, H., & Lartillot, N. (2010). Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles. Proceedings of the National Academy of Sciences of the United States of America, 107, 4629–4634. doi:10.1073/pnas.0910915107
  • Rollmann, S.M., Wang, P., Date, P., West, S.A., Mackay, T.F., & Anholt, R.R. (2010). Odorant receptor polymorphisms and natural variation in olfactory behavior in Drosophila melanogaster. Genetics, 186, 687–697. doi:10.1534/genetics.110.119446
  • Romero-Pozuelo, J., Dason, J.S., Mansilla A., Baños-Mateos S., Sardina, J.L., Chaves-Sanjuán, A., … Ferrús, A. (2014). The guanine-exchange factor Ric8a binds to the Ca2+ sensor NCS-1 to regulate synapse number and neurotransmitter release. Journal of Cell Science, 127, 4246–4259. doi:10.1242/jcs.152603
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, msx248. doi:10.1093/molbev/msx248
  • Ruan, Y., Chen, C., Cao, Y., & Garofalo, R.S. (1995). The Drosophila insulin receptor contains a novel carboxyl-terminal extension likely to play an important role in signal transduction. Journal of Biological Chemistry, 270, 4236–4243. doi:10.1074/jbc.270.9.4236
  • Sabeti, P.C., Reich, D.E., Higgins, J.M., & Levine, H.Z. (2002). Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832–837. doi:10.1038/nature01140
  • Sánchez-Gracia, A., Vieira, F.G., Almeida, F.C. & Rozas, J. (2011). Comparative genomics of the major chemosensory gene families in arthropods. eLS. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0022848/abstract
  • Sánchez-Gracia, A., Romero-Pozuelo, J., & Ferrús, A. (2010). Two frequenins in Drosophila: unveiling the evolutionary history of an unusual neuronal calcium sensor (NCS) duplication. BMC Evolutionary Biology, 10, 54. doi:10.1186/1471-2148-10-54
  • Sánchez-Gracia, A., Vieira, F.G., & Rozas, J. (2009). Molecular evolution of the major chemosensory gene families in insects. Heredity, 103, 208–216.
  • Schneider, I., Aneas, I., Gehrke, A.R., Dahn, R.D., Nobrega, M.A., & Shubin, N.H. (2011). Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. Proceedings of the National Academy of Sciences of the United States of America, 108, 12782–12786. doi:10.1073/pnas.1109993108
  • Schüler, A., Schmitz, G., Reft, A., Özbek, S., Thurm, U., & Bornberg-Bauer, E. (2015). The rise and fall of TRP-N, an ancient family of mechanogated ion channels, in metazoa. Genome Biology and Evolution, 7, 1713–1727.
  • Shariati, S.A.M., & De Strooper, B. (2013). Redundancy and divergence in the amyloid precursor protein family. FEBS Letters, 587, 2036–2045. doi:10.1016/j.febslet.2013.05.026
  • Shiao, M.S., Chang, J.M., Fan, W.L., Lu, M.Y., Notredame, C., Fang, S., … Li, W.H. (2015). Expression divergence of chemosensory genes between Drosophila sechellia and its sibling species and its implications for host shift. Genome Biology and Evolution, 7, 2843–2858. doi:10.1093/gbe/evv183
  • Sinha, S., Verma, S., Singh, A., Somvanshi, P., & Grover, A. (2017). Simulation based investigation of deleterious nsSNP’s in ATXN2 gene and its structural consequence towards Spinocerebellar Ataxia. Journal of Cellular Biochemistry.
  • Smith, N.G.C., & Eyre-Walker, A. (2002). Adaptive protein evolution in Drosophila. Nature, 415, 1022–1024. doi:10.1038/4151022a
  • Smith, M.D., Wertheim, J.O., Weaver, S., Murrell, B., Scheffler, K., & Kosakovsky Pond, S.L. (2015). Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Molecular Biology and Evolution, 32, 1342–1353. doi:10.1093/molbev/msv022
  • Steen, E., Terry, B.M., Rivera, E.J., Cannon, J.L., Neely, T.R., Tavares, R., … de la Monte, S.M. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? Journal of Alzheimer’s Disease, 7, 63–80.
  • Stone, E.A., & Sidow, A. (2005). Physicochemical constraint violation by missense substitution mediates impairment of protein function and disease severity. Genome Research, 15, 978–986. doi:10.1101/gr.3804205
  • Sturtevant, A.H. (1939). On the subdivision of the genus Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 25, 137–141. doi:10.1073/pnas.25.3.137
  • Störtkuhl, K.F., Kettler, R., Fischer, S., & Hovemann, B.T. (2005). An increased receptive field of olfactory receptor Or43a in the antennal lobe of Drosophila reduces benzaldehyde-driven avoidance behavior. Chemical Senses, 30, 81–87. doi:10.1093/chemse/bji003
  • Takahashi, T., Amano, N., Hanihara, T., Nagatomo, H., Yagishita, S., Itoh, Y., … Tanabe, T. (1996). Corticobasal degeneration: Widespread argentophilic threads and glia in addition to neurofibrillary tangles. Similarities of cytoskeletal abnormalities in corticobasal degeneration and progressive supranuclear palsy. Journal of the Neurological Sciences, 138, 66–77.
  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035. doi:10.1073/pnas.0404206101
  • Tamuri, A.U., dos Reis, M., & Goldstein, R.A. (2012). Estimating the distribution of selection coefficients from phylogenetic data using sitewise mutation-selection models. Genetics, 190, 1101–1115. doi:10.1534/genetics.111.136432
  • Tamuri, A.U., Goldman, N., & dos Reis, M. (2014). A penalized-likelihood method to estimate the distribution of selection coefficients from phylogenetic data. Genetics, 197, 257–271. doi:10.1534/genetics.114.162263
  • Tang, H., & Thomas, P.D. (2016). Tools for predicting the functional impact of nonsynonymous genetic variation. Genetics, 203, 635–647. doi:10.1534/genetics.116.190033
  • Valenciano, A.I., Corrochano, S., de Pablo, F., de la Villa, P., & de la Rosa, E.J. (2006). Proinsulin/insulin is synthesized locally and prevents caspase- and cathepsin-mediated cell death in the embryonic mouse retina. Journal of Neurochemical, 99, 524–536. doi:10.1111/j.1471-4159.2006.04043.x
  • Vitti, J.J., Grossman, S.R., & Sabeti, P.C. (2013). Detecting natural selection in genomic data. Annual Review of Genetics, 47, 97–120. doi:10.1146/annurev-genet-111212-133526
  • Voight, B.F., Kudaravalli, S., Wen, X., & Pritchard, J.K. (2006). A map of recent positive selection in the human genome. PLoS Biology, 4, e7210.1371/journal.pbio.0040072
  • Wang, P., Lyman, R.F., Mackay, T.F., & Anholt, R.R. (2010). Natural variation in odorant recognition among odorant-binding proteins in Drosophila melanogaster. Genetics, 184, 759–767. doi:10.1534/genetics.109.113340
  • Wickelgren, I. (1998). Tracking insulin to the mind. Science, 280, 517–519.
  • Wu, Q., & Brown, M.R. (2006). Signaling and function of insulin-like peptides in insects. Annual Review of Entomology, 51, 1–24. doi:10.1146/annurev.ento.51.110104.151011
  • Wu, Y., Zheng, Z., Visscher, P.M., & Yang, J. (2017). Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Genome Biology, 18, 86. doi:10.1186/s13059-017-1216-0
  • Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586–1591. doi:10.1093/molbev/msm088
  • Yang, Z., & Bielawski, J.P. (2000). Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution, 15, 496–503. doi:10.1016/S0169-5347(00)01994-7
  • Yang, Z., & Nielsen, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Molecular Biology and Evolution, 19, 908–917. doi:10.1093/oxfordjournals.molbev.a004148
  • Yang, Z., & Nielsen, R. (2008). Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Molecular Biology and Evolution, 25, 568–579. doi:10.1093/molbev/msm284
  • Ye, K., Feenstra, K.A., Heringa, J., Ijzerman, A.P., & Marchiori, E. (2008). Multi-RELIEF: A method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting. Bioinformatics, 24, 18–25. doi:10.1093/bioinformatics/btm537
  • Yue, P., Melamud, E., & Moult, J. (2006). SNPs3D: Candidate gene and SNP selection for association studies. BMC Bioinformatics, 7, 166. doi:10.1186/1471-2105-7-166
  • Zhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22, 2472–2479. doi:10.1093/molbev/msi237
  • Zhao, L., Ma, Q.L., Calon, F., Harris-White, M.E., Yang, F., Lim, G.P., … Cole, G.M. (2006). Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nature Neuroscience, 9, 234–242. doi:10.1038/nn1630
  • Zhen, Y., & Andolfatto, P. (2012). Methods to detect selection on noncoding DNA. Methods in Molecular Biology, 856, 141–159. doi:10.1007/978-1-61779-585-5_6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.