2,116
Views
18
CrossRef citations to date
0
Altmetric
Original Research Article

Pleiotropy of the Drosophila melanogaster foraging gene on larval feeding-related traits

, ORCID Icon, , & ORCID Icon
Pages 256-266 | Received 16 May 2018, Accepted 09 Jul 2018, Published online: 10 Oct 2018

References

  • Allen, A.M., Anreiter, I., Neville, M.C., & Sokolowski, M.B. (2017). Feeding-related traits are affected by dosage of the foraging gene in Drosophila melanogaster. Genetics, 205, 761–773. doi:10.1534/genetics.116.197939
  • Andersson, L., & Georges, M. (2004). Domestic-animal genomics: Deciphering the genetics of complex traits. Nature Reviews Genetics, 5, 202–212. doi:10.1038/nrg1294
  • Anreiter, I., Vasquez, O.E., Allen, A.M., & Sokolowski, M.B. (2016). Foraging path-length protocol for Drosophila melanogaster larvae. Journal of Visualized Experiments, 110, e53980. doi:10.3791/53980
  • Anreiter, I., Kramer, J.M., & Sokolowski, M.B. (2017). Epigenetic mechanisms modulate differences in Drosophila foraging behavior. Proceedings of the National Academy of Sciences USA, 114, 12518–12523. doi:10.1073/pnas.1710770114
  • Anreiter, I., & Sokolowski, M.B. (2018). Deciphering pleiotropy: How complex genes regulate behavior. Communicative & Integrative Biology, e1447743. doi:10.1080/19420889.2018.1447743
  • Arredondo, J.J., Marco Ferreres, R., Maroto, M., Cripps, R.M., Marco, R., Bernstein, S.I., & Cervera, M. (2001). Control of Drosophila paramyosin/miniparamyosin gene expression. Differential regulatory mechanisms for muscle-specific transcription. Journal of Biological Chemistry, 276, 8278–8287. doi:10.1074/jbc.M009302200
  • Ayoubi, T.A., & Van De Ven, W.J. (1996). Regulation of gene expression by alternative promoters. FASEB Journal, 10, 453–460. doi:10.1096/fasebj.10.4.8647344
  • Barolo, S., Carver, L.A., & Posakony, J.W. (2000). GFP and β-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. BioTechniques, 29, 726–732.
  • Belay, A.T., Scheiner, R., So, A. K.-C., Douglas, S.J., Chakaborty-Chatterjee, M., Levine, J.D., & Sokolowski, M.B. (2007). The foraging gene of Drosophila melanogaster: Spatial-expression analysis and sucrose responsiveness. The Journal of Comparative Neurology, 504, 570–582. doi:10.1002/cne.21466
  • Billeter, J.-C., & Goodwin, S.F. (2004). Characterization of Drosophila fruitless-gal4 transgenes reveals expression in male-specific fruitless neurons and innervation of male reproductive structures. The Journal of Comparative Neurology, 475, 270–287. doi:10.1002/cne.20177
  • Bischof, J., & Basler, K. (2008). Recombinases and their use in gene activation, gene inactivation, and transgenesis. Methods in Molecular Biology (Clifton, N.J.), 420, 175–195. doi:10.1007/978-1-59745-583-1
  • Bischof, J., Maeda, R.K., Hediger, M., Karch, F., & Basler, K. (2007). An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proceedings of the National Academy of Sciences USA, 104, 3312–3317. doi:10.1073/pnas.0611511104
  • Brand, A.H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • Brenner, R., Thomas, T.O., Becker, M.N., & Atkinson, N.S. (1996). Tissue-specific expression of a Ca(2+)-activated K + channel is controlled by multiple upstream regulatory elements. The Journal of Neuroscience, 16, 1827–1835. doi:10.1523/JNEUROSCI.16-05-01827.1996
  • Carroll, S.B. (2000). Endless forms: the evolution of gene regulation and morphological diversity. Cell, 101, 577–580. doi:10.1016/S0092-8674(00)80868-5
  • Chintapalli, V.R., Wang, J., & Dow, J.A.T. (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics, 39, 715–720. doi:10.1038/ng2049
  • Des Marais, D.L., & Rausher, M.D. (2008). Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature, 454, 762–765. doi:10.1038/nature07092
  • Diao, F., Ironfield, H., Luan, H., Diao, F., Shropshire, W.C., Ewer, J., … White, B.H. (2015). Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes. Cell Reports, 10, 1410–1421. doi:10.1016/j.celrep.2015.01.059
  • Dubreuil, R.R. (2004). Copper cells and stomach acid secretion in the Drosophila midgut. The International Journal of Biochemistry & Cell Biology, 36, 745–752.
  • Dutta, D., Dobson, A. J., Houtz, P. L., Gläβer, C., Revah, J., Korzelius, J., Patel, P. H., Edgar, B. A., Buchon, N. (2015). Regional cell-specific transcriptome mapping reveals regulatory complexity in the adult Drosophila midgut. Cell Rep. 12, 346–358.
  • Edwards, T.N., & Meinertzhagen, I.A. (2010). The functional organisation of glia in the adult brain of Drosophila and other insects. Progress in Neurobiology, 90, 471–497. doi:10.1016/j.pneurobio.2010.01.001
  • Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., … Celniker, S.E. (2011). The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479. doi:10.1038/nature09715
  • Groth, A.C., Fish, M., Nusse, R., & Calos, M.P. (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics, 166, 1775–1782. doi:10.1534/genetics.166.4.1775
  • Hodgkin, J. (1998). Seven types of pleiotropy. International Journal of Developmental Biology, 42, 501–505.
  • Hofmann, F., Bernhard, D., Lukowski, R., & Weinmeister, P. (2009). cGMP regulated protein kinases (cGK). cGMP: Generators, effectors and therapeutic implications (pp. 137–162). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Hofmann, F., Feil, R., Kleppisch, T., & Schlossmann, J. (2006). Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiological Reviews, 86, 1–23. doi:10.1152/physrev.00015.2005
  • Hofmann, H.A. (2003). Functional genomics of neural and behavioral plasticity. Journal of Neurobiology, 54, 272–282. doi:10.1002/neu.10172
  • Jacobs, J.R. (2000). The midline glia of Drosophila: A molecular genetic model for the developmental functions of glia. Prog. Neurobiol. 62, 475–508.
  • Jiang, H., & Edgar, B.A. (2009). EGFR signalling regulates the proliferation of Drosophila adult midgut progenitors. Development, 136, 483–493. doi:10.1242/dev.026955
  • Kalderon, D., & Rubin, G.M. (1989). cGMP-dependent protein kinase genes in Drosophila. The Journal of Biological Chemistry, 264, 10738–10748.
  • Kaun, K.R., Chakaborty-Chatterjee, M., & Sokolowski, M.B. (2008). Natural variation in plasticity of glucose homeostasis and food intake. The Journal of Experimental Biology, 211, 3160–3166. doi:10.1242/jeb.010124
  • Kaun, K.R., Riedl, C.A.L., Chakaborty-Chatterjee, M., Belay, A.T., Douglas, S.J., Gibbs, A.G., & Sokolowski, M.B. (2007). Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. The Journal of Experimental Biology, 210, 3547–3558. doi:10.1242/jeb.006924
  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. doi:10.1093/bioinformatics/bts199
  • Leader, D. P., Krause, S. A., Pandit, A., Davies, S. A., Dow, J. A. T. (2018). FlyAtlas 2: A new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Res. 46, D809–D815.
  • Lee, J.-H., Bassel-Duby, R., & Olson, E.N. (2014). Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. Proceedings of the National Academy of Sciences USA, 111, 9491–9496. doi:10.1073/pnas.1409427111
  • Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22, 451–461. doi:10.1016/S0896-6273(00)80701-1
  • Lehman, D.A., Patterson, B., Johnston, L.A., Balzer, T., Britton, J.S., Saint, R., & Edgar, B.A. (1999). Cis-regulatory elements of the mitotic regulator, string/Cdc25. Development, 126, 1793–1803.
  • Lohmann, S.M., Vaandrager, A.B., Smolenski, A., Walter, U., & De Jonge, H.R. (1997). Distinct and specific functions of cGMP-dependent protein kinases. Trends in Biochemical Sciences, 22, 307–312. doi:10.1016/S0968-0004(97)01086-4
  • MacPherson, M.R., Broderick, K.E., Graham, S., Day, J.P., Houslay, M.D., Dow, J.A.T., & Davies, S.A. (2004a). The dg2 (for) gene confers a renal phenotype in Drosophila by modulation of cGMP-specific phosphodiesterase. J. Exp. Biol. 207, 2769–2776.
  • MacPherson, M.R., Lohmann, S.M., and Davies, S.-A. (2004b). Analysis of Drosophila cGMP-dependent protein kinases and assessment of their in vivo roles by targeted expression in a renal transporting epithelium. J. Biol. Chem. 279, 40026–40034.
  • Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E., & Perrimon, N. (2008). Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genetics, 40, 476–483. doi:10.1038/ng.101
  • Murakami, R., & Shiotsuki, Y. (2001). Ultrastructure of the hindgut of Drosophila larvae, with special reference to the domains identified by specific gene expression patterns. Journal of Morphology, 248, 144–150. doi:10.1002/jmor.1025
  • Okada, T., Sakai, T., Murata, T., Kako, K., Sakamoto, K., Ohtomi, M., … Ishida, N. (2001). Promoter analysis for daily expression of Drosophila timeless gene. Biochemical and Biophysical Research Communications, 283, 577–582. doi:10.1006/bbrc.2001.4793
  • Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., & Remington, S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392–1395. doi:10.1126/science.273.5280.1392
  • Osborne, K.A., Robichon, A., Burgess, E., Butland, S., Shaw, R.A., Coulthard, A., & Pereira, H.S. (1997). Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science, 277, 834–836. doi:10.1126/science.277.5327.834
  • Park, J.H., Helfrich-Förster, C., Lee, G., Liu, L., Rosbash, M., & Hall, J.C. (2000). Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proceedings of the National Academy of Science USA, 97, 3608–3613. doi:10.1073/pnas.97.7.3608
  • Pyeritz, R.E. (1989). Pleiotropy revisited: Molecular explanations of a classic concept. American Journal of Medical Genetics, 34, 124–134. doi:10.1002/ajmg.1320340120
  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • Reaume, C.J., & Sokolowski, M.B. (2011). Conservation of gene function in behaviour. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2100. doi:10.1098/rstb.2011.0028
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676–682. doi:10.1038/nmeth.2019
  • Schlossmann, J., & Desch, M. (2009). cGK substrates. cGMP: Generators, effectors and therapeutic implications (pp. 163–193). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Smith, J.A., Francis, S.H., Walsh, K.A., Kumar, S., & Corbin, J.D. (1996). Autophosphorylation of type Ibeta cGMP-dependent protein kinase increases basal catalytic activity and enhances allosteric activation by cGMP or cAMP. The Journal of Biological Chemistry, 271, 20756–20762. doi:10.1074/jbc.271.34.20756
  • Song, W., Veenstra, J.A., & Perrimon, N. (2014). Control of lipid metabolism by tachykinin in Drosophila. Cell Reports, 9, 40–47. doi:10.1016/j.celrep.2014.08.060
  • Stork, T., Bernardos, R., & Freeman, M.R. (2012). Analysis of glial cell development and function in Drosophila. Cold Spring Harbor Protocols, 2012, 1–17.
  • Suster, M.L., Seugnet, L., Bate, M., & Sokolowski, M.B. (2004). Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis, 39, 240–245. doi:10.1002/gene.20051
  • Thomas, T., Wang, B., Brenner, R., & Atkinson, N.S. (1997). Novel embryonic regulation of Ca(2+)-activated K + channel expression in Drosophila. Invertebrate Neuroscience, 2, 283–291. doi:10.1007/BF02211941
  • Urquhart-Cronish, M., & Sokolowski, M.B. (2014). Gene-environment interplay in Drosophila melanogaster: Chronic nutritional deprivation in larval life affects adult fecal output. Journal of Insect Physiology, 69, 95–100. doi:10.1016/j.jinsphys.2014.06.001
  • Veenstra, J.A. (2009). Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell and Tissue Research, 336, 309–323. doi:10.1007/s00441-009-0769-y
  • Venken, K.J.T., Schulze, K.L., Haelterman, N.A., Pan, H., He, Y., Evans-Holm, M., … Bellen, H.J. (2011). MiMIC: A highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods, 8, 737–743. doi:10.1038/nmeth.1662
  • Weber, S., Bernhard, D., Lukowski, R., Weinmeister, P., Worner, R., Wegener, J.W., … Feil, R. (2007). Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circulation Research, 101, 1096–1103. doi:10.1161/CIRCRESAHA.107.154351

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.