161
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Finding a place and leaving a mark in memory formation

ORCID Icon &
Pages 21-27 | Received 01 Oct 2019, Accepted 13 Dec 2019, Published online: 27 Dec 2019

References

  • Baggett, V., Mishra, A., Kehrer, A.L., Robinson, A.O., Shaw, P., & Zars, T. (2018). Place learning overrides innate behaviors in Drosophila. Learning & Memory, 25, 122–128. doi:10.1101/lm.046136.117
  • Brembs, B., & Heisenberg, M. (2000). The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learning & Memory, 7, 104–115. doi:10.1101/lm.7.2.104
  • Burgess, N., Donnett, J.G., & O’Keefe, J. (1998). The representation of space and the hippocampus in rats, robots and humans. Zeitschrift für Naturforschung C, 53, 504–509. doi:10.1515/znc-1998-7-805
  • Collett, M., Chittka, L., & Collett, T.S. (2013). Spatial memory in insect navigation. Current Biology, 23, R789–800. doi:10.1016/j.cub.2013.07.020
  • Collett, M., Graham, P., & Collett, T.S. (2017). Insect navigation: What backward walking reveals about the control of movement. Current Biology, 27, R141–R144. doi:10.1016/j.cub.2016.12.037
  • Collett, T. (1996). Insect navigation en route to the goal: Multiple strategies for the use of landmarks. The Journal of Experimental Biology, 199, 227–235.
  • Collett, T.S., & Collett, M. (2002). Memory use in insect visual navigation. Nature Reviews Neuroscience, 3, 542–552. doi:10.1038/nrn872
  • Collett, T.S., & Graham, P. (2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14, R475–477. doi:10.1016/j.cub.2004.06.013
  • Collett, T.S., Philippides, A., & Hempel de Ibarra, N. (2016). Insect navigation: How do wasps get home? Current Biology, 26, R166–168. doi:10.1016/j.cub.2016.01.003
  • Dacke, M., Nilsson, D.E., Scholtz, C.H., Byrne, M., & Warrant, E.J. (2003). Animal behaviour: Insect orientation to polarized moonlight. Nature, 424, 33–33. doi:10.1038/424033a
  • Diegelmann, S., Zars, M., & Zars, T. (2006). Genetic dissociation of acquisition and memory strength in the heat-box spatial learning paradigm in Drosophila. Learning & Memory, 13, 72–83. doi:10.1101/lm.45506
  • Eddison, M., Guarnieri, D.J., Cheng, L., Liu, C.H., Moffat, K.G., Davis, G., & Heberlein, U. (2011). arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron, 70, 979–990. doi:10.1016/j.neuron.2011.03.030
  • Eyers, P.A., Keeshan, K., & Kannan, N. (2017). Tribbles in the 21st Century: The evolving roles of tribbles pseudokinases in biology and disease. Trends Cell biology, 27, 284–298. doi:10.1016/j.tcb.2016.11.002
  • Feany, M.B., & Quinn, W.G. (1995). A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science, 268, 869–873. doi:10.1126/science.7754370
  • Folkers, E., Drain, P., & Quinn, W.G. (1993). Radish, a Drosophila mutant deficient in consolidated memory. Proceedings of the National Academy of Sciences of the United States of America, 90, 8123–8127. doi:10.1073/pnas.90.17.8123
  • Folkers, E., Waddell, S., & Quinn, W.G. (2006). The Drosophila radish gene encodes a protein required for anesthesia-resistant memory. Proceedings of the National Academy of Sciences of the United States of America, 103, 17496–17500. doi:10.1073/pnas.0608377103
  • Gould, J.L. (2009). Animal navigation: A wake-up call for homing. Current Biology, 19, R338–339. doi:10.1016/j.cub.2009.03.001
  • Großhans, J., & Wieschaus, E. (2000). A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell, 101, 523–531. doi:10.1016/S0092-8674(00)80862-4
  • Hartley, T., Lever, C., Burgess, N., & O’Keefe, J. (2014). Space in the brain: How the hippocampal formation supports spatial cognition. Philosophical Transactions of the Royal Society B, 369, 20120510. doi:10.1098/rstb.2012.0510
  • Heinze, S., & Reppert, S.M. (2011). Sun compass integration of skylight cues in migratory monarch butterflies. Neuron, 69, 345–358. doi:10.1016/j.neuron.2010.12.025
  • Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., & el Jundi, B. (2011). Central neural coding of sky polarization in insects. Philosophical Transactions of the Royal Society B, 366, 680–687. doi:10.1098/rstb.2010.0199
  • Homberg, U., Hofer, S., Mappes, M., Vitzthum, H., Pfeiffer, K., Gebhardt, S., … Paech, A. (2004). Neurobiology of polarization vision in the locust Schistocerca gregaria. Acta Biologica Hungarica, 55, 81–89. doi:10.1556/ABiol.55.2004.1-4.10
  • Labhart, T., & Meyer, E.P. (2002). Neural mechanisms in insect navigation: Polarization compass and odometer. Current Opinion in Neurobiology, 12, 707–714. doi:10.1016/S0959-4388(02)00384-7
  • LaFerriere, H., Guarnieri, D.J., Sitaraman, D., Diegelmann, S., Heberlein, U., & Zars, T. (2008). Genetic dissociation of ethanol sensitivity and memory formation in Drosophila melanogaster. Genetics, 178, 1895–1902. doi:10.1534/genetics.107.084582
  • LaFerriere, H., Ostrowski, D., Guarnieri, D.J., & Zars, T. (2011). The arouser EPS8L3 gene is critical for normal memory in Drosophila. PLoS One, 6, e22867. doi:10.1371/journal.pone.0022867
  • LaFerriere, H., Speichinger, K., Stromhaug, A., & Zars, T. (2011). The radish gene reveals a memory component with variable temporal properties. PLoS One, 6, e24557. doi:10.1371/journal.pone.0024557
  • LaFerriere, H., & Zars, T. (2017). The Drosophila melanogaster tribbles pseudokinase is necessary for proper memory formation. Neurobiology of Learning and Memory, 144, 68–76. doi:10.1016/j.nlm.2017.06.006
  • Mackenzie, S.M., Brooker, M.R., Gill, T.R., Cox, G.B., Howells, A.J., & Ewart, G.D. (1999). Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochimica et Biophysica Acta, 1419, 173–185. doi:10.1016/S0005-2736(99)00064-4
  • Maier, S.F., & Watkins, L.R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience & Biobehavioral Reviews, 29, 829–841. doi:10.1016/j.neubiorev.2005.03.021
  • Masoner, V., Das, R., Pence, L., Anand, G., LaFerriere, H., Zars, T., … Dobens, L.L. (2013). The kinase domain of Drosophila Tribbles is required for turnover of fly C/EBP during cell migration. Developmental Biology, 375, 33–44. doi:10.1016/j.ydbio.2012.12.016
  • Mata, J., Curado, S., Ephrussi, A., & Rorth, P. (2000). Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell, 101, 511–522. doi:10.1016/S0092-8674(00)80861-2
  • Merlin, C., Heinze, S., & Reppert, S.M. (2012). Unraveling navigational strategies in migratory insects. Current Opinion in Neurobiology, 22, 353–361. doi:10.1016/j.conb.2011.11.009
  • Mishra, A., Salari, A., Berigan, B.R., Miguel, K.C., Amirshenava, M., Robinson, A., … Zars, T. (2018). The Drosophila Gr28bD product is a non-specific cation channel that can be used as a novel thermogenetic tool. Scientific Reports, 8, 901. doi:10.1038/s41598-017-19065-4
  • Moser, M.B., Rowland, D.C., & Moser, E.I. (2015). Place cells, grid cells, and memory. Cold Spring Harbor perspectives in biology, 7, a021808. doi:10.1101/cshperspect.a021808
  • Ofstad, T.A., Zuker, C.S., & Reiser, M.B. (2011). Visual place learning in Drosophila melanogaster. Nature, 474, 204–207. doi:10.1038/nature10131
  • Ostrowski, D., Kahsai, L., Kramer, E.F., Knutson, P., & Zars, T. (2015). Place memory retention in Drosophila. Neurobiology of Learning and Memory, 123, 217–224. doi:10.1016/j.nlm.2015.06.015
  • Putz, G., & Heisenberg, M. (2002). Memories in drosophila heat-box learning. Learning & Memory, 9, 349–359. doi:10.1101/lm.50402
  • Reiser, M.B., & Dickinson, M.H. (2008). A modular display system for insect behavioral neuroscience. Journal of Neuroscience Methods, 167, 127–139. doi:10.1016/j.jneumeth.2007.07.019
  • Seelig, J.D., & Jayaraman, V. (2015). Neural dynamics for landmark orientation and angular path integration. Nature, 521, 186–191. doi:10.1038/nature14446
  • Seher, T.C., & Leptin, M. (2000). Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Current Biology, 10, 623–629. doi:10.1016/S0960-9822(00)00502-9
  • Sitaraman, D., Kramer, E.F., Kahsai, L., Ostrowski, D., & Zars, T. (2017). Discrete serotonin systems mediate memory enhancement and escape latencies after unpredicted aversive experience in drosophila place memory. Frontiers in Systems Neuroscience, 11, 92doi:10.3389/fnsys.2017.00092
  • Sitaraman, D., Zars, M., & Zars, T. (2007). Reinforcement pre-exposure enhances spatial memory formation in Drosophila. The Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and BehavioralPhysiology, 193, 903–908. doi:10.1007/s00359-007-0243-9
  • Sitaraman, D., Zars, M., LaFerriere, H., Chen, Y.-C., Sable-Smith, A., Kitamoto, T., … Zars, T. (2008). Serotonin is necessary for place memory in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 5579–5584. doi:10.1073/pnas.0710168105
  • Sitaraman, D., & Zars, T. (2010). Lack of prediction for high-temperature exposures enhances Drosophila place learning. The Journal of Experimental Biology, 213, 4018–4022. doi:10.1242/jeb.050344
  • Srinivasan, M.V., Poteser, M., & Kral, K. (1999). Motion detection in insect orientation and navigation. Vision Research, 39, 2749–2766. doi:10.1016/S0042-6989(99)00002-4
  • Stern, U., Srivastava, H., Chen, H.L., Mohammad, F., Claridge-Chang, A., & Yang, C.H. (2019). Learning a spatial task by trial and error in Drosophila. Current Biology, 29, 2517–2525. doi:10.1016/j.cub.2019.06.045
  • Stone, T., Webb, B., Adden, A., Weddig, N.B., Honkanen, A., Templin, R., … Heinze, S. (2017). An anatomically constrained model for path integration in the Bee Brain. Current Biology, 27, 3069–3085. doi:10.1016/j.cub.2017.08.052
  • Strother, J.A., Nern, A., & Reiser, M.B. (2014). Direct observation of ON and OFF pathways in the Drosophila visual system. Current Biology, 24, 976–983. doi:10.1016/j.cub.2014.03.017
  • Strother, J.A., Wu, S.-T., Wong, A.M., Nern, A., Rogers, E.M., Le, J.Q., … Reiser, M.B. (2017). The emergence of directional selectivity in the visual motion pathway of Drosophila. Neuron, 94, 168–182. doi:10.1016/j.neuron.2017.03.010
  • Tuthill, J.C., Nern, A., Rubin, G.M., & Reiser, M.B. (2014). Wide-field feedback neurons dynamically tune early visual processing. Neuron, 82, 887–895. doi:10.1016/j.neuron.2014.04.023
  • Waddell, S., Armstrong, J.D., Kitamoto, T., Kaiser, K., & Quinn, W.G. (2000). The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell, 103, 805–813. doi:10.1016/S0092-8674(00)00183-5
  • Warrant, E., & Dacke, M. (2016). Visual navigation in nocturnal insects. Physiology (Bethesda), 31, 182–192. doi:10.1152/physiol.00046.2015
  • Webb, B., & Wystrach, A. (2016). Neural mechanisms of insect navigation. Current Opinion in Insect Science, 15, 27–39. doi:10.1016/j.cois.2016.02.011
  • Williams-Simon, P.A., Posey, C., Mitchell, S., Ng’oma, E., Mrkvicka, J.A., Zars, T., & King, E.G. (2019). Multiple genetic loci affect place learning and memory performance in Drosophila melanogaster. Genes, Brain and Behavior, 18, e12581.doi:10.1111/gbb.12581
  • Wolf, H. (2011). Odometry and insect navigation. The Journal of Experimental Biology, 214, 1629–1641. doi:10.1242/jeb.038570
  • Wu, M., Nern, A., Williamson, W.R., Morimoto, M.M., Reiser, M.B., Card, G.M., & Rubin, G.M. (2016). Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. Elife, 5, pii:e21022. doi:10.7554/eLife.21022
  • Wustmann, G., Rein, K., Wolf, R., & Heisenberg, M. (1996). A new paradigm for operant conditioning of Drosophila melanogaster. The Journal of Comparative Physiology A, 179, 429–436. doi:10.1007/BF00194996
  • Zars, M., & Zars, T. (2006). High and low temperatures have unequal reinforcing properties in Drosophila spatial learning. The Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and BehavioralPhysiology, 192, 727–735. doi:10.1007/s00359-006-0109-6
  • Zars, T., Wolf, R., Davis, R., & Heisenberg, M. (2000). Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: In search of the engram. Learning & Memory, 7, 18–31. doi:10.1101/lm.7.1.18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.