835
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Optogenetics: Illuminating neuronal circuits of memory formation

ORCID Icon & ORCID Icon
Pages 47-54 | Received 28 Aug 2019, Accepted 18 Dec 2019, Published online: 07 Jan 2020

References

  • Arrigoni, E., & Saper, C.B. (2014). What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Current Opinion in Neurobiology, 165–171. doi:10.1016/j.conb.2014.07.016
  • Aso, Y., Grübel, K., Busch, S., Friedrich, A.B., Siwanowicz, I., & Tanimoto, H. (2009). The mushroom body of adult Drosophila characterized by GAL4 drivers. Journal of Neurogenetics, 23, 156–172. doi:10.1080/01677060802471718
  • Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.-T., … Rubin, G.M. (2014a). The neuronal architecture. of the mushroom body provides a logic for associative learning. ELife, 3, e04577. doi:10.7554/eLife.04577
  • Aso, Y., & Rubin, G.M. (2016). Dopaminergic neurons write and update memories with cell-type-specific rules. ELife, 5, e16135. doi:10.7554/eLife.16135
  • Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K.R., Vogt, K., Belliart-Guérin, G., … Rubin, G.M. (2014b). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. ELife, 3, e04580. doi:10.7554/eLife.04580
  • Barnstedt, O., Owald, D., Felsenberg, J., Brain, R., Moszynski, J.-P., Talbot, C.B., … Waddell, S. (2016). Memory-Relevant mushroom body output synapses are cholinergic. Neuron, 89, 1237–1247. doi:10.1016/j.neuron.2016.02.015
  • Beck, S., Yu-Strzelczyk, J., Pauls, D., Constantin, O.M., Gee, C.E., Ehmann, N., … Gao, S. (2018). Synthetic Light-Activated ion channels for optogenetic activation and inhibition. Frontiers in Neuroscience, 12, 643. doi:10.3389/fnins.2018.00643
  • Bellmann, D., Richardt, A., Freyberger, R., Nuwal, N., Schwärzel, M., Fiala, A., & Störtkuhl, K.F. (2010). Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of Odor-Aversion behavior. Frontiers in Behavioral Neuroscience, 4, 27. doi:10.3389/fnbeh.2010.00027
  • Bernal Sierra, Y.A., Rost, B.R., Pofahl, M., Fernandes, A.M., Kopton, R.A., Moser, S., … Schmitz, D. (2018). Potassium channel-based optogenetic silencing. Nature Communications, 9, 4611. doi:10.1038/s41467-018-07038-8
  • Berry, J.A., Cervantes-Sandoval, I., Nicholas, E.P., & Davis, R.L. (2012). Dopamine is required for learning and forgetting in Drosophila. Neuron, 74, 530–542. doi:10.1016/j.neuron.2012.04.007
  • Berry, J.A., Phan, A., & Davis, R.L. (2018). Dopamine neurons mediate learning and forgetting through bidirectional modulation of a memory trace. Cell Reports, 25, 651–662.e5. doi:10.1016/j.celrep.2018.09.051
  • Burke, C.J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M.J., Das, G., … Waddell, S. (2012). Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 492, 433–437. doi:10.1038/nature11614
  • Cervantes-Sandoval, I., Phan, A., Chakraborty, M., & Davis, R.L. (2017). Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning. ELife, 6, 1–16. doi:10.7554/eLife.23789
  • Chuong, A.S., Miri, M.L., Busskamp, V., Matthews, G.A.C., Acker, L.C., Sørensen, A.T., … Boyden, E.S. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17, 1123–1129. doi:10.1038/nn.3752
  • Claridge-Chang, A., Roorda, R.D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., & Miesenböck, G. (2009). Writing memories with light-addressable reinforcement circuitry. Cell, 139, 405–415. doi:10.1016/j.cell.2009.08.034
  • Claßen, G., & Scholz, H. (2018). Octopamine shifts the behavioral response from indecision to approach or aversion in Drosophila melanogaster. Frontiers in Behavioral Neuroscience, 12, 131. doi:10.3389/fnbeh.2018.00131
  • Cognigni, P., Felsenberg, J., & Waddell, S. (2018). Do the right thing: Neural network mechanisms of memory formation, expression and update in Drosophila. Current Opinion in Neurobiology, Neurobiology of Behavior, 49, 51–58. doi:10.1016/j.conb.2017.12.002
  • Dag, U., Lei, Z., Le, J.Q., Wong, A., Bushey, D., & Keleman, K. (2019). Neuronal. reactivation during post-learning sleep consolidates long-term memory in Drosophila. ELife, 8, 1–23. doi:10.7554/eLife.42786
  • Davis, R.L. (2011). Traces of Drosophila memory. Neuron, 70, 8–19. doi:10.1016/j.neuron.2011.03.012
  • Dawydow, A., Gueta, R., Ljaschenko, D., Ullrich, S., Hermann, M., Ehmann, N., … Kittel, R.J. (2014). Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proceedings of the National Academy of Sciences of the United States of America, 111, 13972–13977. doi:10.1073/pnas.1408269111
  • Donlea, J.M., Pimentel, D., Talbot, C.B., Kempf, A., Omoto, J.J., Hartenstein, V., & Miesenböck, G. (2018). Recurrent circuitry for balancing sleep need and sleep. Neuron, 97, 378–389.e4. doi:10.1016/j.neuron.2017.12.016
  • Duan, X., Nagel, G., & Gao, S. (2019). Mutated channelrhodopsins with increased sodium and calcium permeability. Applied Sciences, 9, 664. doi:10.3390/app9040664
  • Durjadin, F. (1850). Memoire sur le systeme nerveux des insects. Annales Des Sciences Naturales, 14, 195–206.
  • Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C.M., … Cardona, A. (2017). The complete connectome of a learning and memory centre in an insect brain. Nature, 548, 175–182. doi:10.1038/nature23455
  • Eschbach, C., Fushiki, A., Winding, M., Schneider-Mizell, C.M., Shao, M., Arruda, R., & Eichler, K. (2019). Multilevel feedback architecture for adaptive regulation of learning in the insect brain. BioRxiv, 649731. doi:10.1101/649731
  • Felsenberg, J., Jacob, P.F., Walker, T., Barnstedt, O., Edmondson-Stait, A.J., Pleijzier, M.W., … Waddell, S. (2018). Integration of parallel opposing memories underlies memory extinction. Cell, 175, 709–722.e15. doi:10.1016/j.cell.2018.08.021
  • Fishilevich, E., Domingos, A.I., Asahina, K., Naef, F., Vosshall, L.B., & Louis, M. (2005). Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Current Biology: CB, 15, 2086–2096. doi:10.1016/j.cub.2005.11.016
  • Galili, D.S., Dylla, K.V., Lüdke, A., Friedrich, A.B., Yamagata, N., Wong, J.Y.H., … Tanimoto, H. (2014). Converging circuits mediate temperature and shock aversive olfactory conditioning in Drosophila. Current Biology: CB, 24, 1712–1722. doi:10.1016/j.cub.2014.06.062
  • Ganguly-Fitzgerald, I., Donlea, J., & Shaw, P.J. (2006). Waking experience affects sleep need in Drosophila. Science (New York, N.Y.), 313, 1775–1781. doi:10.1126/science.1130408
  • Govorunova, E.G., Sineshchekov, O.A., Janz, R., Liu, X., & Spudich, J.L. (2015). Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science (New York, N.Y.), 349, 647–650. doi:10.1126/science.aaa7484
  • Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., … Deisseroth, K. (2010). Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 141, 154–165. doi:10.1016/j.cell.2010.02.037
  • Hall, J.C. (1994). The mating of a fly. Science (New York, N.Y.), 264, 1702–1714. doi:10.1126/science.8209251
  • Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature, 366, 59–63. doi:10.1038/366059a0
  • Heisenberg, M. (1998). What do the mushroom bodies do for the insect brain? An introduction. Learning and Memory (Cold Spring Harbor, N.Y.), 5, 1–10.
  • Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature Reviews Neuroscience, 4, 266–275. doi:10.1038/nrn1074
  • Heisenberg, M., Borst, A., Wagner, S., & Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of Neurogenetics, 2, 1–30. doi:10.3109/01677068509100140
  • Hige, T., Aso, Y., Modi, M.N., Rubin, G.M., & Turner, G.C. (2015). Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila. Neuron, 88, 985–998. doi:10.1016/j.neuron.2015.11.003
  • Honda, T., Lee, C.-Y., Honjo, K., & Furukubo-Tokunaga, K. (2016). Artificial induction of associative olfactory memory by optogenetic and thermogenetic activation of olfactory sensory neurons and octopaminergic neurons in Drosophila larvae. Frontiers in Behavioral Neuroscience, 10, 137. doi:10.3389/fnbeh.2016.00137
  • Honjo, K., & Furukubo-Tokunaga, K. (2009). Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. The Journal of Neuroscience, 29, 852–862. doi:10.1523/JNEUROSCI.1315-08.2009
  • Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., & Waddell, S. (2015). Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Current Biology: CB, 25, 751–758. doi:10.1016/j.cub.2015.01.036
  • Inada, K., Kohsaka, H., Takasu, E., Matsunaga, T., & Nose, A. (2011). Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PloS One, 6, e29019. doi:10.1371/journal.pone.0029019
  • Inagaki, H.K., Jung, Y., Hoopfer, E.D., Wong, A.M., Mishra, N., Lin, J.Y., … Anderson, D.J. (2014). Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature Methods, 11, 325–332. doi:10.1038/nmeth.2765
  • Kim, Y.-C., Lee, H.-G., & Han, K.-A. (2007). D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. The Journal of Neuroscience, 27, 7640–7647. doi:10.1523/JNEUROSCI.1167-07.2007
  • Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., … Boyden, E.S. (2014). Independent optical excitation of distinct neural populations. Nature Methods, 11, 338–346. doi:10.1038/nmeth.2836
  • König, C., Khalili, A., Niewalda, T., Gao, S., & Gerber, B. (2019). An optogenetic analogue of second-order reinforcement in Drosophila. Biology Letters, 15, 20190084. doi:10.1098/rsbl.2019.0084
  • Krashes, M.J., DasGupta, S., Vreede, A., White, B., Armstrong, J.D., & Waddell, S. (2009). A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 139, 416–427. doi:10.1016/j.cell.2009.08.035
  • Latorre, R., Zaelzer, C., & Brauchi, S. (2009). Structure–functional intimacies of transient receptor potential channels. Quarterly Reviews of Biophysics, 42, 201–246. doi:10.1017/S0033583509990072
  • Lima, S.Q., & Miesenböck, G. (2005). Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 121, 141–152. doi:10.1016/j.cell.2005.02.004
  • Lin, A.C., Bygrave, A.M., de Calignon, A., Lee, T., & Miesenböck, G. (2014). Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nature Neuroscience, 17, 559–568. doi:10.1038/nn.3660
  • Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D., & Tsien, R.Y. (2013). ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 16, 1499–1508. doi:10.1038/nn.3502
  • Lin, S., Owald, D., Chandra, V., Talbot, C., Huetteroth, W., & Waddell, S. (2014). Neural correlates of water reward in thirsty Drosophila. Nature Neuroscience, 17, 1536–1542. doi:10.1038/nn.3827
  • Ljaschenko, D., Ehmann, N., & Kittel, R.J. (2013). Hebbian plasticity guides maturation of glutamate receptor fields in vivo. Cell Reports, 3, 1407–1413. doi:10.1016/j.celrep.2013.04.003
  • Lundkvist, G.B., Kwak, Y., Davis, E.K., Tei, H., & Block, G.D. (2005). A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. The Journal of Neuroscience, 25, 7682–7686. doi:10.1523/JNEUROSCI.2211-05.2005
  • Lyutova, R., Selcho, M., Pfeuffer, M., Segebarth, D., Habenstein, J., Rohwedder, A., … Pauls, D. (2019). Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nature Communications, 10, 3097. doi:10.1038/s41467-019-11092-1
  • Masek, P., Worden, K., Aso, Y., Rubin, G.M., & Keene, A.C. (2015). A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Current Biology: CB, 25, 1535–1541. doi:10.1016/j.cub.2015.04.027
  • Mohammad, F., Stewart, J.C., Ott, S., Chlebikova, K., Chua, J.Y., Koh, T.-W., … Claridge-Chang, A. (2017). Optogenetic inhibition of behavior with anion channelrhodopsins. Nature Methods, 14, 271–274. doi:10.1038/nmeth.4148
  • Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., … Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100, 13940–13945. doi:10.1073/pnas.1936192100
  • Noguchi, T., Leise, T.L., Kingsbury, N.J., Diemer, T., Wang, L.L., Henson, M.A., & Welsh, D.K. (2017). Calcium circadian rhythmicity in the suprachiasmatic nucleus: Cell autonomy and network modulation. ENeuro, 4, 1–12. ENEURO.0160-17.2017. doi:10.1523/ENEURO.0160-17.2017
  • Oppermann, J., Fischer, P., Silapetere, A., Liepe, B., Rodriguez-Rozada, S., Flores-Uribe, J., … Wietek, J. (2019). MerMAIDs: A family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nature Communications, 10, 3315. doi:10.1038/s41467-019-11322-6
  • Owald, D., Felsenberg, J., Talbot, C.B., Das, G., Perisse, E., Huetteroth, W., & Waddell, S. (2015). Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron, 86, 417–427. doi:10.1016/j.neuron.2015.03.025
  • Owald, D., & Waddell, S. (2015). Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Current Opinion in Neurobiology, 35, 178–184. doi:10.1016/j.conb.2015.10.002
  • Palacios-Muñoz, A., & Ewer, J. (2018). Calcium and cAMP directly modulate the speed of the Drosophila circadian clock. PLOS Genetics, 14, e1007433. doi:10.1371/journal.pgen.1007433
  • Pan, Y., Robinett, C.C., & Baker, B.S. (2011). Turning males on: Activation of male courtship behavior in Drosophila melanogaster. PloS One, 6, e21144. doi:10.1371/journal.pone.0021144
  • Pauls, D., Selcho, M., Gendre, N., Stocker, R.F., & Thum, A.S. (2010). Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin. The Journal of Neuroscience, 30, 10655–10666. doi:10.1523/JNEUROSCI.1281-10.2010
  • Pauls, D., von Essen, A., Lyutova, R., van Giesen, L., Rosner, R., Wegener, C., & Sprecher, S.G. (2015). Potency of transgenic effectors for neurogenetic manipulation in Drosophila larvae. Genetics, 199, 25–37. doi:10.1534/genetics.114.172023
  • Pavlowsky, A., Schor, J., Plaçais, P.-Y., & Preat, T. (2018). A GABAergic feedback shapes dopaminergic input on the Drosophila mushroom body to promote appetitive long-term memory. Current Biology: CB, 28, 1783–1793.e4. doi:10.1016/j.cub.2018.04.040
  • Perisse, E., Owald, D., Barnstedt, O., Talbot, C.B., Huetteroth, W., & Waddell, S. (2016). Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body. Neuron, 90, 1086–1099. doi:10.1016/j.neuron.2016.04.034
  • Perisse, E., Yin, Y., Lin, A.C., Lin, S., Huetteroth, W., & Waddell, S. (2013). Different kenyon cell populations drive learned approach and avoidance in Drosophila. Neuron, 79, 945–956. doi:10.1016/j.neuron.2013.07.045
  • Pimentel, D., Donlea, J.M., Talbot, C.B., Song, S.M., Thurston, A.J.F., & Miesenböck, G. (2016). Operation of a homeostatic sleep switch. Nature, 536, 333–337. doi:10.1038/nature19055
  • Plaçais, P.-Y., & Preat, T. (2013). To favor survival under food shortage, the brain disables costly memory. Science (New York, N.Y.), 339, 440–442. doi:10.1126/science.1226018
  • Ramaekers, A., Magnenat, E., Marin, E.C., Gendre, N., Jefferis, G.S.X.E., Luo, L., & Stocker, R.F. (2005). Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Current Biology: CB, 15, 982–992. doi:10.1016/j.cub.2005.04.032
  • Riemensperger, T., Kittel, R.J., & Fiala, A. (2016). Optogenetics in Drosophila neuroscience. Methods in Molecular Biology (Clifton, N.J.), 1408, 167–175. doi:10.1007/978-1-4939-3512-3
  • Rohwedder, A., Wenz, N.L., Stehle, B., Huser, A., Yamagata, N., Zlatic, M., … Thum, A.S. (2016). Four individually identified paired dopamine neurons signal reward in larval Drosophila. Current Biology: CB, 26, 661–669. doi:10.1016/j.cub.2016.01.012
  • Rosenzweig, M., Brennan, K.M., Tayler, T.D., Phelps, P.O., Patapoutian, A., & Garrity, P.A. (2005). The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes and Development, 19, 419–424. doi:10.1101/gad.1278205
  • Roska, B., & Sahel, J.-A. (2018). Restoring vision. Nature, 557, 359–367. doi:10.1038/s41586-018-0076-4
  • Rost, B.R., Schneider-Warme, F., Schmitz, D., & Hegemann, P. (2017). Optogenetic tools for subcellular applications in neuroscience. Neuron, 96, 572–603. doi:10.1016/j.neuron.2017.09.047
  • Saumweber, T., Rohwedder, A., Schleyer, M., Eichler, K., Chen, Y-C., Aso, Y., … Gerber, B. (2018). Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nature Communications, 9, 1104. doi:10.1038/s41467-018-03130-1
  • Scheunemann, L., Plaçais, P.-Y., Dromard, Y., Schwärzel, M., & Preat, T. (2018). Dunce phosphodiesterase acts as a checkpoint for Drosophila long-term memory in a pair of serotonergic neurons. Neuron, 98, 350–365.e5. doi:10.1016/j.neuron.2018.03.032
  • Schneider, F., Gradmann, D., & Hegemann, P. (2013). Ion selectivity and competition in channelrhodopsins. Biophysical Journal, 105, 91–100. doi:10.1016/j.bpj.2013.05.042
  • Scholz, N., Guan, C., Nieberler, M., Grotemeyer, A., Maiellaro, I., Gao, S., … Kittel, R.J. (2017). Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons. ELife, 6, pii: e28360. doi:10.7554/eLife.28360
  • Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Völler, T., Erbguth, K., … Fiala, A. (2006). Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Current Biology: CB, 16, 1741–1747. doi:10.1016/j.cub.2006.07.023
  • Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., & Heisenberg, M. (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. The Journal of Neuroscience, 23, 10495–10502. doi:10.1523/JNEUROSCI.23-33-10495.2003
  • Selcho, M., Millán, C., Palacios-Muñoz, A., Ruf, F., Ubillo, L., Chen, J., … Ewer, J. (2017). Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nature Communications, 8, 15563. doi:10.1038/ncomms15563
  • Selcho, M., Pauls, D., Han, K.-A., Stocker, R.F., & Thum, A.S. (2009). The role of dopamine in Drosophila larval classical olfactory conditioning. PloS One, 4, e5897. doi:10.1371/journal.pone.0005897
  • Selcho, M., Pauls, D., Huser, A., Stocker, R.F., & Thum, A.S. (2014). Characterization of the octopaminergic and tyraminergic neurons in the central brain of Drosophila larvae. The Journal of Comparative Neurology, 522, 3485–3500. doi:10.1002/cne.23616
  • Shao, J., Xue, S., Yu, G., Yu, Y., Yang, X., Bai, Y., … Ye, H. (2017). Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Science Translational Medicine, 9, eaal2298. doi:10.1126/scitranslmed.aal2298
  • Shyu, W.-H., Chiu, T.-H., Chiang, M.-H., Cheng, Y.-C., Tsai, Y.-L., Fu, T.-F., … Wu, C.-L. (2017). Neural circuits for long-term water-reward memory processing in thirsty Drosophila. Nature Communications, 8, 15230. doi:10.1038/ncomms15230
  • Simpson, J.H., & Looger, L.L. (2018). Functional imaging and optogenetics in Drosophila. Genetics, 208, 1291–1309. doi:10.1534/genetics.117.300228
  • Stierl, M., Stumpf, P., Udwari, D., Gueta, R., Hagedorn, R., Losi, A., … Hegemann, P. (2011). Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. The Journal of Biological Chemistry, 286, 1181–1188. doi:10.1074/jbc.M110.185496
  • Strausfeld, N.J., Hansen, L., Li, Y., Gomez, R.S., & Ito, K. (1998). Evolution, discovery, and interpretations of arthropod mushroom bodies. Learning and Memory (Cold Spring Harbor, N.Y.), 5, 11–37.
  • Takemura, S-Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C.S., … Scheffer, L.K. (2017). A connectome of a learning and memory center in the adult Drosophila brain. ELife, 6(6), pii: e26975, doi:10.7554/eLife.26975
  • Thum, A.S., Knapek, S., Rister, J., Dierichs-Schmitt, E., Heisenberg, M., & Tanimoto, H. (2006). Differential potencies of effector genes in adult Drosophila. The Journal of Comparative Neurology, 498, 194–203. doi:10.1002/cne.21022
  • Turner, G.C., Bazhenov, M., & Laurent, G. (2008). Olfactory representations by Drosophila mushroom body neurons. Journal of Neurophysiology, 99, 734–746. doi:10.1152/jn.01283.2007
  • Venken, K.J.T., Simpson, J.H., & Bellen, H.J. (2011). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron, 72, 202–230. doi:10.1016/j.neuron.2011.09.021
  • Vogt, K., Schnaitmann, C., Dylla, K.V., Knapek, S., Aso, Y., Rubin, G.M., & Tanimoto, H. (2014). Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. ELife, 3, e02395. doi:10.7554/eLife.02395
  • Widmann, A., Eichler, K., Selcho, M., Thum, A.S., & Pauls, D. (2018). Odor-taste learning in Drosophila larvae. Journal of Insect Physiology, 106, 47–54. doi:10.1016/j.jinsphys.2017.08.004
  • Wiegert, J.S., Mahn, M., Prigge, M., Printz, Y., & Yizhar, O. (2017). Silencing neurons: Tools, applications, and experimental constraints. Neuron, 95, 504–529. doi:10.1016/j.neuron.2017.06.050
  • Wong, A.M., Wang, J.W., & Axel, R. (2002). Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell, 109, 229–241. doi:10.1016/S0092-8674(02)00707-9
  • Wrobel, C., Dieter, A., Huet, A., Keppeler, D., Duque-Afonso, C.J., Vogl, C., & Hoch, G. (2018). Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Science Translational Medicine, 10(449), pii: eaao0540. doi:10.1126/scitranslmed.aao0540
  • Xu, Y., Hyun, Y.-M., Lim, K., Lee, H., Cummings, R.J., Gerber, S.A., … Kim, M. (2014). Optogenetic control of chemokine receptor signal and T-cell migration. Proceedings of the National Academy of Sciences of the United States of America, 111, 6371–6376. doi:10.1073/pnas.1319296111
  • Yamagata, N., Hiroi, M., Kondo, S., Abe, A., & Tanimoto, H. (2016). Suppression of dopamine neurons mediates reward. PLoS Biology, 14, e1002586. doi:10.1371/journal.pbio.1002586
  • Yamagata, N., Ichinose, T., Aso, Y., Plaçais, P.-Y., Friedrich, A.B., Sima, R.J., … Tanimoto, H. (2015). Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proceedings of the National Academy of Sciences of the United States of America, 112, 578–583. doi:10.1073/pnas.1421930112
  • Yamazaki, D., Hiroi, M., Abe, T., Shimizu, K., Minami-Ohtsubo, M., Maeyama, Y., … Tabata, T. (2018). Two parallel pathways assign opposing odor valences during drosophila memory formation. Cell Reports, 22, 2346–2358. doi:10.1016/j.celrep.2018.02.012
  • Yasuyama, K., Meinertzhagen, I.A., & Schürmann, F.-W. (2002). Synaptic organization of the mushroom body calyx in Drosophila melanogaster. The Journal of Comparative Neurology, 445, 211–226. doi:10.1002/cne.10155
  • Zars, T. (2000). Behavioral functions of the insect mushroom bodies. Current Opinion in Neurobiology, 10, 790–795. doi:10.1016/S0959-4388(00)00147-1
  • Zars, T., Fischer, M., Schulz, R., & Heisenberg, M. (2000). Localization of a short-term memory in Drosophila. Science (New York, N.Y.), 288, 672–675. doi:10.1126/science.288.5466.672
  • Zars, T., Wolf, R., Davis, R., & Heisenberg, M. (2000). Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: In search of the engram. Learning and Memory (Cold Spring Harbor, N.Y.), 7, 18–31. doi:10.1101/lm.7.1.18
  • Zhang, F., Wang, L.-P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., … Deisseroth, K. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633–639. doi:10.1038/nature05744
  • Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., … Bock, D.D. (2018). A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell, 174, 730–743.e22. doi:10.1016/j.cell.2018.06.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.